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Abstract—We propose a tree-level biomass estimation model
approximating allometric equations by LiDAR data. Since tree
crown diameter estimation is challenging from spaceborne LiDAR
measurements, we develop a model to correlate tree height with
biomass on the individual-tree levels employing a Gaussian process
regressor. In order to validate the proposed model, a set of 8342
samples on tree height, trunk diameter, and biomass has been
assembled. It covers seven biomes globally present. We reference
our model to four other models based on both, the Jucker data and
our own dataset. Although our approach deviates from standard
biomass–height–diameter models, we demonstrate the Gaussian
process regression model as a viable alternative. In addition, we de-
compose the uncertainty of tree biomass estimates into the model-
and fitting-based contributions. We verify the Gaussian process
regressor has the capacity to reduce the fitting uncertainty down to
below 5%. Exploiting airborne LiDAR measurements and a field
inventory survey on the ground, a stand-level (or plot-level) study
confirms a low relative error of below 1% for our model. The
data used in this study are available at https://github.com/zhu-
xlab/BiomassUQ.

Index Terms—Above-ground biomass (AGB) estimation, allo-
metric equation, Gaussian process regression, model uncertainty,
tree height.

I. INTRODUCTION

ACCORDING to the Food and Agriculture Organization
(FAO), nearly 31% of the global land surface is covered

by forests [1]. Woodland is a valuable resource on Earth. Among
others, it regulates the circulation of air and water. According
to EIP-AGRI1, forests in Europe provide around three million
jobs, and forest biomass contributes to about half of the gen-
erated renewable energy [2]. Above-ground biomass (AGB) is
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a biophysical parameter for the total amount of accumulated
organic material in an ecosystem. It has been applied widely
as an index of forest volume. Moreover, it is key to monitoring
ecosystems and modeling climate change [1], [3]. In addition,
biomass provides a tool to evaluate carbon sequestration. Accu-
rate biomass estimates help assess loss caused by wildfires [4].

Forest AGB evaluation is categorized into three levels: 1) fine,
2) middle, and 3) coarse-grained, cf. Fig. 1. In-situ measure-
ments of biomass include tree harvest and desiccation to weigh
the wood on a scale [5]. Despite errors in the harvesting process
and scale uncertainties, this method most accurately evaluates
biomass on the tree level. However, such a destructive approach
is costly in labor and time. As an alternative, allometric equations
provide estimates of biomass on individual-tree levels [6], [7],
[8], [9]. Tree biomass is considered a function of tree height,
trunk diameter at breast height (also known as trunk diameter or
simply diameter), wood density, crown diameter, etc. Luo et al.
[10] review state-of-the-art allometric equations applied to tree
species in China. However, the method presented is not easily
transferred to a global scale.

To generate large-scale (regional to global scale) biomass
maps, spaceborne hyperspectral and synthetic aperture radar
sensors with wide swath and global or near-to-global coverage
have been applied in the literature [11], [12], [13], [14]. Based
on a regression model trained with ground reference and remote
sensing data pairs, the total amount of biomass for each pixel in
the remote sensing imagery can get estimated. However, limited
by the coarse-grained resolution of remote sensing imagery,2

ground truth reference data is costly to collect. According to
the work in [18] approximately 234 trees per ha grow in the
Black Forest, Germany. Also, since the values of pixels in remote
sensing imagery are not related to trees’ biomass one-to-one, the
relative errors (REs) might raise up to 37% [1].

A tradeoff compared with in-situ biomass measurements is
the estimation of tree-level parameters (such as height, crown
diameter, etc.) from high-resolution remote sensing data as
input to allometric equations [19], [20], [21], [22]. Although
highly correlated with biomass, parameters such as wood density
and diameter cannot reliably get estimated by aerial imagery.
Jucker et al. confirmed that the height and crown diameter of
trees are sufficient to estimate the trunk diameter by a single
equation. Crown diameter and height are easily derived from

2For example, a 25-m spatial resolution of spaceborne LiDAR sensor
GEDI [15], [16], [17].
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Fig. 1. Illustration of biomass products with fine (individual), middle, and coarse-grained (stand) levels.

