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Prediction of Soil Organic Carbon Content Using
Sentinel-1/2 and Machine Learning Algorithms in

Swamp Wetlands in Northeast China
Honghua Zhang, Luhe Wan , and Yang Li

Abstract—Soil organic carbon (SOC) is a sensitive indicator of
climate change, and small changes in the soil carbon pool will
affect the carbon balance. Accurate and robust SOC quantitative
prediction is of great significance to studying the carbon budget of
swamp wetlands and its response to climate change. In this study,
a new framework was proposed and assessed for predicting the
SOC content based on Sentinel-2 (S2), Sentinel-1 (S1), and the
digital elevation model (DEM) together with the extreme gradient
boosting with random forest (XGBRF) model. The determination
coefficient (R2), root mean square error (RMSE), mean absolute er-
ror (MAE), and Lin’s concordance correlation coefficient (LCCC)
were applied to assess the performances of the models. The results
revealed that the prediction performance of the XGBRF regression
model was much better than that of extreme gradient boosting and
random forest regression models. Compared with single sensor
data, using multisensor data to predict the SOC content yielded
more accurate results. The XGBRF model based on S1, S2, and
DEM fusion yielded the highest prediction accuracy (R2_testing
= 0.6639, RMSE = 1.3236 g/kg, MAE = 1.2546 g/kg, LCCC =
0.7621). Regarding the importance of the variables, the S1 and
S2 features were major contributors to the SOC content prediction
(41% and 52%, respectively), followed by the topographic variables
extracted from the DEM (7%). The proposed framework can be
used for SOC prediction based on a small sample dataset, and it
provides a method for long-term and rapid monitoring of the SOC
contents in wetlands.

Index Terms—Extreme gradient boosting with random forest
(XGBRF), machine learning (ML), Sentinel-1/2, soil organic
carbon (SOC), swamp wetlands.

I. INTRODUCTION

NATURAL wetlands have a high biological production and
low decomposition rates, which enable wetland soils to

store large amounts of organic carbon. The IPCC (2000) cited
the statistical results of the German Advisory Council on Global
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Change (WBGU) (1998), showing that the carbon storage per
unit area of wetlands was three times that of tropical forests,
making it the highest carbon storage per unit area among various
terrestrial ecosystems. Furthermore, over 90% of the carbon
storage of wetland ecosystems was found to be stored in the
soil. Wetlands play an important role in the global carbon cycle
and carbon balance, and the transformations of wetland carbon
source and carbon sink functions are one of the important factors
affecting global climate change [1], [2], [3]. However, wetland
ecosystems are relatively fragile, and slight changes in climate
can affect their carbon budgets. Soil organic carbon (SOC) is
sensitive to climate change, and it can be used as an indicator
to measure the dynamic change in the soil carbon storage in
wetlands [4], [5], [6]. Therefore, accurate estimation of wetland
SOC is helpful in predicting the feedback between wetland
ecosystems and climate change and is significant in maintaining
the carbon balance of such ecosystems.

Traditionally, the SOC content has been estimated through
field investigation, sampling, and laboratory measurement.
This traditional method is accurate but expensive and time-
consuming, so it is difficult to use the traditional method for
estimation of SOC storage on a large scale. Due to the charac-
teristics of data availability and large-scale monitoring, remote
sensing technology has become the key to the quantitative
prediction of SOC [7]. For swamp wetlands characterized by
large areas and inconvenient sampling, the traditional large-scale
data acquisition technique is unrealistic. Thus, it is necessary to
combine classical soil investigation techniques with advanced
remote sensing technology to study the spatial distribution of
SOC in swamp wetlands.

Remote sensing technology has been proven to be an effective
means of obtaining soil properties. Optical images and multi-
spectral data were initially used for detecting the properties of
soils. The spectrum ranges from visible-near infrared (VIS-NIR)
to shortwave infrared (SWIR) [8], [9], [10]. The sensors are car-
ried on satellites, aircraft, and unmanned aerial vehicles (UAVs)
[11], [12], [13], [14]. Previous studies have demonstrated that
VIS-NIR-SWIR spectroscopy can successfully be applied to
predict soil properties such as the texture, total carbon content,
total nitrogen content, and PH. When combined with appro-
priate models, the prediction accuracy can be further improved
[15], [16]. Compared with other optical remote sensing data,
Sentinel-2 (S2) data have attracted much attention. The 13 bands
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of S2 cover all bands from visible light to SWIR. Visible spectra
(490, 560, and 665 nm) are important predictors of SOC remote
sensing retrieval [7], [17]. SWIR region can detect important
soil chemical properties, which are related to the quantitative
prediction of SOC [18]. Therefore, S2 remote sensing images
may be a very useful data source for predicting SOC content.

