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ResBaGAN: A Residual Balancing GAN with Data
Augmentation for Forest Mapping
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Abstract—Although deep learning techniques are known to
achieve outstanding classification accuracies, remote sensing
datasets often present limited labeled data and class imbalances,
two challenges to attaining high levels of accuracy. In recent years,
the GAN architecture has achieved great success as a data aug-
mentation method, driving research toward further enhancements.
This work presents ResBaGAN, a GAN-based method for the
classification of remote sensing images, designed to overcome the
challenges of data scarcity and class imbalances by constructing an
advanced data augmentation framework. This framework builds
upon a GAN architecture enhanced with an autoencoder initial-
ization and class balancing properties, a superpixel-based sample
extraction procedure with traditional augmentation techniques,
and an improved residual network as classifier. Experiments were
conducted on large, very high-resolution multispectral images of
riparian forests in Galicia, Spain, with limited training data and
strong class imbalances, comparing ResBaGAN to other machine
learning methods such as simpler GANs. ResBaGAN achieved
higher overall classification accuracies, particularly improving the
accuracy of minority classes with F1-score enhancements reaching
up to 22%.

Index Terms—BAGAN, classification, data augmentation,
multispectral, residual network, superpixels.

ABBREVIATIONS

AA Average accuracy.
ACGAN Auxiliary classifier generative adversarial net-

work.
Adam Adaptive moment estimation.
BAGAN Balancing generative adversarial network.
CGAN Conditional generative adversarial network.
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CNN Convolutional neural network.
ELU Exponential linear unit.
ETPS Extended topology preserving segmentation.
F1 F1-score.
FID Fréchet inception distance.
FV Fisher vectors.
GAN Generative adversarial network.
GCN Graph convolutional network.
κ Cohen’s kappa.
KELM Kernel extreme learning machine.
LeakyReLU Leaky rectified linear unit.
OA Overall accuracy.
PA Producer’s accuracy.
PReLU Parametric rectified linear unit.
ReLU Rectified linear unit.
ResBaGAN Residual balancing generative adversarial net-

work.
ResNet Residual network.
RBM Restricted Boltzmann machines.
SEEDS Superpixels extracted via energy-driven sam-

pling.
SLIC Simple linear iterative clustering.
UA User’s accuracy.
UAV Unmanned aerial vehicle.
VAE Variational autoencoder.
WP WaterPixels.

I. INTRODUCTION

R EMOTE sensing is essential for monitoring the Earth’s
surface, aiding in tasks, such as tracking human-made

constructions [1], detecting cropland changes [2], and study-
ing ecosystems [3]. Accurate image classification methods are
crucial for many of these applications, such as identifying
areas invaded by non-native plant species for environmen-
tal monitoring. Unfortunately, remote sensing datasets often
present limited labeled data and class imbalances (i.e., certain
classes have significantly more samples than others), making
it challenging to develop accurate classification methods [4].
These challenges become even more pronounced when pro-
cessing data from multispectral sensors, given their limited
spectral resolution [5]. It is crucial to develop advanced meth-
ods that optimally use the available data to overcome these
challenges.

Neural networks have become increasingly prevalent in
remote sensing applications owing to their exceptional
performance. For instance, Zhu et al. [6] and Yuan et al. [7]
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reviewed the application of different deep learning techniques
in agriculture and environmental monitoring. The CNN stands
out for its particularly well-suited image processing capabilities,
which has led to its widespread application. For example, in
Morales et al. [8], DeeplabV3+ CNNs were used to monitor the
deforestation of the Mauritia flexuosa palm, a dominant species
in the Amazon rainforest ecosystem, through high-resolution
aerial RGB images acquired by UAV. In Hamdi et al. [9], a
modified U-Net CNN was implemented to automatically detect
and map the damaged areas in a forested area in Bavaria,
Germany, by using aerial photographs with four spectral bands.
The U-Net architecture was also used in Isaienkov et al. [10] for
deforestation detection in the forest-steppe zone in the Kharkiv
region of Ukraine, by using multispectral images of Sentinel-2.
Finally, a region-based Mask CNN was used in Chiang et al. [11]
for an automated forest health diagnosis in RGB aerial images
from the Wood of Cree in Scotland, aiding in the early detection
of dead trees.

Over the past few years, remote sensing research has de-
veloped more sophisticated deep learning architectures to bet-
ter utilize the available training data. The CNN design has
progressed from shallow architectures with few layers [12] to
deeper, more powerful ones with tens or hundreds of layers,
commonly known as residual networks [13], [14], [15], [16],
which can be recognized by their innovative integration of
skip-connections between layers. Recent advances have also
introduced new components to CNNs. For example, Li et al.
[17] included attention mechanisms into a simple CNN to extract
richer spatial and spectral information. Another example is Hong
et al. [18], which combined a CNN with a GCN to model rela-
tionships between training samples, enhancing the classification
performance. Researchers have also explored deep learning ar-
chitectures beyond CNNs. For instance, He et al. [19] leveraged
the transformer architecture [20] to assimilate high volumes of
data, advancing the state-of-the-art in the multimodal semantic
segmentation of images. Another promising research direction
is using multimodal data from various sensors for complex scene
analysis. For instance, Hong et al. [21], [22] studied the use of
dual-branch CNN architectures to combine features from two
different modalities (e.g., hyperspectral and LiDAR). Further-
more, designing self-supervised architectures that can learn from
both unlabeled and labeled data is another promising area. For
instance, Sun et al. [23] developed a general-purpose model
by analyzing millions of unlabeled scenes with a transformer-
backed autoencoder architecture, acquiring extensive remote
sensing knowledge that can be fine-tuned for a specific task,
outperforming various state-of-the-art architectures.

Data augmentation provides another promising solution to
address data scarcity and class imbalance constraints. These
techniques can assist advanced deep learning classification ar-
chitectures by synthetically generating new training samples
to enrich the learning data. Numerous data augmentation tech-
niques exist [24] and have been applied to remote sensing. The
traditional approaches involve transformations that convert a
sample into a new one and techniques that combine different
samples of the same class to create new ones. For instance, Haut

et al. [25] showed the effectiveness of augmentation through
the random deletion of input patch segments, while Acción
et al. [26] subdivided each patch and applied independent
transformations to each segment. In Nalepa et al. [27], new
samples were generated from the first principal component of
the dataset or by calculating the mean value of each band.
More novel augmentation approaches use generative techniques
that synthesize samples from scratch after estimating the data
distribution, as opposed to transforming existing samples into
new ones.

