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Aid in the Classification of Volcanic Earthquakes
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Abstract—Volcanic seismicity is one of the most relevant pa-
rameters for the evaluation of volcanic activity and consequently
the prognosis of eruptions. Earthquakes of volcanic origin are
of different classes, directly related to the physical process that
generates them. The distribution of the data between classes of
seismic-volcanic signals generally presents an unbalanced profile
(imbalanced datasets), which can hinder the performance of the
classification in machine learning models. Therefore, this research
presents a characterization technique (feature extract) that, in
addition to reducing the dimension of each seismic record, allows a
representation of the signals with the most relevant and significant
information. This work proposes the use of a dual autoencoder
feature, which is compared with conventional characterization
techniques, such as linear prediction coefficients and principal
component analysis. The training of the model was performed
with a dataset containing volcano-tectonic (VT) earthquakes, long
period events, and Tornillo-type events of the Galeras volcano, one
of the most active volcanoes in Colombia. The classification results
reach 99% of the classification of the mentioned classes.

Index Terms—Characterization techniques, classification, dual
autoencoder, lower dimensional representation, unbalanced
dataset, volcano-seismic signals.

I. INTRODUCTION

S INCE the last two decades, automatic recognition algo-
rithms have emerged as a reliable answer to classify seismic

data. Among the automatic systems for recognizing and classi-
fying these signals, artificial neural networks (ANN) [1], [2],
[3], [4], [5], [6], [7], and hidden Markov models (HMM) [8],
[9], [10], have been the most widely applied [8]. Orozco-Alzate
et al. [11] indicated that HMMs may sometimes fail to meet the
theoretical assumptions made in certain practical situations, due
to the nontemporal nature of seismic signals. It is also worth
mentioning the extensive processing time and computational
cost that continues to be the limiting factor for HMMs [11].

The performance of automatic volcanic earthquake signals
detection and classification models presents several challenges,
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the main one being the availability of a dataset of sufficient size
to perform training and validation of the classification model.
Although large amounts of seismic data are continuously col-
lected, many of these data remain underutilized because labeling
them is an expensive task. Another common problem in volcanic
earthquake log data is their unbalanced profile, meaning that
one of the classes has a higher number of examples, this is
because volcanoes produce signal types that may be predom-
inant, depending on the volcanic activity present. Therefore,
classification models must be robust enough to address the class
imbalance problem in the dataset, to avoid the tendency to learn
the majority or dominant class and fails to predict the remaining
classes [12], [13], [14]; this problem is accentuated when the
datasets do not have a sufficient number of instances (seismic
records in this case).

For the period of volcanic activity selected for this study in
the Galeras volcano, the majority class corresponds to vulcano-
tectonic (VT) earthquakes of which 1736 have been selected,
followed by the long period (LP) class with a selection of 402,
and finally the Tornillo-type signals (TOR) with only 67 samples.

Usually, in literature, it is chosen to balance the dataset
by discarding data from the majority classes until a relatively
balanced distribution to the number of examples of the minority
class is obtained, further reducing the size of the dataset. Many
classification studies of volcanic earthquakes have datasets of
sizes smaller than 500 data [1], [7], [15], [16], [17]. How-
ever, the application of these techniques generates a loss or
deterioration of information in the data [14], [18], [19], [20].
In contrast to class balancing, there is an approach based on
feature selection [14], which is also known as characterization
or representation [20], [21], in which an unbalanced dataset
is allowed to be presented to the classification model without
affecting its performance.

Another important challenge presented by seismic data of
volcanic origin is its high dimensionality, which can make the
classification model computationally wasteful, for this reason
feature selection is fundamental in the performance of classifica-
tion algorithms, which significantly reduces the size of each data.
Moreno [12] made reference in this sense by mentioning that
the amount of samples needed to obtain statistically significant
results grows exponentially with dimensionality. Therefore, the
generalization capability of the classification model declines as
smaller the quotient between the number of samples and the
dimension of the feature space [22], [23].