However, since optical sensors are susceptible to atmospheric
radiation, cloud coverage, and rainy weather, it is still challeng-
ing to quantitatively predict the SOC content using only optical
sensors. In contrast, synthetic aperture radar (SAR) sensors can
observe the Earth all day long and are not affected by cloudy
and rainy weather. The echo signal received by SAR can record
the amplitude and phase information of radar waves reflected by
ground objects. The SAR sensor can capture the relationship be-
tween the soil and vegetation, which provides an opportunity to
predict the chemical properties of soils successfully and monitor
soil changes continuously [19]. Several studies have confirmed
the usefulness of SAR data for predicting soil properties such
as SOC and bulk density [20], [21]. Sentinel-1 (S1) data have
performed well in the prediction of wetland soil properties [20].
Previous studies have further found that compared with a single
sensor, multisensor data fusion may improve the prediction
accuracy of the SOC [22], [23].

SOC content prediction is achieved by establishing the rela-
tionships between environmental covariates and the SOC con-
tent. Remote sensing technology and machine learning (ML)
models provide a good guarantee for SOC prediction. The ad-
vancements of multispectral sensors and SAR sensors provide
more available environmental covariates. The development of
ML models provides more model options for SOC prediction.
Through a literature search, it was found that the geographi-
cally weighted regression [24], support vector regression [25],
enhanced regression tree [26], and the random forest (RF)
algorithm [27] have been more widely used in SOC predic-
tion. Significantly, several studies have reported that tree-based
models, such as the RF [28] and extreme gradient boosting
(XGBoost) [29], [30], have better SOC prediction performances.
The extreme gradient boosting with random forest (XGBRF)
model is an advanced hybrid integration model that combines
the advantages of the RF and XGBoost. It has been found that the
XGBRF is an effective algorithm for dealing with classification
problems, and its accuracy has been reported to be as high
as 99.25% for specific datasets [31]. This algorithm may also
achieve better results in SOC prediction research (especially
for small sample datasets). However, there are few reports on
the effectiveness and accuracy of this algorithm in solving
regression problems, and there are no reports on the prediction
of SOC using this algorithm.

The use of remote sensing and ML models to quantitatively
invert the SOC has mainly been used for SOC mapping of
agricultural land [30], and it has rarely been applied to swamp
wetlands. Compared with farmland, swamp wetlands have a
complex environment, dense vegetation cover, and relatively
limited samples. Therefore, robust prediction models based on
a small sample dataset are urgently needed for the quantitative
prediction of SOC in swamp wetlands. In conclusion, in view of

the difficult, time-consuming, and expensive nature of swamp
wetland sampling, the rapid development of remote sensing
techniques and ML algorithms may provide an opportunity
to solve the problem of SOC prediction based on a small
sample dataset. This study aimed to design a new framework
that integrates S1, S2, digital elevation model (DEM), and the
advanced XGBRF regression model to estimate the SOC content
of swamp wetlands. The specific objectives were (1) to evaluate
the feasibility of estimating the SOC in swamp wetlands using
multispectral images, SAR data, and DEM (especially in the case
of small sample datasets); (2) to compare the SOC prediction
performance of the XGBRF model with those of other two
models with better prediction performances (XGBoost and RF)
under different data fusion scenarios; and (3) to estimate the
relative importance of predictors from different data sources.

II. MATERIALS AND METHODS

We designed a new framework that integrates multispectral
data (S2), SAR data (S1), and DEM data, and used advanced
ML models to predict the SOC contents of swamp wetlands.
The research process comprised four steps: 1) obtaining images
and SOC data; 2) preprocessing multisource data and extracting
the predictor variables (a total of 46 predictor variables were
extracted: 23 from S2, 19 from S1, and 4 from DEM); 3) training
and evaluating the SOC prediction models (based on XGBoost,
RF, and XGBRF) to identify the optimal model; and 4) obtaining
spatial distribution maps of the SOC using the optimal model.

