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Robust Registration of Multimodal Remote Sensing
Images With Spectrum Congruency
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Abstract—Among the existing registration methods, most fea-
ture descriptors are designed with image intensity, gradient in-
formation and phase congruency (PC). However, both intensity
and gradient are sensitive to image illumination changes, complex
intensity differences, noise, etc. Despite the fact that PC is invariant
to image illumination and contrast, it does not perform well when
images are corrupted with noise and nonlinear radiation distor-
tions. In this article, we propose a novel feature called spectrum
congruency (SC), which is robust to noise and variations of image
illumination and intensity. SC focuses on exploiting the correlation
of the multiscale patches based on their local energy and measures
the congruency of the energy distribution in a data-driven trans-
form domain. To demonstrate the superiority of SC, we apply it
to multimodal image registration. We construct a histogram-based
feature descriptor based on SC, termed as HOSC. Then the HOSC
descriptor is integrated with two similarity metrics for multimodal
remote sensing image registration. Extensive experimental results
on both real and noisy image pairs show that the proposed method
presents superior registration accuracy and excellent performance
in resisting the nonlinear distortion and noise.

Index Terms—Feature descriptor, local energy, multimodal
images, multiscale, nonlinear radiation distortions, registration,
spectrum congruency.

I. INTRODUCTION

W ITH the rapid evolution of geospatial information tech-
nology, remote sensing images present multimodal

forms with various internal characteristics. These multimodal
data can provide a complementary information for analysis and
interpretation of the region surveyed [1], and have been widely
used in comprehensive applications such as modern military
surveillance [2], [3], [4], change detection [5], [6], [7], image
fusion [8], and 3-D modeling reconstruction [9], [10]. Before
fusing the multimodal information, the registration is a prereq-
uisite to align two or more images of roughly the same scene
captured by different sensor mechanisms or under different con-
ditions [11]. However, due to the significant differences among
modalities and the noise in images, multimodal registration still
faces challenges.
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Depending on the registration process, most remote sens-
ing image registration methods can be roughly classified
into three categories: feature-based, area-based, and their
combination [12]. The feature-based methods exploit the
features that describe the geometrical or structural char-
acteristic of the image, such as point features, line fea-
tures, and region features [13]. Then the feature correspon-
dence between the reference and the sensed images is es-
tablished by a similarity comparison of appropriate feature
descriptors.

Feature descriptors are expected to capture a substantial
amount of information about the local property of an im-
age and be robust to small deformations or localization er-
rors [14]. Thus, it is essential to extract enough stable and
descriptive geometric features. Existing feature descriptors are
mainly histogram-based methods designed with image feature
map and orientation map. The scale-invariant feature transform
(SIFT) [15] is a widely used feature descriptor that is constructed
with the histogram of oriented gradient information. Due to its
invariance to scale and rotation changes, SIFT has been used
for many matching tasks [16], [17], [18]. Inspired by SIFT,
many scholars have designed a series of SIFTlike descriptors to
improve the matching performance, such as speeded-up robust
feature (SURF) [14], scale restriction SIFT (SR-SIFT) [19],
uniform robust SIFT [20], local binary descriptor BRIEF [21],
and oriented descriptor based on BRIEF (ORB) [22]. However,
when these SIFTlike methods are applied to remote sensing
images, the matching results are usually unsatisfying. The main
reason is that these feature descriptors are designed with gra-
dient or intensity information, which is vulnerable to complex
radiometric changes or geometric differences between images.
To tackle this problem, Xiang et al. [23] proposed an OS-SIFT
method for optical and synthetic aperture radar (SAR) image
registration. They used the multiscale ratio of exponentially
weighted averages to improve the robustness of speckle noise
for SAR images, and applied multiscale Sobel operators to
extract features for optical images. Yao et al. [24] proposed
a co-occurrence scale space based on co-occurrence filter and
developed a new gradient to optimize the impact of nonlinear dif-
ference among multimodal images. Hong et al. [25] combined
the traditional local binary pattern and the gradient direction
information to form a stable descriptor, thus, decreasing the
number of mismatched points. However, the feature maps of
these improved SIFT-like matching methods are also based on
gradient information, which are still not robust for multimodal
images.

Later on, many researchers employ phase congruency (PC) to
construct feature descriptor for image registration task because
it is invariant to the intensity variation of images and consistent
with the human visual system [26], [27]. For example, Fu et al.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0005-4243-9235
https://orcid.org/0000-0002-8662-9998
https://orcid.org/0000-0002-4331-0565
mailto:jinghuang.work@foxmail.com
mailto:jinghuang.work@foxmail.com
mailto:yangfang.idif@wust.edu.cn
mailto:chaili@zju.edu.cn