Currently, the most widely adopted data generative approach
is the GAN [28]. This deep learning-based augmentation ap-
proach has shown great potential compared to traditional tech-
niques [29], owing to its remarkable capacity to generate highly
realistic and diverse data from scratch, outperforming earlier
generative architectures, such as the RBM [30] and the VAE [31].
Further advancements in the GAN architecture have also enabled
its use as a classifier network, establishing it as a valuable tool for
remote sensing applications like environmental monitoring. For
instance, in Shashank et al. [32], a GAN was used to identify the
target epiphyte Werauhia kupperiana in RGB images acquired
by UAV in Costa Rican forests. Other interesting scenarios of
GANs for environmental monitoring are described in [6] and
[33]. Unfortunately, successfully training these networks is chal-
lenging unless large datasets are available [34]. Second, class im-
balances hinder the learning of minority classes, even preventing
it entirely. In such cases, GANs tend to synthesize identical sam-
ples for these classes or even fail to capture their data distribu-
tion, resulting in pure noise [35]. However, a recent development
in GANs, the BAGAN [35], provides a promising solution to en-
able the successful application of GANs when facing these two
challenges.

This work presents ResBaGAN, a novel GAN-based clas-
sification method for remote sensing images applied to envi-
ronmental monitoring. The ResBaGAN architecture overcomes
the challenges of data scarcity and class imbalances by con-
structing an advanced data augmentation framework to sup-
port the classifier. The framework builds upon the cutting-edge
innovations of BAGAN to provide effective GAN-based data
augmentation. In addition, the framework leverages a super-
pixel segmentation-based sample extraction process with tra-
ditional augmentation techniques, and a ResNet-based clas-
sifier [13] improved to further enhance its capabilities. Ex-
periments were conducted to demonstrate how the combined
synergistic effects of all components significantly improved
classification performance, particularly in the minority classes,
compared to simpler methods like a stand-alone BAGAN. More
specifically:

1) The proposed method integrates a GAN architecture in-
spired by BAGAN to enable effective deep learning-based
data augmentation for scarce datasets and their minority
classes.

2) The sample extraction process is guided by a superpixel
segmentation and includes traditional augmentation tech-
niques, thereby facilitating the more accurate modeling of
the different classes. The segmentation ensures that each
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sample predominantly contains pixels from a single class,
while the additional augmentation techniques increase the
diversity of learning data.

3) The classifier features a ResNet-based design improved
to integrate data from different levels of abstraction for
better generalization. This architecture enhances both the
quality of the GAN-based augmentation and the final
classification accuracy of ResBaGAN.

4) In terms of evaluation, the FID score [36], which is the
current standard metric for GAN-based architectures on
RGB data, was adapted to multispectral images. This
modification allowed for an accurate assessment of the
proposed deep learning-based data augmentation.

The rest of this article is organized as follows. Section
II outlines the GAN architecture and its evolutions. Then,
Section III describes ResBaGAN, detailing its different com-
ponents. Thereafter, Section IV presents the experiments for
evaluating ResBaGAN in terms of classification performance
and robustness. Next, Section V carries out the discussion of
this work. Finally, Section VI concludes this article.

II. RELATED WORK

A GAN [28] is a generative deep learning architecture that
consists of the two networks represented in Fig. 1(a): a gen-
erator G and a discriminator D. These networks are trained
in an adversarial fashion: G learns to synthesize samples as
realistically as possible to deceive D into believing that they
are real, while D is trained to distinguish between real and
fake samples. As a result of this opposition of objectives, the
improvement of one network encourages the other to perform
better.

Both D and G use CNN architectures. D is a standard CNN,
while G replaces conventional convolutions with transposed
convolutions, which function inversely. D needs to transform
a sample into a unidimensional feature vector of length Z for
the final classification. In contrast, G aims to generate data akin
to the input of D. To achieve this, it starts with a random vector
of Z elements, often referred to as a latent vector, reshaped into
a low-resolution sample. The size of this sample is gradually
increased by applying transposed convolutions to produce a fake
sample.

Building upon the initial GAN architecture in Fig. 1(a),
numerous optimizations have been proposed in recent years to
further extend its capabilities [37]. The following are particularly
relevant to this work:

1) CGAN [38]. In the original GAN, G cannot synthesize
samples for a specific class on demand. The CGAN ar-
chitecture, shown in Fig. 1(b), addressed this limitation
by incorporating information corresponding to the desired
class in the latent vector.

2) ACGAN [39]. A natural extension of CGAN is to enable
D to assign each sample to the best-fitting class, in addition
to discerning between real and fake samples. To this end,
D in ACGAN has two outputs as shown in Fig. 1(c): a

(a)

(b)

(c)

(d)

Fig. 1. Comparison between the initial GAN architecture and various evo-
lutions. Note that BAGAN also introduced an autoencoder module to assist
the main GAN module in parameter initialization; this autoencoder is not
represented for brevity but can be seen in Fig. 2. (a) GAN. (b) CGAN.
(c) ACGAN. (d) BAGAN.

binary output for detecting fake samples and an output
with as many elements as classes.

3) BAGAN [35]. This architecture introduced several modi-
fications to stabilize training with small datasets and effec-
tively synthesize the minority classes. First, the networks’
parameters are initialized by an autoencoder that processes
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the dataset in advance, instead of from scratch. As a result,
both D and G start learning from an approximation of the
data distribution, significantly stabilizing their training on
small datasets. In addition, a more sophisticated sampling
strategy for the latent vectors is introduced by modeling
class-specific distributions in the latent space provided by
the autoencoder, which further stabilizes the training of
G. Moreover, the dual outputs of D are combined into
a single output, as shown in Fig. 1(d). By extension, the
loss function used in the training process becomes simpler,
making it easier for G to learn to synthesize the minority
classes.

As discussed in Section I, the evolving capabilities of GANs
have established them as valuable tools for data augmentation in
remote sensing applications. In particular, BAGAN has shown
promise in different computer vision tasks to address the chal-
lenges of scarce and imbalanced datasets, two common limita-
tions in remote sensing. However, to the best of our knowledge,
the use of BAGAN in remote sensing has been limited to object
detection, as demonstrated in Zhang et al. [40].

The method proposed in this article, ResBaGAN, is a
GAN-based classification approach inspired by innovations in
BAGAN, among other features. We not only aim to expand its
usage in remote sensing, particularly for classification applied to
environmental monitoring, but also enhance its performance fur-
ther. This is achieved by incorporating traditional augmentation
techniques, superpixel segmentation-based sample extraction,
and an improved ResNet-based classifier.

III. PROPOSED METHOD

ResBaGAN, the proposed method for remote sensing clas-
sification applied to environmental monitoring, is illustrated
in Figs. 2 and 3. This section describes its different compo-
nents as follows. First, the GAN architecture designed for deep
learning-based data augmentation is discussed in Section III-A.
Next, the sample extraction procedure that combines superpixel
segmentation and traditional augmentation techniques is intro-
duced in Section III-B. Then, following these explanations, a
complete step-by-step explanation of how ResBaGAN operates
is provided. Finally, the design of the neural architectures in
ResBaGAN is detailed in Section III-C.