Fig. 2. (a) Sample of rasterized statistics of LiDAR return count (for details in methodology cf. [34]). (b) Corresponding aerial imagery over Prospect Park
in Brooklyn, New York, USA, in 2017. A and B mark areas of an isolated tree versus a cluster of trees, respectively. LiDAR statistics and NAIP imagery got
harmonized by the Big GeoData platform PAIRS [35]. (a) LiDAR return count statistics. (b) RGB-color-coded aerial imagery (NAIP, USDA Farm Service) with
one-to-one correspondence of geospatial area in (a).

airborne laser scanning (ALS) data [19], [20], [23], [24], [25].
However, the crown diameter estimation is a source of significant
model error. Deciduous tree’s crown changes with seasons, and
extraction of the crown profile for individual trees in dense
forests is a major challenge. As demonstrated by Fig. 2, the
crown profile of isolated trees may get reliably estimated, cf.
label A. However, in densely populated areas such as labeled B,
a reliable separation is close to impossible. The analysis of
high-resolution aerial imagery in [26] revealed the accuracy of
estimated crown diameter significantly varied with plots (0.63
and 0.85) when compared with height estimations. According
to the work in [27], the RE of tree crown diameter derived from
airborne/UAV-borne LiDAR data is significantly larger than that
of derived tree height (19.22% and 20.7% for crown diameter,
11.70% and 10.97% for tree height estimation, respectively).
In fact, the crowns of individual trees in e.g. rainforests may
significantly intersect.

A few studies investigated stand-level height–biomass allom-
etry [28], [29], [30]. Due to the lack of tree density informa-
tion, these methods either focused on regional biomass estima-
tion [28] or additional metrics such as percentile heights [31] and

horizontal structure index [30] are integrated into the allomet-
ric relationships. Alternatively, tree-level height–biomass allo-
metry may be beneficial as it directly includes tree density
information. But as indicated in [32], the height–diameter rela-
tionship varies even within a small scale given the compositional
diversity. Therefore, to build a general tree-level height–biomass
allometric relationship for fast biomass estimation, it is neces-
sary: 1) the relationship is derived based on a dataset collected
over large areas; 2) the regression model should be less biased, so
that aggregation of individual tree biomass within homogeneous
forests would reduce biomass errors. In this article, we evaluate
such an approach: We assemble a ground truth dataset including
8342 measurements of tree height, trunk diameter, and biomass
drawn from global sampling. We proposed a Gaussian process
regressor (GPR), which is a noise-aware model to capture the
nonlinear relationship of biomass and tree height and reduce the
estimation bias.

In addition, uncertainty quantification is crucial for evalu-
ating the confidence level of derived models. Uncertainty re-
lated to plot-level biomass estimation based on tree allometry
mainly comes from two sources [5]: independent tree variables
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derivation uncertainty due to inaccurate and/or insufficient mea-
surements and estimation uncertainty led by residual model
noise and imperfect reference data. In this article, we focus on the
estimation uncertainty. Most existing publications reported their
model’s residual noise by metrics such as root mean square error
(RMSE) [1], [21]. On the other hand, the Monte Carlo simulation
approach was used to quantify the parameter uncertainty by
selecting different samples as training data [33]. Usually, they
assume that the reference data are noise-free. However, due to the
imperfect sampling strategy, the impact of reference data on the
uncertainty quantification is nonnegligible [5]. In this article, we
propose an algorithm to decompose the estimation uncertainty
into model uncertainty and fitting uncertainty. This way, we
analyze the model uncertainties of four allometric equations in
contrast to the fitting uncertainties of five candidate models.
Stand-level uncertainties of the proposed GPR and two other
models are evaluated based on LiDAR measurements and field
surveys.

II. DATASETS

Our experiments employ a dataset collected from the open-
source allometry databases [8], [36], [37]. The dataset provided
in [8] consists of 4004 tree measurements at 58 sites in tropical
forests over the globe. The biomass and allometry database
(BAAD) [36] includes 258 526 measurements over the globe
collected from 175 studies. Each measurement records the tree
height, tree components’ biomass, etc. The biomass data col-
lected in [37] include 6604 records of trees in Eurasian forests
(mainly in Russia). Then, the part of the measurements in the
datasets was removed so that the left ones obey the following
characteristics.

1) The total height and trunk diameter of the tree are recorded.
2) The geographic location of the tree is recorded.
3) The tree is harvested to measure its biomass.
4) The tree’s diameter exceeds 5 cm.
5) The tree’s biomass passes the threshold of 2 kg.
Information on ecoregions defining geospatial boundaries of

biome types (TEOW) has been downloaded from the world wide
life fund [38]. According to geographic location, each measure-
ment is allocated by one of the seven biome types: tropical and
subtropical forests, temperate mixed forests, temperate conifer-
ous forests, boreal forests, grasslands and shrublands, tundra,
savannas, woodlands, and Mediterranean forests, or deserts and
xeric shrublands. Based on the previous research, the parameters
of the allometric equations depend on species, climate, and en-
vironmental conditions. Instead of training multiple models for
each species and ecoregion, we explored the potential of using
a single model to capture the variation caused by ecological
factors.