5104 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

[28] developed a local feature descriptor by combining the
oriented PC information and oriented magnitude binary map to
capture the feature properties of local regions. Xiang et al. [29]
proposed an SAR-PC model with ratio-based edge detectors
to extract spatial properties of optical and SAR images. The
SAR-PC model improves the robustness of speckle noise but
it retains sensitivity to drastic intensity differences. Li et al.
proposed [30] a radiation-variation insensitive feature transform
(RIFT) method for multimodal image matching. RIFT applies
FAST detector [31] on the maximum moment map of the PC
to detect more feature points. And the maximum index map
of multiorientation PC sequences is designed to increase the
distinction of feature descriptor. Yao et al. [32] designed a
histogram of absolute phase consistency gradients (HAPCG)
feature descriptor by using magnitude of the maximum and mini-
mum moment of PC and absolute PC orientation. Although these
PC-based approaches have achieved encouraging results, the
applicability and accuracy of matching are limited because of its
essential deficiency. PC is insensitive to image illumination and
contrast, but it fails to maintain stable features when images are
strongly corrupted with noise and nonlinear radiation distortion.
Besides, they generate glitch artifacts when the input image is
noisy. This is due to that PC extracts the local energy information
by combining the responses of multiscale and multioriented
orthogonal filters, which may lead to spurious edges. Therefore,
the registration accuracy based on the PC-based descriptors
may decrease dramatically when images are corrupted by strong
noises, which are very common in remote sensing applications.
Moreover, the significant differences among modalities make it
difficult to design an appropriate feature descriptor for feature-
based multimodal registration.

Different from the feature-based methods, the area-based
methods compare the similarity between two images based
on the intensity or gradient information of the feature points
in a predefined template window. In addition, the area-based
methods use the georeferencing techniques as a preprocessing
step for coarse registration to remove the obvious translation
and rotation differences of the image pairs, so they yield more
refined alignment with less errors. The performance of the
area-based methods relies heavily on the selection of similarity
metrics, which can be computed in the spatial domain and
frequency domain [33], [34]. In the spatial domain, the most
widely used similarity metrics are the sum of squared differences
(SSD), the normalized cross correlation (NCC) and the mutual
information (MI). The SSD and NCC are computed directly on
image intensity, making them vulnerable to intensity changes
and noises and failing in the cases of nonlinear differences
and geometric distortions of multimodal images [35]. MI is
more robust to nonlinear radiation differences since it measures
the statistical dependence between two images and can capture
more correlations among pixels [12]. MI-based metrics have
been successfully applied in multispectral and multisensor im-
age registration. For example, Chen [36] utilized a new joint
histogram estimation algorithm for computing mutual infor-
mation to register multitemporal remote sensing images. Chen
et al. [37] proposed a novel similarity metric for medium-low
resolution multisource images, called rotationally invariant re-
gional mutual information (RIRMI). However, the MI-based
methods are computationally expensive and very sensitive to the
window size for template matching, making them impractical
for remote sensing datasets. In the frequency domain, phase
correlation is the most popular similarity metric [38], [39], [40],

which transforms the image pairs into the Fourier transform
domain to obtain phase differences. The phase correlation only
considers the phase information, thus, it is insensitive to image
content and more robust to the intensity differences and noise.
Nevertheless, the frequency-independent noise and geometric
deformations across the frequencies make the phase correlation
methods perform inaccurate [41]. In a word, the area-based
methods are based on the assumption that corresponding im-
age regions have similar intensity contents or patterns and the
corresponding performance depend on the similarity metrics.
These methods are more adaptable for multispectral images
matching, e.g., optical-Infrared images, but they cannot effec-
tively handle the registration of multimodal remote sensing
images.

To further improve the registration accuracy and robustness,
some studies focus on the combination of feature- and area-based
registration methods. They evaluate the similarity of feature
descriptors instead of intensity, thus, resisting the nonlinear
intensity differences. For example, Gong et al. [42] com-
bined the SIFT descriptor and MI similarity metric to realize
a coarse-to-fine registration framework for optical and SAR
remote sensing images. In [43], the local self-similarity (LSS)
descriptor is integrated as NCC similarity metric to suppress
the nonlinear intensity differences among multispectral remote
sensing images. Ye and Shen [13] designed a descriptor based
on the histogram of oriented PC (HOPC) and develop a novel
similarity metric by combining HOPC with NCC similarity to
enhance the robustness of multimodal image registration. Later
on, Ye et al. [33] presented the channel features of orientated
gradients (CFOG) to accelerate the computation efficiency by
inducing a 3-D-FFT similarity measures based on SSD and
achieves encouraging results. Morrone et al. [44] constructed
a novel structural descriptor (SFOC) combined with a fast
similarity metric called fast NCC to achieve reliable registration
performance. However, as previously mentioned, current feature
descriptors are constructed based on gradient or PC, which
are sensitive to noise and not effective for multimodal remote
sensing registration.

To address the above issue, we propose a novel combination
registration framework for multimodal remote sensing registra-
tion by introducing a robust feature perception measurement.
The new measurement is called spectrum congruency (SC),
which is used to describe the edge features of images. Unlike PC,
SC is computed through data-driven bases, and does not need
to integrate the filter response value from multiple orientations,
thus avoiding the glitch artifact. In addition, SC extracts different
frequency information by using multiscale patches and can
retain all frequency information. Hence, SC is more adaptable
to the input image, which makes the detected features more
reliable. To the best of our knowledge, there are no results
in the literature regarding applying the data-driven method to
measure the local energy and PC model. To take advantage of
SC, we construct a robust feature descriptor with the histogram
of SC (HOSC) to extract more descriptive geometric features for
multimodal image registration. The main contributions of this
article can be summarized as follows.