A. Study Area

The study area is located in the Khingan Range in the north-
ern part of Heilongjiang Province, China. It is a concentrated
distribution area of permafrost wetlands and is one of the most
important wetland distribution areas in the subarctic region. In
the study area, swamp wetlands and permafrost coexist and have
a symbiotic relationship, so they are more sensitive to climate
change. Surface water, permafrost meltwater, precipitation, and
other water sources constitute a diversified water supply mecha-
nism. The high latitude, high altitude, and permafrost constitute
a cold control system. The above jointly constitutes a cold and
wet geographical environment, which is conducive to the devel-
opment of swamp wetlands. In the wide river valley, flat terrace,
and platform areas, the soil water is supersaturated, forming a
large area of swamp and peatland. The vegetation species in
the swamp wetland are mainly Dahurian larch, Dusi bilberry,
narrow-leaved eucalyptus, and sphagnum moss. Due to the cold
climate, lush vegetation, and relatively small amount of evapora-
tion in this region, it is difficult for microorganisms to decompose
plant residues, which is conducive to the accumulation of SOC.
In this study, two typical swamp wetlands distribution areas
were selected as the study areas: Huzhong and Heihe (Fig. 1).
Huzhong (52°02′–52°12′ N, 123°09′–123°26′ E) is located in
the Greater Khingan Mountains, in the middle reaches of the
Huma River, and there is predominant continuous permafrost
in this region. Heihe (49°59′–50°10′ N, 126°34′–126°51′ E) is
located in the eastern foothills of the Small Khingan Mountains
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Fig. 1. Locations of the study areas and soil sampling points. (a) Huzhong.
(b) Heihe.

and the upper reaches of the Gongbeila River, and is a typical
forest wetland ecosystem with sparse island permafrost.

B. Soil Sample Collection

We conducted field investigations and sampling in the two
study areas from August to September 2021. Considering the
representativeness of the different types of surface cover and the
sampling points, we collected topsoil (0–20 cm) samples from
89 locations in forest swamp, shrub swamp, and herb swamp
areas. The geographic coordinates of each sampling point were
accurately recorded using a handheld global positioning system
(GPS) instrument. Fresh soil samples were brought back to the
laboratory. First, the samples were naturally air dried, the nonsoil

material (e.g., plant roots and stones) was removed, and the
samples were ground and sieved (0.25 mm) to prepare the soil
samples for analysis. The SOC content was determined using
the potassium dichromate external heating method. The SOC
contents of the samples varied from 6.4248 g/kg to 68.9247 g/kg.
The mean value was 38.2399 g/kg, and the standard deviation
was 17.1701 g/kg. To improve the fitting accuracy, the SOC
contents were converted to the natural logarithm (LnSOC) in all
of the prediction models, and finally, the prediction results were
converted back to the actual SOC contents.

C. Data Acquisition and Processing

The predictor variables for the prediction of the SOC were
extracted from S2, S1, and DEM data. These predictor vari-
ables from different sources were unified into the UTM/WGS84
projection coordinate system and converted into grid data (10
m resolution). In addition, due to the different dimensions and
orders of magnitude of the data, all of the predictor variables
were standardized before being input into the ML models. The
data processing platforms used in this process were ArcGIS 10.6,
ENVI5.3, and SNAP.

1) Processing of Sentinel-2 Imagery: S2 Multispectral Imag-
ing (MSI) Level-2A images were used to retrieve the SOC
contents in the two study areas. The Level-2A data were bottom
of atmosphere corrected reflectance data that had been processed
using radiation calibration and atmospheric correction. The ac-
quisition dates of the two images used in the study were August
31 and September 18, 2021, which were close to the collection
date of the soil samples. The S2 images were downloaded from
the data sharing website of the European Space Agency. In
total, 10 bands that have been widely used to evaluate soil
properties were selected from the 13 S2 MSI bands: B2, B3,
B4, B5, B6, B7, B8, B8a, B11, and B12. Vegetation and soil
indexes may have strong correlations with different physical
and chemical properties of soil. In this research, nine vegetation
indexes and four soil index variables (Table I) were selected
to predict the SOC contents of the swamp wetlands. A total
of 23 prediction variables, including 10 multispectral bands,
nine vegetation indexes, and four soil radiation indexes, were
extracted from the S2 MSI for SOC prediction. All of the bands
were resampled to a 10 m resolution. The data resampling and
index calculations were completed using ENVI5.3.

2) Processing of Sentinel-1 Imagery: The S1 remote sensing
images used in this study were interference wideswath (IW)
mode with ground range detected (GRD) format, which were
obtained on August 28 and 30, 2021. We selected dual polarized
data, including VV and VH. After radiometric calibration,
terrain correction, and other processing in SNAP8.0, the
amplitude information of the SAR images was converted into
the backscatter coefficient. Nineteen predictive variables were
derived from the S1 images, including two dual polarization
bands (VH and VV), three transformed bands (VH/VV,
VH-VV, and (VH+VV)/2), and 14 textural features obtained
from the VV and VH using the gray level co-occurrence
matrix (GLCM) algorithm (VH_Mean, VH_Variance,
VH_Homogeneity, VH_Contrast, VH_Dissimilarity,
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TABLE I
VEGETATION AND SOIL INDEXES EXTRACTED FROM SENTINEL-2 IMAGES

VH_Entropy, VH_Correlation, VV_Mean, VV_Variance,
VV_Homogeneity, VV_Contrast, VV_Dissimilarity,
VV_Entropy, and VV_Correlation). The band transformation
and texture feature extraction were completed using ENVI5.3.