A. Network Architecture

The core of ResBaGAN is a BAGAN-based architecture that
includes an improved ResNet-based classifier [13], resulting
in a combination that enhances both the quality of the GAN-
based augmentation and the final classification accuracy. The
integration of shortcuts in residual networks allows building
much deeper architectures compared to stacking convolutional
layers alone, circumventing training issues like gradient vanish-
ing. This makes ResNet more suitable than shallow CNNs for
classification with limited data, as it facilitates the extraction of
more detailed features from the available samples. Moreover, the
generalization capabilities of the designed ResNet architecture
have been improved by fusing features from every convolutional
stage into the final classification layers, instead of using features

just from the last stage. Furthermore, the designed GAN module
leverages two BAGAN features to assist the generator network
in learning: autoencoder initialization and an improved loss
function. This approach leads to the synthesis of more realistic
samples when dealing with scarce and imbalanced datasets, thus
providing an effective data augmentation for such situations.

As shown in Fig. 2, three main elements can then be identified
in the network architecture of ResBaGAN:

1) The input data are patches from the different classes,
as displayed on the left side of the figure. The special-
ized sample extraction procedure provides this augmented
training data and will be detailed in Section III-B.

2) ResBaGAN leverages an autoencoder module [41] to sta-
bilize the subsequent training of the GAN on limited data.
The autoencoder is depicted in the upper part of the figure.
Autoencoders are easier to train than GANs under data
scarcity, but they do not assign classes to the acquired
knowledge, making them unsuitable for classification.
However, they can help in initializing the weights of the
GAN.
The autoencoder must learn to compress and reconstruct
samples as accurately as possible, encouraging it to ac-
quire an initial understanding of the dataset. The autoen-
coder consists of an encoder (E in the figure) and a decoder
(Δ). As the encoding and decoding steps resemble the
tasks of the discriminator (D) and the generator (G),
respectively, weight-sharing by using the same network
topologies allows transferring the knowledge of the trained
autoencoder to the uninitialized GAN, thus complement-
ing each other’s strengths and weaknesses.

3) The main networks of ResBaGAN are D and G, col-
lectively referred to as the GAN module in the figure.
Once initialized from the autoencoder, these networks are
trained in an adversarial manner, so that D learns on both
the real samples and the samples that G synthesizes.
To facilitate G the learning of minority classes, D com-
bines its real/fake prediction and class prediction in a
single output. This output containsN + 1 elements, where
N denotes the number of possible classes, and samples
suspected as fake are assigned the additional class. The
specific network topologies of the D and G networks
(and thus E and Δ) in ResBaGAN will be detailed in
Section III-C.

Therefore, the ResBaGAN training process involves three
steps:

1) Learning of the autoencoder module: The autoencoder
trains on all of the available samples without considering
their labels, to produce the initial understanding of the
data distribution. L2 loss, shown as the dotted line at
the top of the autoencoder, guides the training process.
This loss is calculated as the mean squared difference
between the input and the reconstructed samples, which
the autoencoder aims to minimize. Given a reconstructed
sample ŷ and its target y, the L2 loss is as follows:

LL2 = (ŷi − yi)
2. (1)
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Fig. 2. Neural network architecture of ResBaGAN. Its main features are a BAGAN-based design that incorporates an improved ResNet-based classifier (D).
The input augmented training samples are obtained by using the extraction procedure presented in Fig. 3.

2) GAN initialization: All of the learned parameters are
transferred from the autoencoder to the GAN networks,
enabling them to acquire the knowledge of the autoen-
coder. This is shown in the rightmost line of the figure.

3) Learning of the GAN module: Owing to the use of the
transferred weights as values, the training starts from a
more stable point than randomly initialized parameters, as
the GAN refines the initial understanding of data. Categor-
ical cross-entropy loss, represented by the dotted line at the
bottom of the Fig. 2, guides this learning process. This loss
is calculated as the difference between the predicted and
the expected class-probability distributions for a sample.
Given a predicted distribution ŷ, obtained by applying the
softmax function toD’s raw output, and a one-hot encoded
class target y, the cross-entropy loss is as follows:

LCE = −
N+1∑

c=1

yc log(ŷc) (2)

where yc denotes the target probability of the sample
belonging to class c. Both D and G strive to minimize
their respective losses, LD and LG, which are based on
the cross-entropy loss. As D wants to accurately classify
the real samples and assign the fake label to the samples
from G, its loss can be split into a real part and a fake part:

LD = Lreal
D + Lfake

D . (3)

The real part is obtained by applying the cross-entropy
loss between the predicted class probabilities of the real
samples and their reference labels, and the fake part of
the loss is obtained by applying the cross-entropy loss
between the predicted probabilities of synthetic samples
and the fake label. In contrast, G’s objective is to ensure

that D assigns its generated fake samples to the class
that they intend to represent. To do so, the cross-entropy
loss is applied between the predicted probabilities of the
synthetic samples and their intended labels. Training pro-
ceeds by alternately optimizing the discriminator and the
generator, which can be summarized in a minimax manner
as follows:

min
G

max
D

L(D,G)

= Ex ∼ pdata(x), y ∼ pdata(y)[logD(y|x)]
+Ez ∼ pz(z), y ∼ pdata(y)[log(1−D(N + 1|G(z, y)))].

(4)

The first term corresponds to the probability of all real
samplesx, drawn from the pdata(x) data distribution, being
correctly classified according to their labels y. The second
term represents the probability of all synthetic samples
being classified as the fake classN + 1; z is a latent vector
drawn from the latent space distribution pz(z), which is
conditioned by the intended class y in G(z, y) to produce
a synthetic sample.

Once all of the neural networks in ResBaGAN have been
trained, the fake output of D is disabled, yielding the final
classifier.

B. Sample Extraction via Superpixel Segmentation and
Traditional Augmentation

To further improve ResBaGAN in handling scarce and imbal-
anced datasets, a specialized procedure for extracting samples
from the dataset is introduced. This procedure leverages two
extensively studied techniques in remote sensing: superpixel
segmentation and traditional data augmentation. Fig. 3 illustrates
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Fig. 3. Procedure for extracting training samples from the dataset in ResBa-
GAN. A superpixel segmentation guides the process, and traditional augmenta-
tion techniques enrich the learning data that enters the network architecture in
Fig. 2. The augmentation is not performed on samples destined for the validation
or test sets.

this procedure step by step, yielding the training samples fed to
networks described in Section III-A.