Here, we utilize a total number of 8342 pairs of tree height–
diameter–biomass measurements. In addition, we employ the
Jucker data [21] as a reference for the proposed model. In
addition to height, diameter, and biomass, the Jucker dataset [21]
also records crown diameter. Although the Jucker data includes
trunk diameter information, it contains 2395 samples, only.
Fig. 3(a) visualizes the geographic distribution and the number

of records for various sites. We set the diameter of the blue
circles in proportion to the number of measurements. Distinct
biome regions are colored differently. The dataset has global
coverage containing all four forest types defined by the Food and
Agriculture Organization of the United Nations (FAO) report.3

Fig. 3(b)–(d) presents violin and box plots including median
values (blue circles) and outliers (gray circles) for each: height,
diameter, and biomass of every biome type, respectively. Figures
in plot Fig. 3(b) indicate the number of measurements in the
biome regions. All three tree parameters cover a wide range
of measured values: Biomass may get as little as 2 kg, and
it may exceed 300 tons; tree height varies from 1.2 to 138
m; tree diameters span a range from 5 cm up to more than 2
m. Fig. 4 plots the distribution of tree diameter D versus tree
height H in a double-logarithmic scale. Point colors indicate
the log-scaled amount of biomass. Obviously, biomass increases
with tree height and trunk diameter. We observe: Besides, a small
number of outliers, tree height, and trunk diameter are highly
correlated.

III. METHODOLOGY

A. Allometric Equation

Biomass refers to the total amount of dry weight of organic
material in a unit area, i.e., the unit of biomass has a dimension
of, e.g., kilograms per square meter (m2) or tons (t) per hectare
(ha). A tree’s biomass accumulates from the biomass of stump,
trunk, branches, twigs, and leaves [39]. To accurately measure
the biomass of trees, trees are felled, and dried at 105 ◦C for
scaling. Large trees are impossible to gauge. Instead, wood
densities ρi and volumes Vi of all tree components labeled i
get recorded to estimate the biomass as

∑
i ρiVi. In [40], [41],

and [42], the authors elaborated on the process of dry biomass
measurements.

The study [43] demonstrates trunk biomass constitutes about
83% of the total biomass of the tree. In addition, based on
measurements with total AGB larger than 2 kg in BAAD [36],
leaf mass accounts for about 10% of a tree’s biomass. Con-
sequently, trunk biomass estimation needs the most attention.
Assuming trunk biomass modeled by a cone, the biomass B =
ρV = 1

12πρD
2H , whereB,D, andH denote the tree’s biomass,

diameter, and height, respectively. ρ is the average wood density
of dried trees that remote sensing is unable to capture. A central
assumption of our work reads: Tree height is able to predict
tree diameter such that biomass is predominantly determined
by tree height. Our experiments in Section IV indicate complex
relationships beyond a log–log linear model. Hence, we establish
a nonlinear modelB ∼ GP(H), where GP corresponds to a GPR
detailed in Section III-B. The mapping of height H to biomass
B is sensitive to average wood density and the biome-dependent
relationship of tree diameter versus tree height.

B. Gaussian Process Regressor

In order to model noisy biomass B = B(H) depending
on tree height measurements H based on a set of samples

3https://fra-data.fao.org/

https://fra-data.fao.org/
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Fig. 3. Summary of data collected [8], [36], [37]: Geospatial distribution of the measurements plotted on top of the biome classification map. (a) Circle diameters
represent the number of records at each geolocation. (b) Violin plots of the distributions of tree heights in meters. (c) Tree diameters in centimeters. (d) AGB in
kilograms for various biomes. The number of records for each biome is shown as a number to the right.

(H1, B1), (H2, B2), . . . , (Hn, Bn), we employ the Gaussian
process regression.

Gaussian processes implement distributions over sequences
of variables y′ = (y′1, y

′
2, . . . , y

′
n, y

′
n+1, . . . ) fully parameter-

ized by mean values

μ′
i = 〈y′i〉 (1)

and the (symmetric) two-point correlation function

K ′
ij = 〈y′iy′j〉 − μiμj = K ′

ji �= 0 (2)

where we introduced the statistical averaging operator

〈f〉 =
∫
y′
f(y′)N (y′|μ′,K ′) (3)

over the Gaussian distribution N . Higher-order (centralized)
moments

〈y′iy′jy′k〉, 〈y′iy′jy′ky′l〉, . . . (4)

can get expressed as products of two-point correlation func-
tions [44]. Thus, for the following:

y′ ∼ N (μ′ = 0,K ′) (5)

sample sequences y′ from a multivariate Gaussian distribution
with zero mean and covariance matrix K ′ defined by matrix
elements Kij .