3) Terrain Data Processing: The topographic variables were
extracted from the Shuttle Radar Topography Mission (SRTM)
DEM (30 m resolution). The DEM data were geocoded in
the WGS84/EGM96 projection and downloaded from http://
earthexplorer.usgs.gov/ in the Geo-TIFF format. The DEM was
projected to the UTM/WGS84 coordinate system and resampled
to a 10 m spatial resolution. Four topographic variables were
calculated in ArcGIS 10.6, including the topographic wetness
index (TWI), slope, elevation, and aspect.

D. Machine Learning Models

Three ML techniques for predicting SOC are described in
this section, namely XGBoost, RF, and XGBRF. The attribute
values of the predictor variables were extracted from the raster
data using the ENVI5.3 software (corresponding to the sampling
points). The sample dataset was composed of the grid attribute
values and SOC values of the sampling points, of which eighty
percent were used to train the models and twenty percent were
used to test the models. Python 3.9 and Scikit-learn software
packages were used to establish the models and optimize the
parameters of the three ML models.

XGBoost is a scalable end-to-end gradient boosting tree al-
gorithm that can effectively deal with classification and regres-
sion problems [29]. The goal of the algorithm is to overcome
the over-fitting problems and optimize the performance of the
model [45]. XGBoost has two objective functions: loss function
and regularization term [46]. The second derivative of the loss

TABLE II
SCENARIOS WITH DIFFERENT VARIABLE COMBINATIONS

function is calculated using this algorithm, and the trend of
gradient change is further considered to make the fitting faster
and more accurate. The regularization term limits the number of
leaf nodes through a penalty mechanism, thereby controlling the
complexity of the model and preventing overfitting [47]. Parallel
and distributed computing make the learning process faster.

The RF model, which is an ensemble learning algorithm
containing multiple decision trees [48], is used to solve classifi-
cation and regression problems [49], [50], [51]. Using bootstrap
sampling technology, about 63.2% of the training dataset was
randomly selected for the model training, and about 36.8%
of the training dataset was used as the verification dataset to
estimate the accuracy of the model (out-of-bag estimate). The
RF algorithm overcomes the over-fitting problem of decision
trees and has a good noise and outliers tolerance.

The XGBRF model is a hybrid ensemble model that integrates
the XGBoost and RF algorithms. The XGBoost and RF algo-
rithms are both advanced algorithms based on decision trees.
XGBoost is an excellent boosting algorithm, and the RF is an
excellent representative of a bagging algorithm. Serial boost-
ing repeats the training by reweighting the incorrectly judged
training samples to improve the accuracy of the basic estimators
and reduce the deviation. Parallel bagging trains a variety of the
basic estimators via sampling to reduce the variance. The XG-
BRF model actually integrates multiple RFs using the boosting
algorithm to obtain classification or regression results [31]. The
XGBRF makes use of the advantages of the XGBoost and RF
to upgrade the accuracy of the model and to avoid over-fitting
problems [52].

E. Model Performance Evaluation

We constructed six scenarios based on the different predictor
variables extracted from the different data sources (Table II).
Scenario I was constructed using S2-derived predictors; and
Scenario II was constructed using S1-derived predictors. The
other scenarios included two categories or three predictor vari-
ables from S2, S1, and DEM data. The purpose of the designed
scenarios was to assess the impacts of the different variable
combinations on the accuracy of the SOC prediction.

To estimate the SOC prediction performance of the models
under different data fusion scenarios, we introduced four indexes
for evaluating model accuracy: root mean square error (RMSE),
coefficient of determination (R2), mean absolute error (MAE),
and Lin’s concordance correlation coefficient (LCCC) [53].
With higher R2 and LCCC values and lower RMSE and MAE
values, the prediction performance of the model was better.
The four indexes were calculated according to the following

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
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equations:

RMSE =

√
1

n

∑n

i=1
(Oi − Pi)

2 (1)

R2 = 1−
∑n

i = 1 (Oi − Pi)
2∑n

i = 1 (Oi − Ō)
2 (2)

MAE =
1

n

n∑
i = 1

|Pi −Oi| (3)

LCCC =
2rSPSO(

P̄ − Ō
)2

+ S2
P + S2

O

(4)

where n is the number of soil samples;Pi,Oi,P̄ , and Ō represent
the predicted value, observed value, mean of the predicted
value, and mean of the observed value, respectively; SP and SO

represent the standard deviations of the predicted and observed
values, respectively; and r is Pearson’s correlation coefficient.