A superpixel segmentation groups similar pixels in an image
into homogeneous and contiguous regions called superpixels.
These regions have a relatively constant size but not a specific
shape, as they adapt to the objects in the scene [42]. Thus,
superpixels can be used as larger pixels for image processing
and have been widely used in remote sensing classification [3],
[26], [43], [44]. Instead of extracting a patch for each pixel in
a sliding-window fashion [45], one patch per superpixel can be
extracted, assigning the predicted class to all of its pixels. If
the patch size is adjusted to fit within the average size of the
superpixels, patches centered on the superpixels predominantly
contain pixels of a single class. This approach helps avoid the

Algorithm 1: Superpixel-Guided Sample Extraction.
function EXTRACTPATCHES(dataset,N )

Segment dataset into superpixels
Initialize patches← ∅
for all superpixels with reference data

Measure minimum enclosure
Locate central point
Extract a patch of N ×N pixels
Assign class via majority voting
Add patch to patches

end for
return patches

end function

Algorithm 2: Traditional Augmentation on Training
Samples.

function AUGMENT(sample)
Select random rotation from {0◦, 90◦, 180◦, 270◦}
Rotate sample
if random() < 0.5 then

Flip sample horizontally
end if
if random() < 0.5 then

Flip sample vertically
end if
return sample

end function
function GETTRAININGBATCH(patches, batch_size)

Initialize batch← ∅
while |batch| < batch_size do

Select random patch from patches
augmented_sample← AUGMENT (patch)
Add augmented_sample to batch

end while
Initialize fake_samples← ∅
Initialize samples_per_class← batch_size

classes
while |fake_samples| < samples_per_class do

Generate synthetic_sample with G
Add synthetic_sample to fake_samples

end while
Add fake_samples to batch
return batch

end function

noise introduced in learning data by patches containing multiple
classes, particularly at the object edges, thus facilitating the
modeling of the different classes for neural networks.

On this basis, ResBaGAN extracts samples from the dataset
by using a superpixel segmentation as guidance, as shown in Fig.
3 and detailed in Algorithm 1. Moreover, traditional data aug-
mentation techniques are applied to all of the training samples,
as described in Algorithm 2.

Regarding the superpixel segmentation algorithm, numerous
options exist in the literature, such as SLIC [46], ETPS [47], and
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Algorithm 3: ResBaGAN Classification Method.
function RESBAGAN(target_dataset)

patches← SAMPLEEXTRACTION(target_dataset)
TRAINING(patches)
CLASSIFICATION(patches)

end function
function SAMPLEEXTRACTION(target_dataset)

Segment target_dataset using WP
Extract a sample per superpixel with reference data
Split samples into train, validation, and test

end function
function TRAINING(patches)

Train autoencoder on augmented train samples to learn
data distribution

Transfer autoencoder parameters to GAN module
Train GAN on augmented train samples and synthetic
samples from G

end function
function CLASSIFICATION(patches)

Disable additional fake class in D’s output
Map target dataset using D as the classifier

end function

SEEDS [48]. Typically, these algorithms are based on gradient
descent or graphs [42], with the latter being more computa-
tionally expensive and lacking control of the segment size or
regularity [46]. WP [49] is a popular gradient descent algorithm
that provides good-quality segmentations with moderate compu-
tational consumption [42], [46], and allows for the customization
of the segment size and regularity. Therefore, WP is chosen as
the superpixel segmentation algorithm for ResBaGAN.

As all ResBaGAN components are explained, its step-by-step
operation can be summarized as Algorithm 3.

C. Network Topologies

As explained in Section III-A, the autoencoder and the GAN
modules share network topologies. First, the topology of the
residual discriminator (D in Fig. 2) will be discussed, which
is also applicable to the encoder (E). Then, the design of the
generator (G) will follow, which is also applicable to the decoder
(Δ).

The ResBaGAN classifier (D) features a ResNet-based topol-
ogy, with the novelty of integrating data from different levels of
abstraction to enhance generalization, as it will be detailed in
the following paragraph. This architecture is depicted in Fig. 4.
When compared to shallow CNNs, a residual approach allows
for more efficient use of the available learning data and pushes
the capabilities of G further owing to the adversarial nature of
GANs.

More specifically, the classifier consists of three residual
stages (colored differently in the figure), each containing three
residual blocks that use the same number of convolutional filters.

Fig. 4. Diagram of the classifier (D) for ResBaGAN. The output dimensions
correspond to an input sample with dimensions H ×W ×B = 32× 32×B.
A different color is assigned to each residual stage. For compactness, the figure
does not elaborate either on the convolutional layers that adapt the input of each
stage to its dimensionality, or on the layers that adapt the output of the first two
stages to the final feature fusion.
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TABLE I
DETAILS OF THE LAYERS IN THE CLASSIFIER (D) FOR RESBAGAN

The growing filters allow for extracting increasingly complex
visual features. Additional convolutional layers precede each
stage to ensure appropriate input dimensionality, and the first
convolutional layer in each stage has a stride of 2 for learned di-
mensionality reduction. In contrast to the original ResNet archi-
tecture, this improved design fuses the features extracted from
the last stage with those derived from all preceding stages, by
adding the corresponding feature maps. This approach merges
data from the low-, mid-, and high-level abstractions into the
input for the final layers, leading to better generalization. Two
additional convolutional layers map the dimensionality of the
outputs from Stage 1 and Stage 2 to Stage 3 to perform the
addition. A global average-pooling layer transforms the fused
feature maps into a vector of features processed by a fully
connected layer for the final classification.

The details of the classifier’s layers are presented in Table I.
For brevity, the table omits the convolutional layers adapting
the input dimensionality between stages and those adapting the
output from the first two stages for feature fusion; they have 3×3
filters and use the same activation function as the other layers.
As usual in residual networks, a dropout layer follows each
convolutional layer to stabilize training and address problems
such as overfitting [50]. The selected dropout probability and
activation function will be explained in Section IV-A4. Spectral
normalization [51] is also applied to all convolutional layers, as
it commonly improves GAN networks.

In the design of ResBaGAN, achieving an equilibrium be-
tween G and D is crucial for stable learning and thus, sustained
adversarial behavior. This balance enables both networks to
progress together, rather than allowing one to outperform the
other significantly, disrupting the adversarial learning and im-
peding their ability to compete. Such disruption would prevent
G from learning to perform a deep learning-based augmentation
that is useful to D. Thus, a standard GAN generator has been
found to be an ideal counterpart for the residual classifier in
ResBaGAN.

As depicted in Fig. 5, the generator consists of a series of trans-
posed convolutional layers. The initial embedding layer [52]
transforms the desired class into a Z-element vector, combined

Fig. 5. Diagram of the generator (G) for ResBaGAN. The output dimensions
correspond to an input latent vector with Z elements.

with the latent vector via a dot product operation. The result,
interpreted as a patch with the dimensions N ×N ×B = 1×
1× Z, is supplied to the transposed convolutions to generate the
synthetic sample by gradually increasing its resolution.

The details of the generator’s layers are presented in Table II.
Notably, the choice of Z can significantly impact the synthesis
performance. Short latent vectors may struggle to create realistic
samples, whereas large vectors could be too difficult to handle
effectively. Hence, the impact of Z will be examined in Section
IV-A4. The activation function also follows the rationale in
Section IV-A4. The only exception is the activation of the
last layer, which uses a tangent function, as all the dataset is
scaled to the [−1, 1] range before being input to ResBaGAN.
Spectral normalization is also applied to all of the convolutional
layers.
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TABLE II
DETAILS OF THE LAYERS IN THE GENERATOR (G) FOR RESBAGAN

TABLE III
DESCRIPTIONS OF THE DATASETS USED IN THIS WORK

IV. EXPERIMENTS

In this section, ResBaGAN is evaluated in terms of classifica-
tion performance to assess both its general effectiveness and the
contributions of its individual components, such as the synthesis
quality of the GAN-based augmentation. ResBaGAN’s capa-
bilities are compared with simpler classification approaches,
such as standalone CNNs and other GAN-based approaches like
ACGAN.