1) A novel feature perception method named SC is proposed.
SC is computed via data-driven bases, so it is adaptable
to the input image. In addition, SC is not only invariant to
changes in brightness or contrast as PC, but also robust to
noise, which helps generate more stable and descriptive
features.
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2) An automatic and robust feature descriptor called HOSC
is constructed for multimodal registration. HOSC is de-
signed with the histogram of SC magnitude and gradient
orientation. We integrate HOSC with robust similarity
metrics to deal with the complex radiation distortion and
nonlinear intensity differences, and achieve satisfying reg-
istration results.

3) Extensive experiments on both noise-free and noisy data
demonstrate that, the proposed descriptor HOSC is more
effective and robust than the state-of-the-art methods in
terms of the evaluation indicators and visual effects.

The rest of this article is organized as follows. Section II intro-
duces the relevant knowledge of PC model. Section IV presents
the proposed registration framework based on SC for multimodal
remote sensing images. Section V analyzes the parameters and
shows the experimental results. Finally, Section VI concludes
this article.

II. PHASE CONGRUENCY

In [45] and [46], the authors found that biologically or phys-
ically, the edges and corners in images could be defined as
places where the Fourier components are maximally congruent
in phase. This phenomenon is called the phase congruency (PC).
Venkatesh and Owens [47] found that the points of maximum
PC locates at the peaks of local energy and it has been proved
that local energy is equal to PC scaled by the sum of the Fourier
amplitudes. That is

PC(x) =
E(x)

ΣnAn(x) + ε
(1)

whereAn(x) represents the amplitude of thenth Fourier compo-
nent and ε is a small positive constant to prevent the expression
instability. The local energy E(x) of the 2-D image f at position
x can be obtained by

E(x) =
√
F 2(x) +H2(x) (2)

where F (x) is the signal without its direct-current (dc) compo-
nent and H(x) is the Hilbert transform of F (x).

Later, Kovesi [27] improved the PC modal by using the
quadrature wavelet filters which enable one to compute the
frequency information at a given spatial location. And the local
energy can be measured by convolving the signal with the pair
of quadrature filters over scales and orientations. Let Me

no and
Mo

no denotes the even and odd symmetric wavelets at a scale
n and orientation o. The corresponding response vector of each
quadrature pair of filters is given by

[eno(x), ono(x)] = [f(x) ∗Me
no, f(x) ∗Mo

no]. (3)

Thus, local energy can be calculated

E(x) =

√√√√(∑
n

∑
o

eno(x)

)2

+

(∑
n

∑
o

ono(x)

)2

(4)

and the Fourier amplitudes at a given scale n and orientation o
is given by

Ano(x) =
√

eno(x)2 + ono(x)2. (5)

Thus, the PC model is defined as:

PC(x) =

∑
o

∑
n Wo(x)�E(x)− To�∑
o

∑
n Ano(x) + ε

(6)

where To is the noise compensation term estimated by subtract-
ing noise power spectrum in each orientation of local energy.
�·� denotes that the enclosed quantity is itself if it is positive
or zero otherwise. Wo is the weighted function which maintains
the significant distribution of frequency and suppresses spurious
responses where the spread of filter responses is narrow.

The classical PC model computes the energy and amplitude
in the transform domain with oriented filters, such as the Fourier
transform [26], the log-Gabor transform [27], and the monogenic
signal [48], [49]. The integration of multiple oriented filters
over all scales and orientations brings some spurious edges and
glitch artifacts, especially in noisy images. Although the noise
compensation is considered, the image features and magnitude
of PC will be seriously reduced if the noise is strong.

III. SPECTRUM CONGRUENCY

As stated in Section II, the performance of the traditional PC
will drop dramatically when images are corrupted by noises. In
this section, we will propose a data-driven model to extract fre-
quency information and preserve more edge features of images.

A. SC via Local Energy

Traditionally, the local energy is computed via the integration
of response values of pairs of quadrature filters. These quadra-
ture filters are generally fixed bases and created from a mother
wavelet to obtain particular frequencies of images. Since fixed
bases are not adaptable to input signals, we propose to find the
data-driven bases in appropriate transform domain.

The transform domain is embedded in a Hilbert space H and
composed of a set of orthonormal bases {vn}Nn=1,vn ∈ RN ,
where N is the dimension of H. Note that the wavelet transform
can be used in the multiscale analysis naturally because the
wavelet base is scalable, however, our method is data-driven,
and scaling of the bases will lose the complete and orthogonal
property of the bases. Therefore we develop a multiscale frame-
work to access the local frequency information of images by
scaling the patches around each center pixel. For a certain pixel
x of a 2-D image f , we firstly extract a set of image patches
centered around this pixel with different sizes S1, S2, . . ., Sm

that are sorted in ascending order. These patches can be de-
noted as P1, P2, . . ., PK , where Pk ∈ R

√
Sk×

√
Sk . We can pick

the coarse frequencies by downsampling these patches to the
smallest patchsize S1

P ′
k(x) = Pk(x) ↓ρ (7)

where ↓ means the downsampling operation and ρ = Sk

S1
is

the downsampling ratio. Hereby, the scaled patches {P ′
k} are

assumed to describe the different frequency components with
different scaling ratio. The patches with smallest size P ′

1 (the
same as P1) represent the high frequency components because
these patches contain more content of the center pixel with its
neighborhood. As k increases, the scaled patchesP ′

k describe the
lower frequencies because downsampling process has removed
high-frequency information gradually.