To further evaluate the uncertainty of the models, we selected
the coefficient of variation (CV) as the evaluation indicator. After
100 iterations of each model, 100 maps of SOC content were
obtained. The standard deviations and means were calculated
pixel by pixel, and then the CV map of the study area was
obtained. The CV calculation formula is as follows:

CV =
SD

Mean
× 100% (5)

where SD and Mean represent the standard deviation and mean
of SOC content for each pixel after 100 iterations of the models,
respectively.

To further test the reliability of the model predictions, we
introduced the prediction interval coverage probability (PICP)
to evaluate the probability that the observed values appeared in
the prediction interval. The confidence interval (CI) and PICP
were determined as follows:

CIi = P̄i ± SPi√
M

· uα
2

(6)

PICP =

(
1

n
·

n∑
i=1

Ci

)
· 100% (7)

where P̄i, SPi
denote the means and standard deviations of the

predicted values, respectively; M is the number of model itera-
tions; n is the sample size; uα

2
is the standard normal distribution

with respect to α
2 upper quantile; α is 0.05 and the confidence

probability is 95% in this study; and Ci represents a Boolean
function, when the observed value was in the CI, Ci was 1,
otherwise 0.

III. RESULTS

A. Correlation of Predictor Variables and SOC

The Pearson′s correlation coefficients between the 46 predic-
tors and the measured SOC content are presented in Table III.
The results show that among the 23 predictors from the S2, B5
(red-edge 1) had the highest correlation with the SOC content,
and B11 (SWIR1) and B12 (SWIR2) had strong a positive
correlation with the SOC content. Compared with the other

TABLE III
PEARSON’S CORRELATION COEFFICIENTS BETWEEN PREDICTOR VARIABLES

AND OBSERVED SOC

TABLE IV
SOC PREDICTION ACCURACIES OF THE THREE ML MODELS DIFFERENT

SCENARIOS

vegetation indices and soil indices, the MCARI and SBI had
stronger correlations with the SOC content. Of the four terrain
variables, the elevation had the strongest correlation, and the
TWI exhibited a negative correlation. Among the 19 predictors
from S1, VH, VH/VV, and VH-VV exhibited strong correla-
tions, while VV and (VH+VV)/2 had a weak correlation with
the SOC content. For the texture variables, the VH_Variance,
VH_Contrast, VH_Dissimilarity, VH_Entropy, VV_Variance,
VV_Contrast, VV_ Dissimilarity had strong positive correla-
tions with SOC content, while VH_mean, VH_Homogeneity,
VH_Correlation, and VV_Homogeneity negative correlations
with the SOC content.

B. Model Performance and Uncertainty

The accuracies of the XGBoost, RF, and XGBRF regression
models in predicting the SOC content under six different scenar-
ios are presented in TableⅣ, where R2_training and R2_testing
denote the coefficients of determination of the training and
testing datasets, respectively. The RMSE, MAE, and LCCC are
all calculated from the testing datasets. The evaluation results
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Fig. 2. Scatter plots of the observed SOC and the predicted SOC versus the training and testing datasets based on the XGBoost, RF, and XGBRF models.

reveal the influence of model selection and type and number of
variables on the SOC prediction performance.

According to the prediction results of the XGBoost regression
model, Scenario III was the best (R2_testing = 0.6558; RMSE
= 1.3280 g/kg; MAE = 1.2301 g/kg; LCCC = 0.7994), and
its predictor variables were a combination of S2 and DEM
data. In the other scenarios, the accuracy of the training set
of the model was high, while the accuracy of the test set was
low. The coefficient of determination of the test set of Scenario
IV (R2_training = 0.9879, R2_testing = −0.6111) was even
negative, which indicates that there was a serious over fitting
phenomenon in the model under this scenario. This also revealed
that the choice of feature variables was crucial to the predictive
performance of the model. Overall, in this study, it was found
that the prediction results of the XGBoost model exhibited great
uncertainty.