This article proposes a dual autoencoder feature (DAF) as a
novel characterization technique, capable of obtaining a lower
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dimensional representation of volcanic earthquake signals and
simultaneously addressing the problem for unbalanced datasets.

The proposed feature extraction representation learning
model is based on two stacked autoencoders that use different
activation functions since the sigmoid function is less sensitive
to changes, providing a more robust representation, while the
tanh activation function is more sensitive, offering more detailed
information about the data [20], in order to obtain a feature vector
that efficiently represents the seismic signals.

Thus, the main contributions of this work include addressing
the problem of unbalanced volcanic seismic signal datasets,
especially when it is not possible to have a dataset of sufficient
size, a common problem in volcanic seismic signals. In addition
to offering a new, more robust and efficient characterization
technique, capable of defining and differentiating the classes of
volcanic seismic signals, facilitating the classification process.
This proposed characterization technique is compared with con-
ventional techniques, such as the linear prediction coefficients
(LPC) technique [24] and the principal component analysis
(PCA) technique [25].

The rest of this article is organized as follows. Section II
describes from a geophysical point of view the seismic signals
recorded at the Galeras volcano. Section III provides a gen-
eral theoretical framework on the conventional characterization
techniques that are usually applied in literature. Section IV deals
with autoencoders and the proposed technique of this work is
presented: DAF. Section V describes the experimental setup and
Section VI presents the experimental results that serve as a basis
for the discussion in Section VII. Finally, Section VIII concludes
this article.

II. SEISMICITY OF GALERAS VOLCANO

This study applies to seismic records generated in the Galeras
volcano, which is located in the department of Nariño, approxi-
mately 9 km west of Pasto city, at coordinates 1◦13’43.8” north
latitude and 77◦2”33.0” west longitude and with a height of
4276 m above sea level. It is considered one of the most active
volcanoes in Colombia.

Volcanoes are surface manifestations of dynamic processes
that occur in the interior of the Earth, coupling physical and
chemical processes of great complexity, which gives rise to
a great variety of seismic signals that can be recorded [26],
[27]. Although, a uniform global classification scheme for these
signals has not yet been established [11], [15], it is generally
observed that volcanoes produce earthquakes with compara-
ble characteristics that can be associated to different volcanic
sources [9], [11]. For the case study, the main seismo-volcanic
events can be grouped as follows (Fig. 1).

1) Vulcano-Tectonic (VT) Earthquakes: They are impulsive
signals that originate in a range of depths between 2–10 km. They
are produced by stresses caused by a brittle fracture, generating
seismic waves in which primae (P) and secundae (S) phases can
be identified. The spectral content of this signal is wide, reaching
up to 30 Hz.

2) Long Period (LP) Seismic Events: The origin of these
signals is related to the fluid dynamics inside the volcanic
edifice, where as a consequence of the movement of fluids in

Fig. 1. Types of volcanic seismic signals registered in Galeras volcano.
Seismograms (left). Spectra (right).

cracks or conduits, waves are produced within the fluids involved
that cross the crust and reach the receivers. The existence of
pressure transients within the fluid–gas mixture also gives rise
to resonance phenomena. The sources of such events can be
located at depths of more than 2 km, and their frequency content
is generally restricted to a range between 0.5–15 Hz.

3) Tornillo Type Earthquakes (TOR): These events present
characteristic waveforms, where the frequency distribution is
homogeneous, with a slow decay coda that can last several
minutes and a small amplitude compared to the duration. It
is considered that this type of earthquake is associated with
resonance processes, where the loss of energy in the resonant
cavity is slow. Generally, this type of earthquakes have been
precursors of some eruptions in the Galeras volcano [28], [29].