The resampling process is similar to the calculation of PC
model by using wavelet. The wavelet-based methods pick up
the low-, mid-, and high-frequency information according to
the scaled filters on the frequency domain, while we extract
different frequency components directly from the signal in the
spatial domain. In addition, the noise adhering to features can be
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Fig. 1. Flowchart of the proposed SC.

subtracted in resamping process, making the image information
more robust to noise.

Suppose the ideal transform domain is spanned by a set of
complete orthogonal bases {vn}S1

n=1,vn ∈ RS1 , then the local
energy and amplitude is computed as follows. First, remove the
dc component from each patch P ′

k(x) surrounded at each target

pixel x by subtracting their mean value ¯P ′
k(x), respectively

Xk(x) = P ′
k(x)− ¯P ′

k(x). (8)

Then vectorize these patches into a vector denoted as
{xk(x)}Kk=1,xk(x) ∈ RS1 , and extract the specific frequency
components by projecting each vector to {vn}

yk(x) =
[
xk(x)

Tv1,xk(x)
Tv2, . . .,xk(x)

TvS1

]T
(9)

where yk(x) = [y1k(x), y
2
k(x), . . ., y

S1

k (x)]T means the projec-
tion term of the vector from the kth scale, and ysk(x) =
xk(x)

Tvs is the sth element of yk(x). The summation of local
energy can be expressed as follows:

E(x)

=

√√√√(∑
k

y1k(x)

)2

+

(∑
k

y2k(x)

)2

+· · ·+
(∑

k

yS1

k (x)

)2

.

(10)

The corresponding local amplitude can be computed as∑
k

Ak(x)

=
∑
k

√(
y1k(x)

)2
+
(
y2k(x)

)2
+ · · ·+ (

yS1

k (x)
)2
. (11)

To obtain a good localization of features, it is important to
suppress superior responses of no significant frequency compo-
nents. This can be realized by carrying out a sigmoid function
to the width of frequencies

W (x) =
1

1 + eβ(c−s(x))
(12)

where β and c control the cutoff value of weight function. The
width of frequencies s(x) is defined as

s(x) =
1

M

( ∑
k Ak(x)

Amax(x) + ε
− 1

)
. (13)

Let M be the number of scales, and Amax(x) be the maximum
amplitude at point x on the image. Then the SC based on the

multiscale patches is defined as follows:

SC(x) =
W (x)�E(x)− T 	∑

k Ak(x) + ε
. (14)

The term T is the noise compensation which can be measured
as the mean value of local energy response scaled by a small
constant, denoted as T = αE. ε is a small constant avoiding
a zero denominator. Fig. 1 illustrates the flow process of the
proposed SC model.

B. Bases Selection

In this section, we show that the SC of an image defined by
(14) is invariant to representations under different domains as
long as the orthonormal bases are used.

Let {vn}Nn=1, {un}Nn=1 be two arbitrary sets of orthonor-
mal bases of a domain Ω ⊂ RN . For a set of vectors X =
{xk}Kk=1,xk ∈ Ω, the energy and amplitude of its projection
on {vn} and {un} are the same{

E(Xvn
) = E(Xun

)
Ak(Xvn

) = Ak(Xvn
)

(15)

where E(Xvn
) and E(Xun

) correspond to the energy of X on
{vn}, and {un}, respectively. Ak(Xvn

) and Ak(Xvn
) are the

amplitude at scale k of X on {vn}, and {un}, respectively.
SC is invariant for the signal represented by any orthonormal

bases {vn}Nn=1. Hence, in our case, to facilitate the computation,
we use the column vectors of the identity matrix Id ∈ RS1×S1

as the bases. The detailed description of SC is presented in
Algorithm 1.

C. Antinoise Performance of SC

To verify the effectiveness of proposed method, we compare
SC with gradient and traditional PC on both synthetic images
and real remote sensing images.

1) Synthetic Image: Fig. 2 demonstrates the feature results
on a synthetic image, corrupted by a mixture of Salt & Pepper
noise and Gaussian noise. The corrupted ratio of Salt & Pepper
noise is d = 0.01, and the standard deviations δ of Gaussian
noises ranges from 5 to 20 with incremental value of 5. With
the increasing of the standard deviation δ, the gradient map
becomes monotonically unclearer. Specially, when δ reaches
20, the gradient feature of the triangular is nearly invisible
since the triangular has lower contrast. PC is more robust
than gradient but is also affected by noise and generates the
glitch artifact along the edges. In addition, we can see from
Fig. 2(c) that the contour of the triangular and circle becoming
fuzzier with the increase of noise intensity. This means that the
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Algorithm 1: Framework of SC via Multiscale Local
Patches.

Input:
Image f , PatchSize={S1, S2, S3, . . ., SK};

Output:
Feature map SC;

1: for each pixel x in f do
2: Extract K patches centered at x: P1(x), P2(x),

P3(x),..., PK(x)
3: Remove the dc components of each patch
4: for each Sk in PatchSize do
5: Downsample Pk(x) to form a new patch PSknew(x)

with the same size of S1

6: Project each patch PSknew(x) to a set of complete
and orthogonal bases {v}n;

7: Compute Ek (10) and Ak, respectively, according to
(11)

8: end for
9: Compute the spectrum congruency SC(x) via (14)

10: end for
11: return SC

Fig. 2. From left to right: (a) Original image and the noise images with d =
0.01 and δ varies from 0, 5, 10, 15, 20. (b)–(d) Corresponding edge maps
obtained by gradient (b), PC (c), and SC (d), respectively.