It is observed that in most physical systems (spatial), corre-
lations exponentially decay proportionally to the length scale l,
∝ e−l. In fact, algebraic decays, i.e., ∝ l−α, indicate strongly
correlated systems close to phase transitions. It is, therefore,
reasonable to model the kernel

K ′
ij ∝ exp−(x′

i − x′
j)

2 (6)

where x′
i and x′

j is associated with either height measurements

H or model inputs Ĥ . Fig. 5 depicts the two-point correlation for
two measurements y′i = Bi and y′j = Bj far apart (x′

i = Hi 	
Hj = x′

j), close (Hi ≈ Hj), and identical (Hi = Hj).
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Fig. 4. Scatter plot of diameter and height in log-log scale, where the color
stands for the AGB level.

Fig. 5. Illustration of correlated Gaussian noise and its relation to Gaussian
process regression models.

In order to predict N − n values ŷ given a set of n observa-
tion pairs (x1, y1), (x2, y2), . . . , (xn, yn), we cast both into an
N -variate Gaussian distribution over variables y′ = (y, ŷ) and
corresponding (given) parameters x′ = (x, x̂) to sample from
the resulting conditional Gaussian probability distribution4

ŷ|y ∼ N (κK−1y, K̂ − κK−1κT ) (7)

where we decomposed the covariance matrix K ′ according to
y′ = (y, ŷ)

K ′ =
(
K κ

κT K̂

)
(8)

with κT the transposed matrix of κ. Note that K depends on x,
only. Similarly, K̂ takes prediction inputs x̂, only. In contrast, κ
entails a mix of x and x̂.

By designKii = 0 such that we may flexibly add uncorrelated
Gaussian measurement noise to x through

Kij → Kij + σ2δij (9)

where σ ∈ R quantifies the variance of the uncorrelated mea-
surement noise. The Kronecker-delta δij turns zero for all indices
except for i = j where it assumes the value 1. In addition,
we may want to explicitly model a mean/expected (biomass)
function m(x′) = b(H ′) that translates into

κK−1y → m(x̂) + κK−1[y −m(x)] (10)

4The derivation follows standard statistics textbooks such as in [45,
Sec. 2.3.1], where K̂=Σaa,K=Σbb, andΣab=κ = ΣT

ba withμa = μb = 0.

In summary: The following is given.
1) The one-dimensional radial basis function kernel

K ′
ij = exp−(H ′

i −H ′
j)

2/2l2 (11)

at length scale l.
2) Measured height values H = (H1, H2, . . . , Hn) and

model input values Ĥ
3) Biomass data B = (B1, B2, . . . , Bn).
We statistically model B̂ = B(Ĥ|B,H) through a (mean-

shifted) multivariate Gaussian-distributed B̂ ∼ N (μ,Σ).
1) At mean value μ

μ− b0 = κ(K + 1σ)−1(B − b0) (12)

logKij = − (Hi −Hj)
2/2l2 (13)

log κij = − (Ĥi −Hj)
2/2l2 (14)

where 1 denotes the unit matrix, b0 is a constant hyperpa-
rameter mean biomass, i.e.,

m(x′) = b(H ′) = b0 = const. (15)

getting optimized alongside with l.
2) Associated covariance matrix Σ

Σ− K̂ = − κ(K + 1σ2)−1κT (16)

log K̂ij = − (Ĥi − Ĥj)
2/2l2. (17)

Note that the various elements of K ′ contain both, data tree
heights Hi of sample biomass terms Bi, and values Ĥi for
biomass values B̂i to predict. Also, the constant offset b0 could
get replaced by a more generic (known) functional dependence,
e.g., a linear model b(H ′) = b1H

′ + b0, etc.
The scalar hyperparameters l and b0 get optimized by max-

imization of the predictor variables B̂-marginalized likelihood

B|B̂ ∼ p(B|H) =

∫
B̂

p(B, B̂|H, Ĥ)

∝ exp−(B − b0)
T (K + 1σ2)−1(B − b0)/2√
det(K + 1σ2)

(18)

i.e., when taking the logarithm, it is minimized the scalar (loss)
function

L(l, b0) = log p(B|H)

∝
∑
i

β2
i /(ki + σ2) + log(ki + σ2) (19)

where we exploited log det = Tr log [46], and defined the l-
dependent eigenvalues ki of the symmetric matrix K + 1σ. βi

denotes the b0-dependent components of vector B − b0 in the
eigenbasis of K.

When using the Gaussian process for tree biomass estimation,
the mean biomass offset can be predicted as a linear combination
of observed biomass offsets weighted by the covariance matrix
(closer samples have higher weights), as formulated in (12).
In (16), the prediction uncertainty (covariance matrix) consists
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of two parts, the inherent noise level, and the height distances
between the observed data and the prediction inputs.

Notice: GPRs can get cast into the framework of nonparamet-
ric Bayesian models. An approach that has proven efficient in
many nonlinear regression tasks [47], [48], [49].