B. Galeras Volcano Dataset

The dataset provided by the Volcanological and Seismolog-
ical Observatory of Pasto (SGC-OVSP), includes information
between July 1, 2004 and December 31, 2010, corresponding
to the Cufiño station. Ibarra [1] made a complete description
of the sensor systems and signal acquisition mechanism for
the Galeras volcano. The data were labeled by seismologists of
the observatory, based on professional knowledge and specific
experience of the volcano activity. From the total number of
earthquakes, the most representative of each class were selected.
As a result, a total of 2205 events were obtained with the
following distribution: 1736 VT, 402 LP, and 67 TOR.

The histogram in Fig. 2 shows that for LP signals the seismic
events have a homogeneous duration of 30 s. However, for the
TOR seismic signals, the distribution of the duration is very
varied, in addition to being in a smaller class (with a reduced
number of earthquakes). Finally, the signals corresponding to
VT seismic events, where most of the earthquakes have a dura-
tion between 10 and 30 s.

III. CHARACTERIZATION TECHNIQUES

These are techniques that allow dimensionality reduction
through feature extraction, removing redundant information
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Fig. 2. Histogram summarizes the distribution of the duration of seismic events
recorded during 2004–2010 at the Galeras volcano. It is also possible to identify
the distribution of instances by seismic event class.

present in the data, and thus, generating a subset of values more
suitable for the classification task [30].

Due to the high dimensionality of seismic signal data, it
is necessary to address issues, such as scattering, numerical
instability, and overfitting. This is a common challenge for
high-dimensional data, known in literature as the curse of di-
mensionality [31]. Techniques that can solve the dimensionality
problem, also facilitate the interpretation of the data, which
allows for greater generalizability in data analysis models, since
they reduce the adaptation of the learning model to the trained
data (overfitting) and, finally increase the computational ca-
pacity when they reduce the vector dimension, favoring data
visualization [17].

In general, algorithms for dimension reduction are classified
into two types: 1) resource (or feature) selection, and 2) resource
transformation.

A. Feature Selection

The goal is to form a set of the most efficient and relevant
features. Among the most commonly used parameters to repre-
sent seismic signals are features of geophysical character [21],
[32], [33], resources used by specialists in supervised manual
classification (impulsivity of the wave onset, the shape of the
envelope, energy, periodicity, and harmonics, etc). There are
also features based on statistical properties of time series data
in the time domain and also in frequency (standard deviation,
mean, median, kurtosis and skewness, the mean spectrum and
the energy of the spectrum, etc.) [34].

B. Resource Transformation

It is about transforming the signal domain to a space where
the information is less sparse. This approach has been popular
in literature in the last two decades, for the characterization of
volcanic earthquake signals as part of the preprocessing of the
data. Among the most common are the Fourier transform, the
Hilbert transform, the wavelet transform, the logarithmic fre-
quency cepstral coefficients (LFCC), and the wavelet transform.

Fig. 3. Autoencoder architecture diagram.

It is about transforming the signal domain to a space where
the information is less sparse. This approach has been popular in
literature in the last two decades for the characterization of vol-
canic earthquake signals as part of the preprocessing of the data,
among the most common we can mention the Fourier transform,
Hilbert transform, wavelet transform, the logarithmic frequency
cepstral coefficients (LFCC) [6], [8], [35], [36], [37], Mel-scale
frequency cepstral coefficients (MFCC) [38], LPC [2], [15],
[24], [39], [40], [41], PCA [16], [38], [42], [43], and among
other nonlinear variations derived from the previous ones.

This work will address two of the conventional techniques,
LPC and PCA. They will act as a basis of comparison for
the proposed characterization technique in the preprocessing of
seismic volcanic signals using autoencoders, to transform the
signals to a feature subspace as a support in the classification,
by reducing the dimension of the data, eliminating redundant
information, and as a solution when the dataset presents an
unbalanced profile.

IV. AUTOENCODERS

Autoencoders are ANNs that are generally designed to encode
the input into a more compact and meaningful representation,
which is called code, as shown in Fig. 3. These architectures
were first introduced by [44]. It is said that these architectures
do not correspond to supervised learning, but to self-supervised
learning, because there is no need to label the training dataset.
In literature, this type of architectures have been used as a
resource extraction technique in the field of remote sensing for
the classification of images with super resolution achieving good
results [45], [46]. In the field of seismology, its application has
been mainly for the elimination of noise in the data [47], [48],
[49], the reduction of its dimension [50], [51], as well as the
object of this work.