The section is organized as follows. First, the datasets, met-
rics, and experimental environment used for the assessment are
outlined in Section IV-A. A range of design choices that were
left open in Section III are also addressed, such as the selection
of activation functions, the optimizer, and the number of training
epochs, among other factors. Then, the experimental results are
presented and analyzed in Section IV-B.

A. Experimental Setup

1) Datasets: Eight large, very high-resolution multispectral
images of natural regions with dense vegetation were used [3].
These images were captured in 2018, 2019, and 2020, by flying
a UAV at a 120 m altitude over various river basins in Gali-
cia, Spain, resulting in a spatial resolution of 10 cm/px. The
UAV carried a MicaSense RedEdge-MX multispectral camera,

capturing five spectral bands corresponding to wavelengths of
475 nm (blue), 560 nm (green), 668 nm (red), 717 nm (red
edge), and 842 nm (near-infrared). Table III details the specific
locations and dimensions of the scenes.

The composite color image and the reference data for each
dataset can be found in Fig. 6. Table IV enumerates the ten
identifiable classes in the reference data, detailing the number
of samples in each dataset. These classes range from native
vegetation to human-made structures such as roads or buildings.
It is important to highlight the strong imbalances between
classes in all datasets, with minority classes having multiple
orders of magnitude fewer samples at times. This imbalance
introduces a bias toward majority classes, potentially preventing
a balanced classification accuracy across the different classes.

All of the datasets were segmented using the WP algorithm
by choosing an average size of 400 px/superpixel, allowing a
minimum size of 100 px/superpixel, and employing a compact-
ness factor of 0.5 points, following the approach in [3]. The
extracted patches had spatial dimensions of N ×N = 32× 32
px. In addition, all the data were normalized to the [−1, 1] range.
For a given dataset, all associated experiments used the same
subset of 15% training samples, and 5% validation samples to
monitor the training progress by identifying potential issues like
overfitting. This limited availability of learning data is enforced
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Fig. 6. Composite color images (left) and reference data (right) for the datasets used in this work [3]. All representations follow the same size scale. The class
corresponding to each color in the reference data is described in Table IV; black means no reference data are available.
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TABLE IV
IDENTIFIABLE CLASSES IN THE DATASETS USED IN THIS WORK

to make training difficult for neural networks, as allocating 15%
of training often yields less than 100 reference samples for many
classes, particularly impacting the minority ones.

2) Metrics: The classification performance of ResBaGAN
was determined by predicting the class of each available labeled
sample in the dataset and comparing the results to the refer-
ence data. The following standard pixel-level metrics in remote
sensing classification [53] were computed, excluding only the
central pixels from the training samples as described in [3]: OA,
AA, and Cohen’s Kappa (κ).

To understand the performance of ResBaGAN across majority
and minority classes, the classification performance was further
examined with the following classwise metrics [53]: PA, UA, and
F1. PA indicates the probability that a pixel belonging to a spe-
cific class was correctly classified, whereas UA denotes the prob-
ability that a pixel classified as a certain class indeed belonged
to that class. F1 is the harmonic mean of PA and UA, providing
a summary of classification accuracy for individual classes.

To also assess the synthesis quality of ResBaGAN, the FID
score [36] was adapted to use the full spectral resolution of the
datasets. This score is a widely accepted metric for determining
the quality of GAN-generated samples in RGB data. However,
we have not found a standard procedure for its application in the
remote sensing field.

The FID score uses a classifier network to determine the sim-
ilarity between the data distribution of the synthesized samples
and that of real samples. This metric leverages a pretrained
Inception v3 architecture to summarize the samples into the
visual features that are compared. However, as this RGB network
cannot fully use the spectral resolution of remote sensing data
for an accurate assessment [54], [55], it was replaced by the
improved ResNet from Table I to use the full spectral resolution
of the samples.

To calculate the FID score of ResBaGAN on a particular
dataset, all available real samples for each class were gathered
and compared with an equal number of randomly synthesized
samples from G for the corresponding class. The FID score
comparison was run on the features extracted by the average
pooling layer of the improved ResNet. This network had been
pretrained for the corresponding dataset in a standalone manner,
to prevent introducing biases from the ResBaGAN architecture.

Finally, to account for the inherent randomness in the experi-
ments due to factors such as the random parameter initialization
in neural architectures, all of the experiments were repeated ten
times under identical conditions, reporting metrics summaries
such as mean values and 95% confidence intervals.

3) Execution Environment: All of the experiments were con-
ducted on a computer equipped with an Intel Core i7-11700 K
CPU [56], 128 GB of RAM, and an NVIDIA RTX 3080 Ti GPU
with 12 GB of VRAM [57]. The system ran Ubuntu 20.04 [58],
with most of the source developed using Python 3.8.13 [59] and
PyTorch 1.12.0 [60] for neural architectures. CUDA 11.6.2 [61]
and cuDNN 8.4.0.27 [62] were leveraged to speed up execution
by using single precision arithmetic. Some auxiliary codes, such
as WP segmentation, were developed using C [63] and C++ [64],
compiled with GCC 9.4.0 [65]. The tool GuildAI [66] was also
used for automating the hyperparameter optimization step.

4) Hyperparameter Optimization: Several design aspects of
ResBaGAN were left open in Section III, such as the activation
function and learning rate. To determine these factors, a hyper-
parameter optimization procedure was conducted to evaluate
ResBaGAN’s performance under many scenarios and identify
the optimal design choices. In particular, the following config-
urations were examined:
� Activation function: ELU [67], LeakyReLU [68], and

PReLU [69] were tested, as they generally outperform
traditional options like ReLU [70].

� Size of latent vectors (Z): Guided by the dimensionali-
ties of the convolutional layers in ResBaGAN, the values
Z = {32, 64, 128} were tried.

� Dropout probability (pdropout): To cover a wide range of
possibilities, the values pdropout = {0.05, 0.20, 0.35, 0.50}
were tested.

� Learning rate (α): All of the values in the range
α = {0.0005 . . . 0.0030} with a step of 0.0005 were used.

� Batch size (batchsize): Larger batches speed up the training
but may result in reduced generalization capabilities. To
prioritize classification accuracy, the batch size was limited
to moderate values such as batchsize = {32, 64, 128}.

All of the possible combinations resulted in 648 configura-
tions to evaluate. To keep the cost of this phase reasonable, the
number of training epochs was limited to 20 iterations, as the
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behavior of ResBaGAN in its initial epochs was observed to be
a reliable indicator of future performance.