C. Evaluation Methods

We compare the Gaussian process biomass–height model with
a random forest (RF) model and three allometric equations,
specifically: biomass–height–crown diameter (LR), biomass–
height (LR2), and biomass–height–diameter (LR3). Random
forest is a data-driven nonlinear regressor, which has been
widely applied to biomass estimation [1]. The form of the three
allometric equations read

LR: lnB = a ln(H × CD) + b+ ε (20)

LR2: lnB = a lnH + b+ ε (21)

LR3: lnB = a lnH + b lnD + c+ ε (22)

where a, b, and c are the coefficients and bias terms determined
by the training data; CD refers to the crown diameter; and ε
is model residuals. Since no crown diameter measurements in
curated data in Section II, we utilize an alternative biomass–
diameter model

LR: lnB = a ln(D) + b+ ε. (23)

1) Tree-Level Results Evaluation: To evaluate model accu-
racy, three indices get derived: R-squared (R2), RMSE, and
model bias. R-square refers to the coefficient of determination,
and is defined according to

R2(y, ŷ) = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2
=

ESS
TSS

= 1− RSS
TSS

, (24)

where yi and ŷi are the ith ground truth and predicted values. ȳ
amounts for the average mean of ground truth. ESS, TSS, and
RSS abbreviate the definitions of the explained sum of squares,
total sum of squares, and residual sum of squares in line with

ESS =

n∑
i=1

(ŷi − ȳ)2 (25)

TSS =

n∑
i=1

(yi − ȳ)2 (26)

RSS =
n∑

i=1

(yi − ŷi)
2. (27)

According to these definitions, the R-squared score may
receive impact by a single, strongly biased estimation. Thus,
calculating R2, we exclude outliers when the corresponding
absolute error exceeds the mean absolute error (MAE) by at
least three times, cf. red circles in Fig. 7. RMSE is calculated as
follows:

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2. (28)

Bias relates to relative systematic error. It is defined as

Bias(y, ŷ) =
1

n

n∑
i=1

ŷi − yi
yi

. (29)

The negative or positive value of the bias indicates biomass
under- or overestimation.

In the following, we use a binning method to visualize predic-
tion errors for input dimensions. That is, the residuals between
observed and predicted biomass yi − ŷi are calculated. Accord-
ing to the percentile, input values such as height get assigned
on a logarithmic scale, and residuals are split into separate
groups (bins). The interval spanning the mean plus–minus half
a standard deviation for each bin is presented alongside the
fitted curve. The result visually depicts the mean and standard
deviation of the prediction errors. In addition, it illustrates the
level of over- or underestimation.

2) Plot-Level Results Evaluation: We quantify uncertainty
on stand level by RE and relative RMSE (denoted as %RMSE).
Since in-situ data for biomass are unavailable, the biomass
obtained by the LR3 model trained on our curated dataset
using the filed inventoried tree heights and diameters serves as
ground truth.

By aggregating individual tree information, the RE denotes
the ratio of the sum over residuals and the sum over predicted
biomass values by LR3:

RE =

∑n
i=1[LR3(Hi, Di)− f(xi)]∑

i LR3(Hi, Di)
. (30)

Here, Hi and Di represent tree height and diameter of the ith
tree in the plot; f indicates one of the candidate models, and xi

signals model input parameter(s).
The relative RMSE refers to the ratio of RMSE and the mean

of biomass predicted by LR3

%RMSE =

√
1
N

∑N
i=1 (LR3i − fi)2∑N
i=1 LR3i

(31)

where i indexes the ith plot.
3) Uncertainty Evaluation: In the following, we elaborate

on the uncertainty evaluation algorithm in use. We concern with
two sources of uncertainties, namely: 1) model uncertainty and
2) fitting uncertainty, cf. Fig. 6. Model uncertainty indicates
variance rooted in model selection such as the choice of input pa-
rameters for allometric equations, etc. In practice, tree biomass
depends on many factors such as annual rainfall, species, and
average annual temperature. The model at hand might bear the
limited capacity to capture such dependencies. As a result, the
mapping from input to biomass remains noisy with the model
unable to capture such residuals. We define model uncertainty
by the variability of measured biomass. Concerning the wide
range and heavy tail of the tree biomass distribution, we work
with log-scaled quantities. Specifically, the model uncertainty
index is calculated as follows: 1) measurements get sorted by
the input parameter such as tree height, crown diameter, etc.,
and are grouped into n buckets; 2) for each of the n groups, the
ratio of standard deviation to mean of the biomass is calculated
on a logarithmic scale; 3) the overall model uncertainty is



SONG et al.: BIOMASS ESTIMATION AND UNCERTAINTY QUANTIFICATION FROM TREE HEIGHT 4839

Fig. 6. Illustration of model uncertainty versus fitting uncertainty. Dots and
the solid lines refer to the sample measurements and the averaged biomass,
respectively. Two sources of uncertainties we focus on are the model uncertainty
that corresponds to the standard deviation of the sample measurements, and the
fitting uncertainty—that is, the deviation of averaged biomass and the regressor-
predicted biomass.

calculated as the averaged ratios. In some allometric models,
biomass is correlated with multiple parameters, such as height
and diameter. Subsequently, the measurements are sorted by one
of the parameters.