PC value decreases gradually as noise increases. SC is least
affected by noise and the edge features detected by SC are
more stable. This result shows that our proposed SC holds a
more robust antinoise performance compared with PC in noisy
instances.

2) Remote Sensing Images: We test the performance of SC
on a real infrared remote sensing image. The original infrared
image is about an urban area with buildings. The noisy image is
obtained by corrupting the real image by a mixture of Gaussian
and Salt & Pepper noise with Gaussian standard deviation δ = 5

Fig. 3. Edge detection results on the real (Top) and noisy infrared remote
sensing image (bottom), from left to right. (a) Source images. (b) Gradient map.
(c) PC map. (d) SC map.

Fig. 4. SC results on the optical image with varying resolution, from left to
right: (a) Source image. (b) SC map of source image. (c) Down-sampling image
ρ = 0.3. (d) SC map of (c).

and the percentage of corrupted ratio d = 0.05. Fig. 3 depicts
the feature results obtained by gradient, PC and SC.

For the real infrared image, we observe that PC and SC are
more robust to image illumination and contrasts than the gradient
magnitude. However, as mentioned above, the edge features
detected by PC contains some false shadow and glitch artifact in
the flat region due to the low resolution and complex intensity
changes of the infrared image. The proposed detector extracts
more smooth and descriptive geometric features compared with
PC. For the noisy image, the gradient and PC map are easily
affected by the Salt & Pepper noise since they are sensitive to
significant complex intensity and noise. Although SC is a little
affected by the noise, it still provides much more essential and
complete structural information of images.

Fig. 4 depicts the SC results of an optical image (a) and its low
resolution version (c) by compressing the image with a down-
sampling ratio ρ = 0.3. It can be seen that the low resolution
image loses some of its detail and clarity, resulting in blurred
edges. Despite the low resolution of the image, SC is still able to
extract smooth and complete contours of the structural shapes, as
shown in Fig. 4(d). This means that even with lower pixel density,
SC can effectively capture the overall shape and boundary of
the object in the image, while maintaining its smoothness and
completeness.

SC is based on the local energy of multiscale patches so
it does not need to consider the influence of the filter orien-
tations. This avoids the integration of values from multiple
orientations, thus eliminating the glitch artifact and providing
a much simpler way to measure the edge strength. Besides,
the multiscale patches based on downsampling operation can
reduce the spurious noise in images, making SC highly robust
to noise. The unique transform domain with data-driven bases
make SC more suitable to perceive the image perception and
preserve more descriptive geometric features. Therefore, we
explore SC to construct the feature descriptor to improve the
registration accuracy of multimodal remote images.
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Fig. 5. Template window and search region in similarity evaluation processing.
(a) Reference image. (b) Sensed image. Red box: Template window, blue box:
Local region, yellow dashed box: Search region.

IV. MULTIMODAL REGISTRATION FRAMEWORK BASED ON

SPECTRUM CONGRUENCY

Image registration aims to find the optimal spatial geometric
mapping from the sensed image S to reference image R, and it
can be expressed as

E
(
T̂
)
= argmax

T̂

[
Ψ(FR, T̂ (FS))

]
(16)

whereFR andFS denote the set of feature points in the reference
image and sensed image, respectively. T̂ denotes the spatial
geometric mapping and Ψ(·) is the structural similarity metric
between feature points. The feature descriptor and similarity
metric play significant roles in image registration. In this section,
we propose a structure descriptor called HOSC and introduce the
corresponding similarity metric.

A. HOSC: Structural Feature Descriptor

Based on SC, a novel structural descriptor named HOSC
for multimodal remote sensing images registration is proposed.
HOSC is a local histogram-based descriptor to identify local
object appearance and shape by the projection of intensity
feature orientation. It combines the histogram of SC magnitude
and gradient orientation to represent the local image structure.
Fig. 6 presents the whole process of constructing the HOSC
feature descriptor. The detailed process is as follows.

1) For each pixel, we first extract the feature map and orienta-
tion map of local region and divide them into overlapping
blocks. Each block consists of Nb ×Nb cells region and
each cell contains Nc ×Nc pixels.

2) The orientation of each cell is partitioned into several bins
and weighted by SC amplitude with a trilinear interpo-
lation. We normalize the histogram for all cells in one
block by the �2 norm to eliminate the effect of illumination
changes. The feature vector is vectorized from the block.

3) The feature vectors of all blocks (or pixels) are arranged
to form a 3-D orientation histogram.

Next, we evaluate the similarity between two images on the
basis of HOSC structural properties to detect corresponding
matching points.

B. Similarity Metric Based on Structural Properties

The matching method is a template-based framework, which
defines a template in the reference image and then finds the op-
timal correspondence in the local search region of sensed image
by evaluating similarity measures. Fig. 5 presents the template

window and search region in similarity evaluation processing.
Suppose that the point q̂ is a feature point in the reference image
and the point q0 is the candidate point in the sensed image. We
need to find the target matching point in the local region centered
around q0 by calculating the feature representations similarity
of each pixel in local region. As shown, the yellow diamond
point q1 denotes the first point in local region. The correlation
between q̂ and q1 can be measured by the similarity with HOSC
within template window centered around them.