Once all of these tests were run, the results were filtered based
on the best classification accuracy and synthesis quality of the
GAN-based augmentation. Specifically, the aim was the highest
classification accuracies, as determined by OA, AA, and κ, and
the lowest training losses in G. Since D and G were trained in
an adversarial manner, the lowest loss for G and around 50%
error rate for D indicate that G synthesized samples that were
so realistic that D relied on chance to tell them apart from real
ones.

Considering these factors, the design choices that maximized
the performance of ResBaGAN were the LeakyReLU activation
function, latent vectors of size Z = 128, 5% dropout proba-
bility, learning rates of around 0.001, and a batch size of 32
samples.

5) On Training Neural Architectures: The ADAM opti-
mizer [71] was employed to train any neural architecture, given
its strong performance with deep and complex architectures.
Its parameters were set to β1 = 0.5 and β2 = 0.999, as usual
for GAN-based architectures [72]. All of the parameters in the
neural architectures were initialized using Xavier’s (or Glorot’s)
Initialization [73]. Regarding the number of training epochs,
different options were tested while monitoring the loss of net-
works in ResBaGAN throughout the process. The conclusion
was that 600 training epochs were sufficient for both D and
G to reach peak performance in the datasets. To ensure a fair
comparison, 600 training epochs were also provided to the
remaining architectures, such as the autoencoder inside Res-
BaGAN or standalone CNNs. Validation accuracy monitoring
was performed as needed to ensure that all classification ap-
proaches included in these experiments, in addition to ResBa-
GAN, experienced stable training without facing problems such
as overfitting. Moreover, when needed, the same hyperparameter
values as in ResBaGAN were applied to the other classification
methods.

B. Experimental Results

1) Stability of Adversarial Training: To ensure sustained
adversarial learning, the evolution of various training metrics
for both D and G is analyzed in an experiment with ResBaGAN
on the Ermidas Creek dataset, as depicted in Fig. 7(a) to (c).

Fig. 7(a) shows the evolution ofGover all 600 training epochs.
Its performance increased until around 200 iterations before
stabilizing. The remaining iterations still contributed to the final
performance of ResBaGAN given that D persistently lowered
its training loss, as Fig. 7(b) shows. However, the continuous
loss reduction in D could also be a symptom of overfitting. In
this case, Fig. 7(c) reveals that the generalization consistently
improved until approximately iteration 500 before stabilizing
for the remaining 100 iterations. Overall, these findings demon-
strate that executing 600 training epochs enabled ResBaGAN to
optimize its performance for the experimental datasets.

2) Synthesis Performance: The synthesizing capabilities of
ResBaGAN are compared with two simpler approaches: an AC-
GAN and a BAGAN-based architectures that assist the shallow

(a)

(b)

(c)

Fig. 7. Evolution of various training metrics of ResBaGAN in an experiment
on the Ermidas Creek dataset. Lower values are better in the first two figures,
while higher values are better in the third one. (a) G’s loss. (b) D’s losses. (c)
D’s validation accuracy.

CNN described in Table V, while using the same G network
as in ResBaGAN. This BAGAN is a stripped-down version of
ResBaGAN, lacking the residual classifier and support from
traditional data augmentation techniques. ACGAN can be seen
as an even simpler version of BAGAN, missing the autoencoder
and the improved loss function for training.
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TABLE V
DETAILS OF THE LAYERS IN THE SHALLOW CNN

TABLE VI
SUMMARIZED FID SCORES FOR THE THREE TESTED GAN-BASED

APPROACHES ON THE OITAVEN RIVER DATASET

Fig. 8 displays synthesized samples for the Ermidas Creek
dataset using these three GAN-based approaches. It is evident
that the G network of ACGAN struggled to model the different
classes. This resulted in fake samples that primarily resemble
different types of vegetation, which are the majority classes
in the dataset, and exhibit limited variation. In contrast, class-
balancing enhancements allowed BAGAN-based approaches to
perform proper data augmentation. As illustrated in Fig. 8(b)
and (c), they could adequately generate fake samples for all
classes, including minority ones. Furthermore, increased visual
variations are present between fake samples within the same
class, particularly in ResBaGAN.

The synthesis performances can also be numerically assessed
using the FID score. Following the approach described in
Section IV-A2, the FID scores for experiments on the Oitavén
River dataset were measured and are displayed in Fig. 9 and
Table VI. Fig. 9 displays the score for each class, while Table VI
summarizes the FID into an averaged-FID and a weighted-FID
for each GAN. The former metric averages the score among
classes, whereas the latter assigns greater importance to classes
with more elements.

Compared to the other approaches, the high FID scores of
ACGAN reflect its limited ability to synthesize varied samples.
In contrast, BAGAN-based approaches achieved significantly
better FID scores, particularly in classes 1 to 6 and 9, which con-
tain fewer samples in the Oitavén River dataset. ResBaGAN’s
FID scores were either comparable to or better than BAGAN’s,
as summarized in Table VI. The particularly enhanced averaged-
FID for ResBaGAN suggests it mainly outperformed BAGAN in
classes with fewer samples. We attribute this superior synthesis
performance to the more complex D network in ResBaGAN
compared to the shallow CNN in BAGAN; a more robust D
enables G to outperform itself even further, owing to the adver-
sarial nature of the GAN training.

3) Overall Classification Performance: Table VII presents
the resulting OA, AA, and κ accuracy metrics for ResBaGAN

(c)

(b)

(a)

Fig. 8. Comparison of fake sample synthesis for the Ermidas Creek dataset
using the three tested GAN-based approaches. Within each grid of fake samples,
the different rows correspond from top to bottom to the classes listed in Table IV.
Ten random fake samples are shown within each class. (a) ACGAN. (b) BAGAN.
(c) ResBaGAN.
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TABLE VII
RECORDED CLASSIFICATION ACCURACIES FOR ALL THE DATASETS USING ALL THE CLASSIFIERS

Fig. 9. Recorded FID scores for the Oitavén River dataset using the three
tested GAN-based approaches. Lower values are better.

and other classification approaches on all experimental datasets.
To facilitate visual comparison of the classifiers, graphs for each
metric are also provided in Figs. 10–12. These graphs display
the mean values and confidence intervals from the table for the
top four classifiers.

The additional classification approaches compared include a
traditional machine learning approach, two standalone CNNs,
and the ACGAN and BAGAN described in Section IV-B2.
The texture-based traditional method, proposed in [3] for the
classification of the same datasets, served as a baseline for
non-deep learning approaches. It employs the FV algorithm [74]
for texture extraction and KELM [75] for the final classification.
The standalone CNNs included the shallow CNN described in
Table V, and the improved ResNet described in Table I, which
also served as the classifier for FID score assessment.

First, the results reveal that the shallow CNN failed to
achieve better classification accuracy than the traditional ap-
proach in most cases. These experiments demonstrate that care-
fully crafted traditional machine learning approaches can still
outperform certain modern techniques. That said, the standalone
improved ResNet significantly outperformed the traditional
method. This is due to the increased potential of using a very
deep convolutional architecture rather than a shallow one, to
better utilize the limited available learning data.