In general, increasing the number of input parameters has the
potential to decrease model uncertainty at the price of additional
effort to collect data. An alternative provides training separate
models for each biome, species, and age. On the downside,
this approach requires vast amounts of in-situ measurements
harvesting trees. Also, there exists an option to reduce model
uncertainty for stand-level products where spatial aggregation
of tree biomass may cancel over- and underestimation [1].

When employing various forms of regression models, the
fitting precision of the regressors varies. We refer to the dis-
crepancy in average biomass and predicted biomass as fitting
uncertainty. Computation of the fitting uncertainty is similar to
model uncertainty calculation: 1) The measurements are sorted
by input parameter and assigned inton evenly spaced pockets; 2)
the absolute error of predicted biomass subtracted by the mean
observed biomass is determined for each measurement of every
group; 3) for each of the n groups, the ratio of MAE to mean
observed biomass is computed on a logarithmic scale; 4) the
overall fitting uncertainty is computed as an averaged ratio.

We are going to demonstrate that GPRs reduce the fitting un-
certainty with regard to the random forest and linear regression
models.

IV. EXPERIMENTS AND RESULTS

A. Jucker Data

We adopt the Jucker data in order to benchmark the GPR in
reference to the other models introduced. The dataset includes
2395 measurements including records on crown diameter. In
order to compare with and validate trained models such as LR
proposed by Jucker et al., we filter training data to exclude

TABLE I
SUMMARY OF R-SQUARE SCORES, RMSE, AND BIAS OF A SERIES OF

REGRESSION MODELS FOR BIOMASS ESTIMATION BENCHMARKED ON THE

JUCKER DATA

diameters smaller than 5 cm. We apply a random split into
training and test sets in proportion to 9:1.

Table I summarizes the performance of the five regressors.
LR3, the biomass–height–diameter in Section III-C performs
best in terms of all three indicators picked. R2, RMSE, and
Bias yield values 0.95, 424.68 kg, and 0.08, respectively. As
detailed in Section III-A, a linear model on a log scale is
insufficient to fit tree height–biomass data, and the LR2 model
performance is reflected by an increased RMSE (1.47 Mg), the
most prominent bias (0.29), and an R2 score equating to 0.53.
Nonlinear models—such as random forest and GPR—reduce
the RMSE to 1.15 Mg and 1.12 Mg, respectively.

Our experiment indicates a low RMSE for the LR, RF, and
GPR models, namely: 1.11 Mg, 1.15 Mg, and 1.12 Mg. Com-
pared with LR (20) (the most widely used model), RF and GPR
yield higher R-square scores by margins of 21% and 27%,
respectively. Consistently, the bias drops by 19% and 15%.
Based on the above findings, our tree height-only GPR provides
a serious option for biomass modeling when compared with
state-of-the-art biomass–height–crown diameter models.

The left column in Fig. 7 lists fitted curves (blue lines) and
corresponding error distributions (blue areas) for the five models
we did investigate. The background resembles density maps of
biomass–input parameter pairs. We observe the LR3 model fits
best with the data, it yields the lowest uncertainty, cf. it exhibits
the most narrow range of green-dashed, vertical lines in the plots
of the rightmost column of Fig. 7. In Fig. 7(a), although the fitted
line does not align perfectly with the data, the actual biomass
is linearly correlated with the product of tree height and crown
diameter, which implies that a linear log–log model can describe
the relationship between them.

In terms of single-parameter models, LR2 overestimates
biomass predictions for medium-range tree height values, and
it strongly underestimates the biomass for small and large
heights—a linear model does not properly capture the nonlinear
biomass–height relationship. Both, the random forest and GPR
render well with the data. However, the fitted curve of the RF
model is less regular compared with GPR bearing the risk of less
robustness with respect to outliers.