As mentioned above, combining the feature descriptor with
similarity metrics can help resist the nonlinear intensity differ-
ences. In this article, we use two matching metrics (NCC and
the FFT-SSD) to evaluate the similarity of HOSC descriptor
for registration, denoted as HOSCncc and FHOSC, respectively.
The HOSCncc is defined as

HOSCncc

=

∑
x(RA(x)− R̄A)(RB(x− b)− R̄B(x− b))√∑

x(RA(x)− R̄A)2
∑

x(RB(x− b)− R̄B(x− b))2

(17)

where RA(x) and RB(x− b) denote HOSC descriptor of the
template window A and B at location x and x− b, and b is the
translated vector over local region between RA andRB . R̄A and
R̄B are the means of RA and RB .

The FFT-SSD is the SSD similarity metric calculated by
using 3-D FFT, which can improve computational efficiency.
The FHOSC is given by

FHOSC =
{
3DF−1[3DF (RA(x)) · 3DF ∗(RB(x− b))]

}
(18)

where 3−DF , 3−DF−1, and 3−DF ∗ denote the forward,
inverse, and the complex conjugate of 3-D FFT, respectively.

C. Proposed Registration Framework Based on HOSC

Before registration, the reference image and the sensed image
are coarsely rectified using the georeferencing technique and re-
sampled to the common spatial coordinate system. This can help
eliminate obvious translation and rotation differences between
multimodal images. Then the refinement process generally con-
sists of four steps—feature point detection, feature matching,
outlier elimination, and image rectification.

1) Feature point detection: Apply the block-Harris detec-
tor [43] to obtain the evenly distributed feature points in
the reference image. The Harris detector response values
are ranked in a descending order and the top K points are
identified as feature points.

2) Feature matching: For each feature point in the reference
image, define a local search region in the sensed image
based on the georeferencing information. Compare each
pixel in the searching window to find the best matching
point according to the similarity metric integrated with the
proposed feature descriptor. The corresponding points are
regarded as a pair of control points (CPs).

3) Outlier elimination: Dislodge the outliers using the global
consistency check method [50], and remove the mismatch-
ing CPs by the iterative refining procedure.

4) Image rectification: Estimate the transformation model
and rectify the sensed image.
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Fig. 6. Flowchart of the construction of HOSC.

Fig. 7. Average CMR values versus the number of cells, blocks, and orientation
bins of FHOSC (a) and HOSCncc (b).

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the performance of the proposed fea-
ture descriptor are demonstrated on both noise-free and noisy
multimodal remote sensing images. We evaluate and discuss
the registration results compared with some state-of-the-art
methods.

A. Experimental Setting

1) Datasets: In the experiment, five modalities of sensing
images are employed. These images are used to form four
different pairs as optical-infrared, Lidar-optical, optical-SAR,
and optical-map. These images are captured by different imaging
mechanisms with different resolution and exhibit diverse land
covers such as urban, rivers, and flat areas. As mentioned before,
the two images of each pair have been coarsely rectified and
resampled to the same ground sample distance (GSD) to elim-
inate obvious scale, rotation, and translation differences. How-
ever, these images still have significant nonlinear radiometric
differences and complex image intensity fields, bringing sub-
stantial challenges for matching tasks. The detailed information
of these multimodal images is list in Table I.

2) Implementation Details: In terms of feature detection
among multimodal images, three patch scales are selected to
calculate SC: 3 × 3, 5 × 5, and 7 × 7. The smallest scale
patches are set to be 3 × 3 that can sufficiently capture local
neighborhood information of pixels. We set α = 0.2 for the
threshold in (14) to estimate noise energy in this article. In the
feature points detection processing, 300 uniformly distributed
interesting points are detected by block-based Harris detector in
the reference image. The error threshold is set to be 1.5 pixels

to eliminate the CPs with large errors. When constructing the
structural descriptor, the local region size is set to be equal to the
block size. In this way, the feature vector of each block denotes
the structure information of the one target point, providing a
pixelwise representation of the image. In template matching
processing, according to previous literature [13], [33], [51], the
correct matching ratio (CMR) value gets better with the increase
of the template size and it can achieve good performance when
the template size is around 100 × 100. However, the higher
CMR value is at the cost of higher computational complexity
and run time. Hence, to balance the cost and performance, we
set the template window 100 × 100 pixels and the search region
20 × 20 pixels. In addition, we adopt the template matching
scheme designed in [13] to collect the feature descriptors at the
interval of five pixels.

3) Evaluation Criteria: We analyze the performance of the
proposed registration framework via three indices: the number
of correct matches (NCM), correct matching ratio (CMR), and
matching accuracy. The CMR is defined as: CMR=NCM/NM,
NM is the total number of CPs. 40–60 evenly distributed CP pairs
are selected manually to assess the matching accuracy in terms
of the rmse of these points.