Examining the results for ACGAN, its classification accu-
racies were not always better than those of the shallow CNN,
even though ACGAN used it as D. These results are consistent
with the analysis in Section IV-B2, as ACGAN struggled to
properly synthesize fake samples, leading to confusion for the
classifier and ultimately damaging its performance. In contrast,
BAGAN’s enhancements enabled effective data augmentation.
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Fig. 10. Recorded OA metrics for all the datasets using the top four classifiers,
including ResBaGAN. The bars represent the mean values along their confidence
intervals. Higher values are better.

Fig. 11. Recorded AA metrics for all the datasets using the top four classifiers,
including ResBaGAN. The bars represent the mean values along their confidence
intervals. Higher values are better.

Despite both BAGAN and ACGAN sharing the topology of
D, the classification performance of BAGAN was significantly
higher than the shallow CNN in almost every case. More specifi-
cally, the most significant gains were in AA, while OA and κ had
more subtle improvements. This suggests that GAN-based data
augmentation primarily enhanced the accuracy in the minority
classes, which should be more challenging to learn for the
classifier.

Fig. 12. Recorded κ metrics for all the datasets using the top four classifiers,
including ResBaGAN. The bars represent the mean values along their confidence
intervals. Higher values are better.

Although both the improved ResNet and the BAGAN pro-
vided impressive results, ResBaGAN, the proposed classifi-
cation method in this work, managed to outperform them.
ResBaGAN achieved the highest and more consistent values
for all the classification metrics in seven out of eight datasets,
ranking among the best in the remaining one. Moreover, the
confidence intervals reveal the substantial significance of Res-
BaGAN’s enhancements in nearly all cases, as its potential mini-
mum values consistently match or exceed the possible maximum
values achieved by the other classification approaches.

4) Classwise Classification Performance: To better under-
stand the contributions of ResBaGAN in dealing with scarce
and imbalanced datasets, Table VIII presents the mean PA, UA,
and F1 for ResBaGAN and the other approaches developed in
this work on all the classes of elements, averaging results across
datasets. A graphical depiction of F1 score is also provided in
Fig. 13 for easy comparison.

All class-specific findings align with the observations in
Section IV-B3. Among the standalone CNNs, the improved
ResNet significantly outperformed the shallow CNN in all cases,
which is expected due to its more complex network topology.

Using the F1 score to summarize class-specific accuracies,
ACGAN deteriorated the overall performance of CNN. This
occurred due to a slight increase in PA but a considerable
decrease in UA, particularly for non-vegetation classes. This
indicates that ACGAN produced numerous false positives, par-
ticularly for minority classes. This observation aligns with the
fact that ACGAN’s G generated synthetic samples resembling
vegetation regardless of the target class, leading to a confused
D. Consequently, this network classified many more samples as
minority classes, leading to occasional additional hits, but also
a significant increase in overconfidence and false positives.
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TABLE VIII
RECORDED PER-CLASS CLASSIFICATION ACCURACIES FOR ALL THE CLASSES USING THE CLASSIFIERS DEVELOPED IN THIS WORK

TABLE IX
AGGREGATION OF ALL RECORDED CONFUSION MATRICES FOR RESBAGAN ACROSS ALL TEN EXPERIMENTS FOR EACH DATASET

In contrast, the enhancements in BAGAN provided an
effective GAN-based augmentation for the CNN, significantly
increasing all metrics to match the performance of the improved
ResNet. BAGAN and the ResNet showed varied performance,
with one method slightly outperforming the other at times,
as summarized by the F1 score. Interestingly, the improved
ResNet tended to improve PA the most, achieving better values
than BAGAN in six out of ten classes, while BAGAN was more
effective in increasing UA, with better values in six out of ten
classes.

Finally, ResBaGAN further improved performance across
all classes, achieving the best PA, UA, and F1 scores in almost

every case. These enhancements were particularly noticeable
in the minority classes. For example, concrete is consistently
one of the scarcest classes, and ResBaGAN boosted its F1
by 22%. The solid performance of ResBaGAN when facing
scarce and imbalanced data is further exemplified by the
confidence intervals for F1 scores. Even at its lowest potential,
ResBaGAN consistently obtains competitive results compared
to the improved ResNet and BAGAN. This behavior is further
reiterated in the aggregated confusion matrix for ResBaGAN
across all ten experiments for each dataset, depicted in
Table IX. The strong diagonal dominance indicates high
classification accuracy across all classes.
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Fig. 13. Recorded F1 scores for all the classes using the classification ap-
proaches developed in this work, averaging results across datasets. The bars
represent the mean values along their confidence intervals. Higher values are
better.

5) Ablation Study: To assess the importance of the various
components of ResBaGAN to its final performance, further
experiments were conducted by removing one component at
a time and comparing the resulting classification accuracy to
the baseline ResBaGAN. These additional experiments were
run on the Eiras Dam dataset, with reported OA, AA, and κ.
Specifically, the following four alterations were examined:
� Removing the BAGAN innovations, namely the autoen-

coder and the improved loss function, transforming Res-
BaGAN into an ACGAN-derived architecture.

� Replacing the residual topology inDwith the shallow CNN
described in Table V.

� Removing the traditional augmentation techniques applied
to training samples.

� Removing the superpixel segmentation-guidance from the
sample extraction procedure, to instead extract one patch
per pixel in a sliding window manner. The training used
the same number of samples as with superpixels.

The results of the ablation experiments are represented in
Fig. 14. It is evident that removing any of ResBaGAN’s compo-
nents significantly impacted its performance, as the potential
maximum accuracies are always lower than, or comparable
at most, to the minimum expected accuracies in the baseline
ResBaGAN.

Fig. 14. Recorded OA, AA, and κ metrics for the Eiras Dam dataset in the
ablation study of ResBaGAN. The bars represent the mean values along their
confidence intervals. Higher values are better.

TABLE X
COMPUTATIONAL COST OF THE DEEP LEARNING METHODS USED IN THIS

WORK. THE RESULTS ARE PRESENTED AS AVERAGED SPEEDUP VALUES FOR

TRAINING AND CLASSIFICATION ACROSS ALL EXPERIMENTS, RELATIVE TO

THE SHALLOW CNN. HIGHER VALUES ARE BETTER

Interestingly, AA was the most affected accuracy metric.
Given that it assigns equal weights to minority and majority
classes, this observation highlights the particular importance
of all ResBaGAN components in developing an effective data
augmentation framework to adequately assist the classifier in
learning minority classes with limited data.

6) Computational Cost: Finally, the computational cost of
the various deep learning methods tested in this work is com-
pared. The cost is presented in Table X as averaged speedup
values for the training and classification phases across all exper-
iments, using the shallow CNN as a baseline.