The scatter plots of Fig. 7 (center column) contrast modeled
biomass with observed ground truth. Red circles label outliers.
All plots exhibit a strong correlation between predicted and
observed biomass. Results in Fig. 7(h) is best aligned with the di-
agonal y = y(x) = x suggesting the biomass–height–diameter
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Fig. 7. Plots of the fitted curves with corresponding prediction errors (left column), scatters of predicted and observed biomass shown in the middle column,
and the distributions of errors depicted by the contents of the right column. The evaluation is based on the Jucker data. Each row corresponds to one of the five
models—from top to down: (a)–(c) LR, (d)–(f) LR2, (g)–(i) LR3, (j)–(l) RF, (m)–(o) GPR.
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TABLE II
SUMMARY OF R-SQUARED, RMSE, AND BIAS FOR FIVE REGRESSION MODELS

ESTIMATING BIOMASS FROM THE DATASET CURATED

model as preferred. Unfortunately, in many remote sensing
scenarios, estimating tree diameter is out of reach. The data
in Fig. 7(e) document the LR2 model tend to overestimate the
biomass when the observed biomass is around 40 kg while
underestimating above about 200 kg. In terms of height-only
models, random forest and GPR, Fig. 7(k) and (n), are ruled by
comparable performance with a lower bias for the full range of
input data when referenced to their linear counterparts.

The right column in Fig. 7 evaluates the density distributions
of residuals Bi − B̂i. Dashed lines are the 20th (left) and 90th
(right) percentiles of the errors. Obviously, LR and LR2 models
are significantly biased with positive errors dominating. Besides,
RF and GPR distribute errors alike.

B. Collected Data

The five candidate models are then trained and tested using
the collected data in Section II. Since the dataset does not record
crown diameter, as an alternative to LR in (20), we exploit the
biomass–diameter model of (23). Table II and Fig. 8 present
corresponding results. The plots in Fig. 8 are arranged in line
with Fig. 7.

The LR and LR3 models yield significantly less bias—0.14
and 0.11, respectively—when compared with the other models
exceeding 0.34. R2 scores for LR and LR3 read 0.73 and 0.78,
respectively. Our findings suggest the following:

1) tree diameter is relevant in biomass estimation;
2) tree height information improves model accuracy.
It seems a linear regressor is sufficient to render the biomass–

tree diameter relationship. The dominant RMSE errors (8.2 Mg)
stem from outliers (red circles) in Fig. 8(h).

A linear biomass–height model results in most poor perfor-
mance, with R2 as low as 0.25, and a bias of 0.50. The plot in
Fig. 8(e) illustrates a significant underestimation of model pre-
dictions versus ground truth when the observed biomass exceeds
1 Mg. We conclude the log–log linear model misses to represent
the AGB–tree height relationship. In fact, the nonlinear models
outperform the linear model in terms of all three indicators.
Moreover, the residual errors in Fig. 8(l) and (o) better center
on zero compared with the results of Fig. 8(f); an indication
of the nonlinear models more closely agree with the test data.
Compared with the random forest model, the GPR is less biased.
However, it ships with a larger RMSE of 5.0 Mg and a lower
R2 score equal to 0.66. The exceptionally high R2 score roots
in top generalization ability for B > 2 Mg. In Section V, we
demonstrate that the GPR model outperforms RF.

C. Uncertainty Evaluation

We consult the Jucker data [21] to quantify model uncertain-
ties. Fig. 9 contrasts the model uncertainties of the four models:
biomass–height, biomass–diameter, biomass–crown diameter,
and biomass–height–crown diameter, respectively. It suggests
that diameter is closely related to biomass. The biomass–
diameter model exhibits the lowest model uncertainty of about
14%. The biomass–height model reaches medium performance
at overall model uncertainty of 18.25%. The overall model
uncertainty of the single-parameter biomass–crown diameter
model is 30%. As a result, the biomass–height–crown diameter
relationship—cf. the LR model in Section III-C—is plagued
by major model uncertainty of about 20.6%. Here, we con-
trast single-parameter models, only. Multiple-parameter models,
such as the biomass–height–diameter model of Section III-C,
reduce uncertainty.

Fig. 10 aggregates fitting uncertainties of our five candidate
biomass models learned from the Jucker data. In general, fitting
uncertainties stay below model uncertainties. The overall fitting
uncertainties of LR, LR2, LR3, random forest, and the proposed
GPR read 8.80%, 11.45%, 6.13%, 6.90%, and 4.50% respec-
tively. We conclude estimation errors are dominated by model
uncertainty: All five models exhibit higher fitting uncertainty
when the observed biomass is less than 2.5 log kg) with the
GPR model (marked by a star) performing best. Because of the
nonlinear biomass–height relationship, the LR2 model (marked
by a diamond) scores highest with respect to fitting uncer-
tainty, LR indicates medium performance, whereas LR3 and
RF unveil performance scores on equal level. The GPR model
demonstrates the lowest overall fitting uncertainty. Moreover, it
constantly performs in all the groups suggesting the GPR over
the other models in terms of low fitting uncertainty.