As for its operation, as shown in Fig. 3, for a sample x(i) in
the training dataset D = {x(1), x(2), . . ., x(N)}, where i and N ,
denote the n-dimensional input vector of the ith sample and N
the number of samples, respectively . The coding layer is defined
by

f(x) = se(Wex+ be) (1)

where We, be, and se() denote the weight matrix, the threshold
(bias), and the activation function of the coding layer, respec-
tively. Similarly, the decoding layer is defined as

g(x) = sd(Wdx+ bd). (2)

Therefore, the autoencoder output is defined as follows:

y = g(f(x)). (3)
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The purpose of the autoencoder is to learn a representation
from the most significant features in the coding layer, so that
at the output it is possible to reconstruct the inputs. There-
fore, the autoencoder learning problem is to find a set of pa-
rameters, θ = We, be,Wd, bd,, that minimize the reconstruc-
tion error between the inputs and outputs of the sutoencoder.
Therefore the formal definition is A : Rn → R

p(encoder) and
B : Rp → R

n(decoder), satisfying

arg minθ

N∑
i=1

L
(
x(i), g

(
f
(
x(i)

)))
(4)

where

L(x, y) = ‖y − x‖2. (5)

To avoid overfitting, the regularization penalty �2 is added in the
loss function L to constrain the magnitudes of the weights [52],
[53]. Therefore, the optimization problem is constrained as

arg minθ

N∑
i=1

L
(
x(i), g

(
f
(
x(i)

)))
+

1

2
λ‖W‖2. (6)

Being

�2 =
1

2
λ‖W‖2 (7)

where λ and W denote the regularization parameter and the ma-
trix consisting of two weight matrixesWe andWd, respectively.
In general, the parameter θ is optimized using the backpropa-
gation method in the same way as a standard multilayer ANN,
with the exception that for an autoencoder the outputs match the
inputs.

For a special case of autoencoder (nonstacked), where the
activation function is linear and for a number of hidden neurons
M less than the number of neurons of the input n, the problem
is reduced to a PCA [54].

In ANN, the activation functions are generally nonlinear.
WhenM < n, the autoencoder performs feature reduction, sim-
ilar to the PCA process. Conversely, when M > n, the autoen-
coder learns the identity function. In practice, the autoencoder
explores statistical regularities in the dataset and learns useful
features [40], where instead of finding a lower dimensional
hyperplane in which the data lies, it is able to learn a nonlinear
variety.

The representation capability of an autoencoder with a single
hidden layer is limited [54], [55]. A deeper architecture can
be formed by stacking several autoencoders to improve the
representation capability of features learned from the input data,
obtaining deeper and more abstract features [20]. In stacked
autoencoders, the outputs of the encoding layer of the first au-
toencoder correspond to the inputs of the next autoencoder [56].
In this sense, only the first autoencoder uses the original data as
input.

A. Dual Autoencoder Features (DAF)

The DAF combines the functions learned by two stacked
autoencoders using the sigmoid and tanh functions as trigger
functions. Fig. 4 shows the general DAF scheme.

Fig. 4. Dual autoencoder features-DAF. (a) Learning procedures. (b) Feature
encoding procedures.

The DAF uses stacked autoencoders that allow extracting the
most representative features from the volcanic seismic signals.
The DAF does not limit the number of stacked autoencoders,
however, a single layer autoencoder may not be robust enough
to learn useful features [54], [57], [58]. On the other hand,
more layers can produce a good representation, albeit at a high
computational cost of training. For this work, the DAF trains
two autoencoders independently using two activation functions.

As shown in Fig. 4(a), the first autoencoder encodes the
input data, then the second autoencoder uses the outputs of
the encoding layer of the first autoencoder as input, encoding the
information once again, and a set of learned features is obtained.