For a set of CP pairs (xi;x
′
i), i = 1, . . .Np, an affine or projec-

tive transformation is used to calculate the corresponding point
of xi, denoted as x̂i. The rmse of these CPs can be calculated as

RMSE =

√√√√ 1

Np

Np∑
i=1

‖x′
i − x̂i‖2. (19)

4) Parameter Analysis: The proposed feature descriptor is
related to three parameters: the block size Nb ×Nb, the cell
size Nc ×Nc, and the gradient orientation bins O. Fig. 7 shows
the average CMR values versus the parameters for FHOSC and
HOSCncc tested on ten pairs of multimodal remote sensing
images. It can be observed that both for FHOSC and HOSCncc,
the average CMR value increases gradually as the number of
orientation bins and block size increases. However, the FHOSC
and HOSCncc behave differently when the cell size changes,
i.e., the average CMR value of FHOSC is highest when Nc = 6,
but the average CMR value of HOSCncc achieves best when
Nc = 3. Since the bigger cell size will lead to more computation
time, to make a tradeoff between calculating efficiency and CMR
value, we setNb = 4, Nc = 3, andO = 8 as default parameters.
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TABLE I
DETAILED INFORMATION OF MULTIMODAL IMAGES USED IN EXPERIMENT

Fig. 8. NCM values of descriptor similarity metric versus different intensity of Salt & Pepper noise for real multimodal images. (a) Case 1. (b) Case 2. (c) Case
3. (d) Case 4. (e) Case 5. (f) Case 6. (g) Case 7. (h) Case 8. (i) Case 9. (j) Case 10.

Fig. 9. NCM values of descriptor similarity metric versus different standard deviation of Gaussian noise for real multimodal images. (a) Case 1. (b) Case 2.
(c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6. (g) Case 7. (h) Case 8. (i) Case 9. (j) Case 10.
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Fig. 10. RMSEs of different feature descriptor. (a) Real multimodal images
results. (b) Noisy multimodal images results.

B. Analysis of Feature Descriptor

To test the robustness of feature descriptors, we analyze the
performance under Salt & Pepper noise with noise different
intensity d and Gaussian noise with standard deviation δ, re-
spectively. We compare the NCM results of the proposed feature
descriptor with some the state-of-the-art methods, including
CFOG, FHOG, FLSS, and FSURF in terms of 3-DFFT-SSD
similarity metric [33]; HOGncc and HOPCncc in terms of NCC
similarity metric [13] and RIFT [30].

1) Analysis of Salt and Pepper Noise Sensitivity: Fig. 8
shows the NCM value of these descriptors versus Salt &
Pepper noise with a range of d ∈ [0, 0.3]. As can be seen,
HOSCncc can extract more stable CPs and have the highest
NCM value for almost all image sets and FHOSC outperforms
the other 3-DFFT-SSD similarity metrics. Feature descriptors
in terms of NCC are more robust to Salt & Pepper noise
than that of 3-DFFT-SSD since 3-DFFT-SSD is calculated
by FFT transform which is easily affected by Salt & Pepper
noise.

For the noise-free multimodal images pairs (d = 0), CFOG,
FHOG, HOPCncc perform comparably to FHOSC and HOSC-
ncc, especially for image pairs with less radiation deformation,
such as Optical-Infrared pairs (Cases 1–2), Lidar-optical pairs
(Cases 3-4), and optical-map pairs (Cases 9–10). As d increases,
CFOG, FHOG, FLSS, FSURF, and HOGncc fail to extract
enough common features among multimodal images. This is
because these descriptors based on gradient or image intensity
are more likely to suffer from Salt & Pepper noise. PC is
more robust than gradient so that HOPCncc can get the higher
NCM value compared with HOGncc. However, PC can not
keep its property when noise level becomes higher. RIFT can
extract more points on real multimodal images since it takes
both the corner features and PC edges into consideration so
that it ensures the quantity of the feature points. Nevertheless,
the NCM of RIFT is easily affected by noise, i.e., when the

Fig. 11. Fusion results of noisy multimodal images. (a) Case 1. (b) Case 2.
(c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6. (g) Case 7. (h) Case 8. (i) Case 9.
(j) Case 10.

noise is strong, the NCM drops dramatically. On the contrary,
FHOSC and HOSCncc can resist nonlinear radiometric dif-
ferences and Salt & Pepper noise due to that SC is robust to
noise.

2) Analysis of Gaussian Noise Sensitivity: Fig. 9 represents
the NCM result of feature descriptors versus Gaussian noise
with a range of δ ∈ [0, 30]. It can be observed that the 3-D-FFT
based descriptor can extract enough feature points when the
level δ is low or the image intensity does not change dras-
tically, such as Case 2 and Case 7. CFOG can better resist
Gaussian noise compared with other gradient-based methods
since CFOG is weighted by a 3-D Gaussian kernel instead of a
triangular kernel, making it more robust to Gaussian noise. When
δ increases, CFOG performs worse than FHOSC, especially
when images have significant nonlinear intensity differences
intrinsically. FLSS, FSURF, and FHOG are not stable for these
multimodal images since they are sensitive to noise or image
intensity changes. For NCC-based feature descriptor, HOSC-
ncc shows the highest NCM result followed by HOPCncc and
HOGncc for almost all multimodal images. The NCM curve of
RIFT decreases sharply compared with other 3-D-FFT based
and NCC-based methods. One reason is that PC is not robust
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Fig. 12. CPs detection result of FHOSC. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6. (g) Case 7. (h) Case 8. (i) Case 9. (j) Case 10.

to noise and the other one is RIFT uses a global pointwise
matching strategy, which would generate mismatches. In ad-
dition, we compare our method with a more recent approach,
i.e., SFOC [44]. To testify the antirobustness of our method and
SFOC, we conduct a comparison with SFOC according to the
same experimental settings and results described in [44]. The
comparison result of Case 1 is shown in Fig. 9(a), the SFOC
uses an NCC-based similarity, and we can see that HOSCncc
(red curve) has comparable or better performance than SFOC
(purple curve).