V. VALIDATION BY LIDAR DATA

Finally, we study the uncertainty of trained models on stand
level. We utilize a dataset that get assembled from forests in
Baden-Württemberg, Germany in the years 2019 and 2020 [27].
It embraces 12 separate plots, each covering a spatial area of
about one hectare. For each plot, point clouds of individual
trees get segmented from terrestrial, UAV-borne, and airborne
LiDAR devices. Field inventory measurements are available for
a fraction of trees, too. We exclude from the validation process
three out of the 12 plots with less than 20 trees available.

For each tree, its height, diameter, and crown diameter are
derived either by field measurements and LiDAR point cloud
data, and discard from the analysis trees without field mea-
surements. For a single tree, there may exist multiple LiDAR
measurements and the number of measurements fluctuates from
plot to plot. Therefore, we average all measurements. Note that
these measurements are incomplete, for example, tree heights
were not inventoried (or measured by LiDAR data). In those
cases, LiDAR-measured (or inventoried) variables were used
instead. In Fig. 11(a), we present box plots of the tree biomass
grouped by stands where it is indicated the following biomass
statistics from bottom to top: minimum, first quartile, median,
third quartile, and maximum. Outliers get represented by black,
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Fig. 8. Plots of model fits including corresponding prediction errors (left column), scatters of predicted and observed biomass (middle column), and the distributions
of errors (right column) based on curated data, cf. Section II. Each panel corresponds to one of the five models, i.e., LR: (a)–(c), LR2: (d)–(f), LR3: (g)–(i), RF:
(j)–(l), GPR: (m)–(o).
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Fig. 9. Study of model uncertainties when working with tree height H ,
tree diameter D, crown diameter CD, and the product H × CD as an input
parameter of the allometric equation. The overall model uncertainties read:
18.25%, 14.13%, 29.81%, and 20.57% respectively.

Fig. 10. Biomass-dependent fitting uncertainties for the five candidate models
trained on the Jucker data. The overall fitting uncertainties of the five candidate
models reduce to 8.80%, 11.45%, 6.13%, 6.90%, and 4.50%, respectively.

empty circles. The tree biomass value dominantly varies from
0 to 2 Mg. Its distributions exhibit distinct characteristics for
each plot. We note that the fluctuating number of outliers has
the potential to impact model uncertainty.

The computation serves as a basis to compare three candi-
date models: LR from Section III-C trained on Jucker data,
and models RF and GPR trained on the data curated in
Section IV-B. In order to derive stand-level biomass estimates,
we sum up the values of individual trees. This way, the over-
and underestimation of biomass, in large parts, cancel. For each
plot, Fig. 11(b) presents the resulting RE values of the three
models RF, GPR, and LR. RF most poorly performs for all plots
except KA09. However, LR underestimates the biomass in seven
out of nine plots; thus, there is a significant bias for errors to
accumulate. In Table III, we compute the RE of the three models
given all reference data. We notice that the LR model rendering
is more biased compared with the GPR. The scatter plot in

Fig. 11. (a) Box plot of predicted biomass by the LR3 model on individual
level grouped by the plot. (b) RE of the three models in each plot where the
LR3 model is assumed ground truth. (c) Scatter plot of model predicted biomass
versus LR3 model reference.
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TABLE III
COMPARISON OF MODEL PERFORMANCE IN TERMS OF RE AND RELATIVE

RMSE FOR CANDIDATE MODELS: LR, RF, AND GPR

Fig. 11(c) supports that LR tends to over- and underestimate
tree biomass when assuming values less and larger than 500 kg,
respectively. GPR-predicted biomass estimates well correlate
with the predicted biomass of the LR3 model reference.

As listed in Table III, the relative RMSE of models LR,
RF, and GPR assume values of 16.93%, 46.08%, and 24.46%,
respectively. Although GPR is less accurate compared with
the LR model, the relative RMSE of GPR is acceptable when
referenced to the state-of-the-art biomass estimation errors on
a national and global scale, cf. [1] quoting %RMSE values in
37%–67%.

VI. CONCLUSION

We proposed a GPR model to estimate biomass on individual-
tree levels taking tree height as input, only. It enables rapid
regional-to-national AGB evaluation from high-resolution Li-
DAR data. As a single-input parameter model, a series of existing
allometry databases contribute to model training. We bench-
marked GPR against four established biomass models training
on Jucker data and a dataset curated by this work. Results
confirm GPR performs best when compared with two biomass–
height models, and it achieves reasonable results in reference to
a biomass–height–crown diameter model. GPR generates a low
fitting uncertainty of 4.50%. The stand-level uncertainty analysis
of GPR yielded an averaged relative RMSE of 24.46%. More-
over, GPR renders less biased at a mean RE of 0.0021. Future
work may explore a stratified approach where biome-specific
models [21] have the potential to decrease model uncertainty.
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