Ng et al. [20] used two stacked autoencoders, each with two
different activation functions, thus obtaining feature learning
from two different perspectives, which are concatenated to form
the DAF.

B. Activation Functions

Autoencoders with different activation functions produce dif-
ferent responses to inputs and therefore learn different features,
generating more robust representations. The sigmoid and tanh
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Fig. 5. Activation functions used in DAF for the range [0, 1]. (a) Response
of Sigmoid and Tanh activation functions. (b) Respective differentials of these
functions.

activation functions are widely used in ANN. The activation
responses and their corresponding differentials can be seen in
Fig. 5.

The differentials of the sigmoid and tanh functions are defined
as follows:

sigmoid′(x) =
e−x

(1 + e−x)2
(8)

tanh′(x) =
4

e2x + e−2x
. (9)

From Fig. 5(a) it can be identified that the tanh function is
more sensitive than the sigmoid function. The output of the
tanh function varies whenever there is a small change in the
inputs. Likewise, in Fig. 5(b), it is possible to recognize that the
tanh function is more sensitive by generating larger differentials,
thus having a wider range for the activation values, compared to
the sigmoid function. Therefore, it is possible to capture more
detailed information to represent the volcanic seismic signals
with the tanh activation function.

In contrast, a classifier with low sensitivity produces higher
robustness when it ignores detailed changes in the inputs [59].
In this context, the sigmoid function is more resistant to noise
and provides a more global representation of the data. In this
way, it is possible to explore both detailed local information and
robust global representations to aid the automatic classification
process.

V. EXPERIMENTAL SETUP

This work proposes a structure composed of two main stages:
data preprocessing in which three characterization techniques
were used: 1) LPC, 2) PCA, and 3) DAF; the latter being the
proposed technique, followed by the learning and classification
stage (Fig. 6).

A. Preprocessing

First, a rectangular window was applied to standardize the
signal duration, a duration of 3 s was established for all seismic
records to avoid discarding significant information from the
seismic records. It is worth mentioning that, for signals with
a duration shorter than this value, it was decided to fill with
zeros starting from the last recorded sample of the signal.

Fig. 6. Experimental setup scheme.

The data were then normalized to the range [0, 1], a process
necessary to apply the characterization techniques. The normal-
ization takes into account the maximum and minimum values of
the signals, values that are subtracted from each sample to then
form part of the denominator as

X ′ =
X − min|X|

(max|X| − min|X|) . (10)

The normalized data are characterized using the techniques:
LPC, PCA, and DAF, obtaining vectors with representations
of 12, 50, and 400 features, respectively. The DAF technique
generates 200 features corresponding to the coding using the
sigmoid activation function and 200 features using the tanh
activation function.

For the LPC technique, the all-pole filter model of order 12
was used, following the methodology used by [4]. For the PCA
technique, 50 principal components were calculated taking into
account that one of the classes required 49 principal components
to conserve 95% of the variance of the data. Finally, the config-
uration of neurons per DAF layer was 3000 × 2000 × 1000 ×
1000 × 800 × 1000 × 1000 × 2000 × 3000 for the autoencoder
receiving the original input dice, and 800 × 400 × 200 × 400 ×
400 × 800 of the stacked autoencoder.

B. Classification

Once the respective representations of the seismic signals (of
lower dimension) are obtained, these are presented as the inputs
to the multilayer perceptron (MLP) classifier [60], [61]. The
configuration of neurons per layer of the MLP was: 400× 500×
100 × 3. The classifier is trained separately, with one dataset for
each type of representation. The learning and classification pro-
cess was carried out using the stratified cross-validation method,
in order to test the success rate of the classification model.
The dataset is divided into six stratified groups to maintain the
proportion of seismic events per class (having an unbalanced
dataset) and then divide the set into training and test groups.
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Finally, the confusion matrix of the classification results is
obtained. The values of TP, FN, FP, and TN are defined as
follows.