In summary, the proposed feature descriptors based on SC
feature are more robust and effective for multimodal remote
sensing registration.

3) Analysis of Matching Accuracy: Fig. 10 presents the com-
parison of matching accuracy of both noise-free and noisy
multimodal remote sensing images. According to the NCM re-
sults, We add a mixture of Gaussian and Salt&Pepper noise with
δ = 10 and d = 0.05 to the sensed images of optical-infrared,
Lidar-optical, and optical-SAR image pairs, and only add Gaus-
sian noise with δ = 10 for the sensed images of optical-map
pairs to ensure each method can detect enough points.

We can see that, RIFT gives the worst results in almost all
cases for both real and noisy image pairs. Different from other

template-based methods, RIFT is a pointwise feature matching
method and finds the corresponding candidates by calculating
the minimum similarity that traverses the whole set of fea-
tures points. The search area of RIFT is much larger than the
template-based methods, so RIFT mismatches more points and
returns lower accuracy. In terms of 3-D-FFT similarity methods,
CFOG and FHOG can handle images without complex radiation
differences or less polluted by noise, such as Lidar-optical
image pairs (Cases 3–4) and optical-map pairs (Cases 9–10).
As shown, CFOG performs slightly better than FHOG, FLSS
and FSURF in these image pairs. This is because CFOG adopts
3-D Gaussianlike kernel to obtain the feature channels and
resist the influence of Gaussian noise. However, CFOG also
fails to cope with the issue of Pepper & Salt noise as well as
the complex distortions existing in Optical-SAR image pairs.
FSURF is easily influenced by nonlinear differences in almost
all cases and the matching result is unsatisfying. FLSS performs
better on optical-infrared image pairs (Case 1–2), but it fails for
other modalities. FLSS is constructed based on image intensity
so it can cover some detailed textures of images. On the other
hand, it is easily affected by image intensity variance. In terms
of NCC-based methods, HOPCncc achieves the lower rmses
results compared with HOGncc, but it also performs poorly.
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By contrast, FHOSC and HOSCncc achieve lower rmse re-
sults and are more stable to deal with multimodal images regis-
tration. Although HOSCncc can get higher NCM than FHOSC,
FHOSC can achieve lower rmses and get more accurate registra-
tion results. The main reason is that the histogram of FHOSC is
more distinguishable, then it can achieve more accurate matches
for multimodal images. Therefore, we use FHOSC to present the
registration result in the following experiment.

C. Registration Result

We depict the visual registration results to examine the perfor-
mance of our proposed matching method for multimodal remote
sensing images. Fig. 12 shows the corresponding CPs result
extracted by FHOSC. The multimodal remote sensing images
are polluted with the mixture of Gaussian noise and Pepper &
Salt noise with δ = 10 and d = 0.05. It can be seen that these
images have significant nonlinear radiation distortions and the
sensed images are greatly corrupted by noise. While FHOSC
can detect sufficient evenly distributed CPs and these points hold
precise positioning. Fig. 11 shows the fusion results of image
pairs in checkerboard mosaic and enlarged subimages. It can
be observed that these multimodal images are all well aligned
and present a good matching performance. This result verifies
the robustness and effectiveness of our proposed registration
method.

D. Time Complexity

The proposed registration method mainly involves three steps:
calculating SC, constructing the HOSC, and computing the
similarity between the feature points. For an image f ∈ RN×N ,
the time complexity of the first two steps is O(N2) and
O(N2), respectively. Regarding the computation of similarity,
two similarity metrics are considered, i.e., NCC and FFT-SSD.
In Section V-A2, 300 uniformly distributed feature points are
used in the reference image, and the search window in the
sensed image is of size 20 × 20. For each pair of points to be reg-
istered, the dimension of the feature point in a template window
is nv = df × 100× 100, where df = 128 is the dimension of
HOSC. So the time complexity of using NCC isO(300× 400×
n2
v), and of using FFT-SSD is O(300× 400× nv × log nv).

Thus, no matter which similarity is used, in this article, the
most time-consuming step is still the similarity computation.
The main difference between our method and the other methods
lies in that our method uses the newly proposed SC, and the time
complexity of other methods also depends mainly on similarity
computation. Although the time complexity of SC O(N2) is
slightly higher than that of PC O(NlogN), it hardly affects the
overall time complexity of the whole process.

VI. CONCLUSION

In this article, we propose a novel feature called SC based
on local energy of multiscale patches. SC is consistent with
the human visual system on perceiving the features, invariant
to image illumination contrast and robust to noise. Besides,
SC can encode the stable feature structure benefited from the
data-driven transform in multiscale framework. We apply SC
to extract features of multimodal images and propose a robust
feature descriptor HOSC based on SC magnitude and gradient

orientation. FFT-SSD similarity and NCC similarity are inte-
grated with HOSC to handle the complex radiation distortion
and nonlinear intensity differences between multimodal im-
ages. Extensive experiments demonstrate that, compared with
state-of-the-art multimodal registration methods, the proposed
method presents superior registration accuracy, especially for
the strongly nonlinear distortion and noisy cases. In addition,
the FFT-SSD similarity is more effective than NCC similar-
ity, making FHOSC exhibit better registration results com-
pared with HOSCncc in matching accuracy and calculation
efficiency.
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