The performance of the RF regression model was stable, the
floating range of the R2_testing values was 0.4239–0.5403, and
Scenario VI had a better prediction performance. According to
the prediction results of the RF model, the accuracy of the SOC
prediction can be improved by the fusion of multisource data.
The XGBRF regression model performed the most robustly,
and the accuracy of Scenario VI was the highest (R2_testing
= 0.6639; RMSE = 1.3236 g/kg; MAE = 1.2546 g/kg; LCCC
= 0.7621). There was no obvious over-fitting phenomenon in
the predictions obtained using the RF and XGBRF models.

For a single type of predictor variables, for the XGBoost
model, the prediction accuracies of the variables extracted from
S2 were much higher than those for S1. For the RF and XGBRF

models, the prediction accuracies of the variables extracted
from S1 were higher than those for S2. The R2_testing of the
model with only DEM variables was less than 0.2, so it is not
listed in Table III. When two data sources were used, compared
with a single data source, the accuracy of the model fluctuated,
improved, or decreased. When three types of prediction variable
fusion models were used, the SOC prediction accuracy was
effectively improved. For example, for the XGBRF model, the
RMSE of Scenario VI decreased by 9.3% and the R2_testing
increased by 70.8% compared with Scenario I. Similar results
were obtained for the RF model. These results further indicate
the advantages of using multisensor data to predict the SOC
content.

Fig. 2 presents scatter plots of the observed SOC and the
predicted SOC for the training and testing dataset based on
the XGBoost (Scenario III), RF (Scenario VI), and XGBRF
(Scenario VI) models. The scatter plots of the training dataset
indicate that the performance of the XGBoost (Scenario III)
was obviously better than those of the RF (Scenario VI) and
XGBRF (Scenario VI), but the performance of this model based
on the testing dataset was not the best. By synthesizing the
performances of the three models on the training and testing
datasets, it was found that the XGBRF (Scenario VI) was the
most robust of the three models.

To evaluate the uncertainty of the models, three models with
higher prediction accuracy were selected, including XGBoost
(Scenario III), RF (Scenario VI), and XGBRF (Scenario VI)
models. In addition, we took Huzhong as an example to calculate
the CV and evaluate the uncertainty of the models (Fig. 3). Fig. 3
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Fig. 3. CV maps for predicting SOC content based on the XGBoost, RF, and XGBRF models.

shows that the CV of XGBoost (Scenario III) was relatively
higher (1.7–19.5%), while that of RF (Scenario VI) and XGBRF
(Scenario VI) was relatively lower (2.0–7.1% and 1.8–8.9%,
respectively). The mean CV values of XGBoost, RF, and XG-
BRF were 4.34%, 3.28%, and 3.30%, respectively. Therefore,
compared with XGBoost, RF and XGBRF produced lower and
uniform variations in the mapping region. In addition, we also
calculated the PICP to evaluate the probability that the observed
values were in the CI. The results showed that the PICP values
of XGBoost, RF, and XGBRF were 84.6%, 71.8%, and 79.5%,
respectively. None of them reached the expected value of 95%,
but XGBoost and XGBRF were superior to RF. According to the
values of CV and PICP, XGBRF was more robust than XGBoost
and RF, and was more suitable for predicting SOC in this
region.

C. Spatial Distribution Maps of SOC

The XGBoost (Scenario III), RF (Scenario VI), and XGBRF
(Scenario VI) models were found to have better performances
than the others, so we predicted and mapped the SOC content of
the swamp wetlands using these three models (Fig. 4). Twenty-
seven predictors extracted from the S2 and DEM data were used
in the XGBoost model; and all 46 variables were used in the RF
and XGBRF models. The spatial distribution characteristics of
the SOC content obtained using the RF and XGBRF models were
very similar, while the spatial distribution of the SOC obtained

using the XGBoost model was very different from the results
obtained using the previous two models.

The statistical chart of the SOC content of the swamp wetlands
in the two study areas is presented in Fig. 5. In Huzhong, the
mean and standard deviation of the SOC content for the three
models were 28.9687 g/kg and 10.2299 g/kg for the XGBoost,
33.4016 g/kg and 3.9651 g/kg for the RF, and 34.4360 g/kg
and 5.5084 g/kg for the XGBRF, respectively. In Heihe, the
mean and standard deviation of the SOC content for the three
models were 32.7794 g/kg and 12.0219 g/kg for the XGBoost,
30.6720 g/kg and 4.3513 g/kg for the RF, and 30.4601 g/kg and
4.9982 g/kg for the XGBRF, respectively. For both the SOC
spatial distribution maps and the statistical charts, the SOC
content of the Huzhong swamp wetland was slightly higher
than that of the Heihe swamp wetland. This may be related to
their specific climatic and hydrological conditions. The cold and
humid conditions in the Huzhong area are more conducive to the
storage of SOC.