1) True Positive (TP): refers to the correct prediction of the
class of interest.

2) False Negative (FN): refers to the prediction of the class
of interest as if it were a different class.

3) False Positive (FP): refers to the incorrect prediction of a
different class as if it were the class of interest.

4) True negative (TN): refers to the correct prediction of
classes other than the class of interest.

C. Assessment

The model is evaluated in order to objectively infer the behav-
ior and performance of the classifier under different conditions.
The classification model is compared using the data charac-
terized with the proposed technique (DAF) with conventional
characterization techniques (LPC and PCA). The metrics used
are sensitivity (true positive rate, or recall or TPR) (11) [62], f1
score (12) and (13) [63], receiver operator characteristic curve
(ROC) [64], [65], and its area under the curve (AUC) [66]. It
should be noted here that the metrics are calculated as if it were
a binary problem from a multiclass problem comparing one class
with the rest [One versus Rest (OvsR)].

TPR =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

f1 =
Precision · Recall
Precision + Recall

. (13)

VI. RESULTS

A. Preprocessing

Fig. 7 identifies the representation obtained for VT, LP, and
TOR seismic signals, applying the characterization techniques.
As can be seen in Fig. 7(a), the LPC technique is the lowest
dimension representation and allows defining very well the class
of TOR type earthquakes, by obtaining a representation that
keeps much similarity between two randomly chosen signals
for the same signal type, indicating that this technique manages
to extract characteristics that represent well this class. It is worth
mentioning that TOR earthquakes have well-defined character-
istics both in the time and frequency domain (see Fig. 1). On the
contrary, this representation technique does not define well the
VT and LP classes, as can be identified in Fig. 7(a), by presenting
variations in the representation for two signals of the same type.

On the other hand, the representations obtained by the PCA
technique define well the VT class of earthquakes, as shown in
Fig. 7(b); however, the LP and TOR classes present variation
in the representation of two random signals for the same type
of earthquake, this variation is more significant in the TOR
class signals. Finally, in Fig. 7(c), it is observed that the rep-
resentations obtained with the DAF define each of the classes
quite well, not finding variation between two random signals

Fig. 7. Characterization of two random signals (from the training and test
set) of volcanic earthquakes. (a) LPC technique. (b) PCA technique. (c) DAF
technique.

of the same type, thus demonstrating that this technique is able
to extract the most representative characteristics in each type
of earthquake. This quality can favor the classification process,
even though the dataset is unbalanced. Furthermore, it reduces
the dimension of the data from 3000 signal samples to a vector
with 400 characteristics.

B. Classification

The learning performance, once the classifier was trained
and validated (stratified cross-validation), can be seen in Fig. 8,
which indicates the behavior of the loss function of the model
for each dataset corresponding to the characterization technique
used; the percentage of success achieved is also shown in the
same figure.

In Fig. 8, it is possible to identify that the MLP classifier
presents the highest value for the error minimization in the loss
function compared to the error minimization achieved by the
model when using a dataset from the PCA or DAF characteri-
zation techniques. The accuracy achieved by the classifier does
not exceed 82% [Fig. 8(a)], which maintained this performance
throughout the stratified cross-validation process. On the other
hand, when the datasets corresponding to the PCA [Fig. 8(b)]
and DAF [Fig. 8(c)] techniques were used, the error was mini-
mized. The accuracy achieved by the MLP classifier using the
dataset when applying PCA is 96% and when applying the DAF
technique it reaches 99%. However, it is necessary to continue
analyzing the results exhaustively, since this type of behavior
can be the result of the correct classification of the majority class
only, obtaining erroneous classification results for the minority
classes when the dataset is unbalanced [18], [21], [64].

Fig. 9 shows the confusion matrixes resulting from the classi-
fication using the different datasets resulting from the character-
ization techniques. With the LPC technique, the MLP classifier
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Fig. 8. Behavior of the loss function and the hit achieved in the MLP classifier
for each dataset represented. (a) LPC technique. (b) PCA technique. (c) DAF
technique.