First, the improved ResNet required approximately twice
as much computation time as the shallow CNN during both
phases. This is expected due to the much larger neural topol-
ogy. In contrast, ACGAN also required twice as much training
time compared to the CNN, as it uses this network as D and
a companion G network of similar complexity. However, the
classification time for ACGAN was only slightly higher than
the CNN, as G did not play a role in this phase. We attribute
the minor slowdown to the PyTorch overhead of having both
networks on the GPU.

BAGAN further increased the training time by requiring the
learning of the autoencoder before the GAN networks them-
selves. However, as the autoencoder did not play a role during
classification, the inference time remained roughly the same as
that of ACGAN.

Finally, ResBaGAN exhibits increased complexity due to
combining features from both the improved ResNet and the
BAGAN, in addition to the traditional augmentation techniques,
resulting in the longest training times, and slightly slower
classification compared to the improved ResNet. We attribute
this slight difference again to the PyTorch overhead of having
multiple networks on the GPU.
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V. DISCUSSION

Enhancing the accuracy of remote sensing image classifica-
tion is crucial for numerous monitoring tasks of the Earth’s
surface. Although deep learning techniques are known for their
excellent classification performance, they usually require large
amounts of data to unleash their full potential. This can be espe-
cially challenging for remote sensing applications, as datasets
often have limited labeled data and class imbalances [4]. Data
augmentation techniques, particularly those based on GAN ar-
chitectures [28], present a promising and powerful solution for
generating rich additional learning data [29], as demonstrated
in this work. BAGAN [35] is a particularly interesting GAN
architecture, as it is specifically designed to address the afore-
mentioned limitations. Despite its potential, to the best of our
knowledge, the application of BAGANs in remote sensing has
been limited to object detection [40] until now.

This study shows that BAGAN-inspired architectures out-
perform more common GAN approaches like ACGAN [39]
in providing effective deep learning-based data augmentation,
particularly when working with limited and imbalanced multi-
spectral datasets. Consequently, BAGAN-inspired architectures
are proposed as a new baseline for researchers working with
GANs in remote sensing. Another crucial finding of this study
is that integrating additional techniques can further improve
the quality of the GAN-based data augmentation and the final
classification accuracy, as demonstrated by the proposed method
ResBaGAN, which improves upon BAGAN.

ResBaGAN’s adaptability presents a significant advantage for
the future, as it can be easily integrated with classifiers from other
works to increase their accuracy. To achieve this, the classifier
only needs to be integrated as theD network within ResBaGAN,
with adjustments made to the design of the G network to match
the capabilities of both modules, as illustrated throughout this
work.

The primary limitation of ResBaGAN is its long training
time compared to other deep learning approaches. However,
it presents a good tradeoff between cost and performance. As
shown in the experiments in this work, none of the other clas-
sification methods achieved 80% for the F1 score across all
classes. It is also worth noting that the classification cost of Res-
BaGAN mainly depends on the computational cost of the chosen
classifier, so it could be reduced if the classifier is replaced
by one with lower complexity. One additional advantage of
ResBaGAN is that applying the superpixel segmentation to the
image greatly reduces the computational cost of classification
compared to a pixel-focused approach. This features makes
ResBaGAN well-suited for rapidly mapping extensive terrain
areas in real applications involving remote sensing classification.

Another significant contribution of this work is the successful
adaptation of the FID score metric to assess the quality of
GAN-based synthesis while using the full spectral resolution
of remote sensing data. This modification is necessary as there
are currently no standard models for evaluating FID on remote
sensing data, similar to the Inception v3 network used for the
RGB data. This adaption allows for more accurate comparisons
among GAN-based networks and can be easily included in other

research works. Nonetheless, it would be valuable to explore the
development of standard models for evaluating the FID score on
remote sensing data.

Various aspects of ResBaGAN open up future work directions
to improve its performance. For instance, the BAGAN-based
designs in this work do not feature the sophisticated latent
vector sampling strategy, which could further ease working
with limited data. Another possibility for improvement could
involve integrating state-of-the-art deep learning architectures
like GCN [18] and transformers [19] as classifiers in ResBa-
GAN. Moreover, other traditional augmentation techniques not
considered in this analysis, such as those described in [25]
or [26], could be integrated into the proposed solution.

Regarding the field of application, this study focused on
applying ResBaGAN to mapping images of forest areas. It would
also be interesting to evaluate ResBaGAN on new datasets to fur-
ther explore its strengths and limitations, whether in vegetation
terrains or in other types of images. Moreover, to evaluate the
robustness of ResBaGAN, it would be valuable to analyze its
performance using datasets captured under variable illumina-
tion and atmospheric conditions, or including noise produced
by the sensor. As ResBaGAN extracts patches centered on
superpixels and works with the whole spectral dimensionality
of the image, it is expected that it could handle the intraclass
spectral variability produced by these varying conditions to some
extent.

The solution proposed in this work operates over very high-
resolution images. However, ResBaGAN could be adapted to
operate over remote sensing images with different spectral and
spatial resolutions by adapting its stages. For instance, modi-
fying patch and superpixel size parameters would be necessary
for dealing with datasets with different spatial resolutions. For
coarser grained datasets, such as satellite images, employing
spectral unmixing techniques [76] might be necessary for situa-
tions where multiple, different elements are captured within the
same pixel.

VI. CONCLUSION

This work proposes ResBaGAN, a deep-learning method
for the classification of remote sensing images, designed to
overcome the prevalent challenges of data scarcity and class
imbalances. This is achieved by constructing an advanced data
augmentation framework that combines BAGAN-inspired aug-
mentation, sample extraction on top of traditional augmen-
tation techniques and superpixel segmentation, and an im-
proved ResNet-based classifier. This integrated approach max-
imizes the usage of spectral and spatial information from
the available training data to effectively overcome the afore-
mentioned issues. Moreover, the superpixel segmentation also
makes ResBaGAN suitable for recognizing large terrain areas.
To the best of the authors’ knowledge, this is the first study
that applies a BAGAN-based architecture to remote sensing
classification. In addition, this work also proposes an adap-
tation of the FID score metric for evaluating the synthesis
quality of GANs in multi- and hyperspectral remote sensing
images.
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ResBaGAN’s performance was evaluated in the context of
environmental monitoring by using eight large, very high-
resolution multispectral images of riparian forests, with limited
learning data and strong class imbalances. A comparison to other
state-of-the-art classification methods in the remote sensing
field, such as ACGAN, was carried out. The results revealed
the effectiveness of ResBaGAN in achieving high classifica-
tion accuracies in constrained datasets with improved perfor-
mance across all classes of elements, particularly in minority
ones.

Finally, numerous interesting research directions have been
identified for future work. For instance, it would be valuable to
assess the performance of ResBaGAN on new datasets featuring
diverse spatial and spectral resolutions. Additionally, explor-
ing the integration of more advanced components into ResBa-
GAN could yield further improvements, such as substituting
the traditional augmentation techniques with more sophisticated
methods or replacing the residual classifier with cutting-edge
architectures like transformers.
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