D. Importance of Predictor Variables

The relative importance of the variables was ranked for the
XGBRF and RF models (Fig. 6) (importance expressed in
percentage). There was a slight difference in the results of the
relative importance ranking of the predictors for the two models,
which revealed that there were differences in the dominant
predictive variables in the different models. According to the
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Fig. 4. Spatial distributions of SOC content in the swamp wetlands in the study areas based on the XGBoost, RF, and XGBRF models.

ranking results for the XGBRF model, the S1 and S2 features
were the main explanatory variables of the SOC prediction,
accounting for 41% and 52% of the total relative importance,
respectively, followed by the topographic variables extracted
from the DEM (7%). Among the 46 characteristic variables,
the top five in terms of importance were B12 (5.43%), GNDVI
(3.86%), NDTI (3.75%), VH_Dissimilarity (3.61%), and B7
(3.19%).

The ranking results of the RF model indicate that the
S1 variables (47%) and S2 variables (42%) were also the
most dominant, followed by the terrain variables (11%), and
the variables with significant contributions were B5 (7.02%),
VH_Homogeneity (6.07%), TWI (5.98%), GNDVI (5.09%),
and VV_Homogeneity (4.49%). Significantly, in the XGBRF
and RF models, the relative degrees of importance of the short-
wave infrared bands and their derived variables were high,
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Fig. 5. Statistical chart of the SOC in the swamp wetlands in the study areas.

accounting for 13% and 11%, respectively. The S1 characteristic
variables played a significant role (relative importance was
greater than 40%). The relative degrees of importance of the
topographical wetness index (TWI) were 2.16% and 5.98%. All
of these facts indicate the effectiveness of the shortwave infrared
bands, SAR data, and topographic factors in predicting the SOC.

IV. DISCUSSION

A. Performances of SOC Prediction Models

The above-mentioned analysis results indicate that the SOC
prediction precision was closely related to the selection of the
ML algorithms, the types of data sources, and the fusion scenar-
ios of the prediction variables. Overall, the prediction precision
and stability of the XGBRF were better than those of the RF
and XGBoost models. The results demonstrate that the XGBRF
model, which combines the advantages of the RF and XGBoost,
can effectively improve the SOC prediction accuracy. Our re-
sults are similar to the advantages of the XGBRF in solving
classification problems [31]. It was also found that the RF model
performed stably and effectively avoided over-fitting, which is
consistent with previous research results [54], [55], [56]. In this
study, the fitting accuracy of the XGBoost regression model for
the training set was very high (R2_training = 0.9879), while
the performance in the test set was unstable. The R2_testing
values of the six different scenarios varied from −0.6111 to
0.6558, which is inconsistent with the excellent performance of
the XGBoost reported in some studies [30]. The quantity and
characteristics of the samples and the choice of the prediction
variables may be the direct reasons for this inconsistency. Pre-
vious studies have also found that no model performs well in
every case [57], so it is essential to use the measured SOC data
for the study area to correct prediction models.

In this study, the fusion of S1, S2, and DEM data was of
great significance to effectively predicting the SOC content.
The performance of the model with fused optical imagery, SAR

Fig. 6. Relative degrees of importance of the predictor variables. (a) XGBRF.
(b) RF.

imagery, and DEM was better than those of the models that used
optical imagery data alone. For example, the R2_testing value
of the XGBRF model increased from 0.3882 to 0.6639, and
the R2_testing value of the RF model increased from 0.4239 to
0.5403. Several recent studies have also reported the advantages
of multisource data fusion in SOC prediction [22], [26], [58]. It
was also found that the prediction accuracy of the model using S1
data alone was also high (R2_training = 0.9274, and R2-testing
= 0.5648). This indicates the great potential of the use of SAR
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data in SOC prediction, which has also been reported in previous
studies [20], [59]. In the future, we can continue to tap the
application potential of SAR data, especially in areas that are
greatly affected by clouds and rainy weather.

In our study, the results showed that the XGBRF model has
robust forecasting ability, especially in densely vegetated areas,
good application results have been achieved, which provides a
new idea for the application of this model in similar areas. In
addition, a number of indicators were used to comprehensively
evaluate the accuracy and reliability of the models, and then the
best model and data fusion scheme were selected, which also
provides a useful reference for the evaluation of SOC prediction
model.