Fig. 9. Confusion matrix for the MLP classifier using the datasets after
applying the LPC, PCA, and DAF characterization techniques.

model cannot learn the LP earthquake class, as can be seen in the
confusion matrix, this type of signals are confused with those
of type VT. On the other hand, it is important to mention that,
although the TOR seismic signals correspond to the minority
class, the LPC technique allows to classify and correctly label
this type of seismic signal.

On the other hand, the classifier results using the dataset from
the PCA technique are good for VT and LP earthquake signals.
However, the model does not learn to recognize the class of
TOR-type earthquakes, thus inferring that this representation
technique does not support learning for an unbalanced dataset.
Subsequently, the confusion matrix resulting from the classi-
fication using the proposed technique for the representation
of seismic signals (DAF) indicates that the model is able to
correctly learn and predict the signals despite the unbalanced
dataset.

TABLE I
RANKING REPORT BY EVALUATION METRICS

Fig. 10. ROC OvsR curve for classification using the LPC technique.

Finally, to evaluate the classifier and know its performance,
it is necessary to treat the problem as a binary classification
problem of type OvsR, and thus, implement the performance
metrics mentioned in the previous section.

Table I shows the analysis report of the model performance
evaluation metrics. It can be observed that when using the dataset
resulting from the LPC technique, the TOR type earthquake
class is correctly classified reaching 100% for all metrics. The
opposite is the case for the LP class, which is confused with the
VT type.

On the other hand, when analyzing the performance metrics
of the classifier using the dataset resulting from applying the
PCA technique, it can be observed that this technique allows
an excellent definition of the VT and LP classes; however,
the accuracy in the classification of the LP earthquakes only
reaches 83.3%. The minority class TOR is totally detrimental by
obtaining 0% as a result in all metrics for this dataset. The dataset
resulting from applying the proposed DAF technique allowed
a remarkable performance in the classification of all earthquakes,
regardless of the unbalanced distribution of earthquakes by class
that this dataset presents, obtaining 100% in all metrics.

Figs. 10–12 graphically summarize the performance of the
MLP classifier for each dataset through the ROC curve analysis.
Fig. 10 shows the performance of the model during the validation
process when the LPC technique was applied to the dataset,
indicating a rather low performance in the prediction of the VT
and LP classes, with an area under the curve of 0.64 for both
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Fig. 11. ROC OvsR curve for classification using the PCA technique.

Fig. 12. ROC OvsR curve for classification using the DAF technique.

classes. Although the VT class has achieved good sensitivity
results, the AUC obtained indicates that the model confuses the
LP class as being VT, resulting in high false positives.

The ROC curve from the classification of the dataset when
applying the PCA technique is shown in Fig. 11. The curve
indicates a better performance of the model by obtaining an AUC
of 0.99 for the classification of VT and LP type earthquakes,
although the prediction of the TOR class presents an AUC of
0.95. This is due to the presence of false positives during the
model prediction.

Finally, Fig. 12 allows identifying a high performance of the
classification model when the dataset was applied using the
DAF characterization technique, achieving an AUC of 0.99 in
all classes.

VII. DISCUSSION

The raw seismic signals correspond to the simplest represen-
tation that can be provided to the classifier model. However, this
option requires having a sufficiently large and balanced dataset
to train the model and obtain satisfactory results [18], [19], [20].
To overcome this problem, it is necessary to reduce the dimen-
sion in the data, to have a technique to discard the redundant
information present in the seismic records, and also to reduce the
dimensionality, thus favoring the learning and prediction during
the classification process, mainly when dealing with datasets