B. Variable Importance

In this section, the ranking of the relative degrees of im-
portance of the predictive variables of the XGBRF model are
discussed. Among the 23 prediction variables derived from
the S2, SWIR1 (B11), and SWIR2 (B12) and their derivative
variables, the NDTI and CMR played important roles in the
SOC prediction. The sum of the importance of the four vari-
ables was as high as 13%. This reflects the fact that the SWIR
spectrum is favorable for the detection of SOC, which is in
accordance with the results of previous studies [60]. This is also
consistent with the correlation results presented in Table III; that
is, SWIR1 (B11) and SWIR2 (B12) have strong correlations
with the SOC content, with correlation coefficients of 0.272
and 0.220, respectively. The Soil Adjusted Vegetation Index
(SAVI) was an important predictor for the SOC retrieval, with
an importance of 3.17%, reflecting its high sensitivity to the
soil background, which is consistent with the results of previous
research [30]. Given that vegetation growth is closely related to
soil characteristics, vegetation indexes can capture the changes
in soil properties and can be used as effective variables for SOC
prediction. Among the multiple vegetation indexes, the Green
Normalized Difference Vegetation Index (GNDVI) was the most
sensitive variable (with a relative importance of 3.86%). The
GNDVI was the calculation result for the Green and NIR bands.
Compared with the NDVI (2.22%), it was more sensitive in the
SOC prediction, which is in accordance with the findings of
previous research [58].

In this study, among the four topographic variables extracted
from the DEM data, the Topographic Wetness Index (TWI)
played an important role in the SOC prediction, with a relative
importance of 2.16%. TWI comprehensively considers the influ-
ence of terrain and soil characteristics on soil water distribution
and can identify soil water gradient. Soil moisture is an important
factor affecting SOC accumulation [54]. Our results also confirm
that TWI is an effective variable for the quantitative prediction
of SOC.

S1 images were used to predict soil properties by capturing
the characteristics of short-term changes in vegetation. The
features extracted from the S1 were proven to make an important
contribution to improving the prediction accuracy of SOC. In
particular, the GLCM texture features of the VV polarization and
VH polarization were identified as ideal variables for predicting

the SOC, with a contribution rate of 32%. Similarly, the results
presented in Table III show that most of the GLCM texture
variables have strong correlations with the SOC content, such as
the VH_Contrast (0.164) and VH_Entropy (0.208). The findings
of this study reveal that the predictor variables extracted from the
optical, SAR data, and DEM data were effective in estimating
the SOC.

It was found that the relative importance of shortwave infrared
bands, SAVI, GNDVI, TWI, and GLCM texture features were
higher, which also reflected that SOC content was affected
by vegetation, topography, and soil properties. This finding
also provided scientific support for the selection of prediction
variables.

C. Uncertainty in Current Research

Although XGBRF with multisensor data fusion has been
proven to be a good SOC prediction model, there are some uncer-
tainties. First, the quality of remote sensing data determines the
prediction accuracy of SOC [61]. However, due to the influence
of clouds and the revisit cycle, the collection time of the soil
samples did not completely coincide with the remote sensing
imaging times of S2 and S1. As a consequence, we should further
investigate whether the imaging times of the optical images and
the SAR images have an impact on the SOC estimation. Second,
the multisource data were derived from different platforms, and
there may be some errors in the data conversion process, which
could affect the subsequent modeling errors. Third, the results
of the model accuracy evaluation have limitations. Owing to the
limited sample size, no model tests under different sample size
scenarios were performed. It is necessary to collect additional
samples in other areas to complete the migration verification of
the model.

V. CONCLUSION

In the study, we proposed and assessed an SOC prediction
method based on optical images (S2), SAR data (S1), DEM data,
and an advanced ML model (XGBRF). This method was applied
to the prediction of the SOC content in swamp wetlands in
northeastern China. Overall, the precision and robustness of the
XGBRF model were superior to those of the RF and XGBoost
models. The predictor variables derived from multisensor data
were found to have better prediction performances than those
derived from single sensors. The prediction accuracy of the
XGBRF, with the fusion of S1, S2, and DEM data, was the
highest (R2_testing = 0.6639, RMSE = 1.3236 g/kg, MAE
= 1.2546 g/kg, LCCC = 0.7621). In terms of the degrees of
importance of the variables, the S1 and S2 features were the main
explanatory variables of the SOC prediction (41% and 52%,
respectively), followed by the topographic variables extracted
from the DEM data (7%). Importantly, quantitative prediction
of the SOC content in swamp wetlands can be achieved using
the new framework developed in this study (in the case of small
soil sample datasets), but its robustness still needs to be verified
in a wider geographical area.
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