with a low number of data, and also with an unbalanced pro-
file of classes. Preprocessing techniques for seismic log data
are advantageous for obtaining higher classification perfor-
mance results. As is known, there are large amounts of seismic
log data acquired by in situ sensors; however, that requires label-
ing in order to fulfill their purpose of long-term monitoring and
interpretation of internal volcanic activity. The results showed
that conventional preprocessing techniques applied on volcanic
earthquake signals could be improved (LPC and PCA) [2], [16],
[24], [38], [39], [40], [41], [42], [43]. The representation of
data by means of resource transformation using methods that
are usually successfully applied to signals that are similar to
seismic signals, such as speech signals, are not always com-
patible [7], [15], as is the case with widely used algorithms,
such as MFCC, LFCC, LPC, and PCA, among others. Volcanic
earthquake signals rarely exceed 30 Hz, thus not following the
Mel scale, e.g., [7]; human speech signals are around 20 kHz.
Although many works in literature adopt the LPC technique
for the characterization of seismic signals, the results do not
show success in all cases [2], [40], [67]. For this particular
study, the LPC technique did not achieve separability between
VT and LP classes, which was reflected in the classification of
these signals, obtaining 0% accuracy, sensitivity and f1-score for
LP earthquakes, and an AUC of only 0.64. On the other hand,
the PCA technique is able to generate a new subset from the
orthogonal transformation of the data. However, it is possible to
identify that it is not always possible to obtain good results when
applied to volcanic earthquake signals because this method has
limitations when assuming linearity and Gaussian distribution in
the variables [17], [26]. In this study, this method did not allow
obtaining good results when the TOR class was characterized by
principal components, affecting its classification, obtaining 0%
in sensitivity, precision and f1-score, and an AUC of 0.95−0.07
for this class. Satisfactory results were achieved by applying
the autoencoder architecture. The representation of the signal
by learning the intrinsic patterns achieved in the nonlinear
transformation of the signal resources allowed a good separation
between the classes reaching 100% sensitivity, accuracy and
f1-score for all, and an AUC of 0.99 in the same way. Regarding
the MLP classifier model used, good results are obtained without
using a complex architecture that implies a high computational
cost and memory usage. For this case, the model required 26.9 s
and 3734.25 MiB, using the Google Colab environment, with a
Tesla T4 GPU unit with a capacity of 16 GB. Titos et al. [15]
used more complex architectures (LSTM) with higher computa-
tional cost with a training time of more than 27 000 s, obtaining
94% accuracy using the LPC characterization technique. The
Bayesian neural network [6], which is used in the PICOSS plat-
form [36] achieves a performance of 92%, in which the LFCC
technique is used to characterize the seismic signals. In the
same way, this performance is achieved using the LPC, LFCC,
PCA, and MFCC signal characterization techniques in [2], [4],
[6], [10], [15], [16], and [38]. This work demonstrates that the
use of a DAF is a good technique for characterizing volcanic
earthquake signals, thus assisting in the classification of seismic
records without the need to address complex architectures that
require higher computational cost and achieving satisfactory
results.
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VIII. CONCLUSION

The dimension reduction obtained with the LPC, PCA, and
DAF techniques allows an efficient compression of information
in each of the data, avoiding significant loss of the general
characteristics of the signals. However, the LPC technique does
not achieve a good definition between VT and LP classes. On
the other hand, the PCA technique achieves a good definition
between the VT and LP classes, however, the TOR class cannot
be well defined by this technique. Finally, the DAF technique
obtains well-defined representations for all classes: VT, LP, and
TOR.

The performance of the MLP classifier model improves when
a dataset is presented by applying characterization techniques,
even if an unbalanced distribution of earthquakes per class is
present. The preprocessing of the data using the LPC technique
allows the correct classification of the minority class, reaching
an AUC of 0.99. However, the classifier does not recognize
the other classes (VT and LP). The use of the PCA technique
in the characterization of the dataset allows the classification
between the VT and LP classes reaching an AUC of 0.99 for
both, although the TOR class is not recognized. Finally, the DAF
technique used in the dataset preprocessing allows the correct
classification for all classes.

Future work is expected to apply the signal characterization
technique to datasets of volcanic earthquakes belonging to new
eruptive scenarios, as well as to datasets collected from different
active volcanoes, in order to validate the performance of this
technique by exporting it to different conditions.
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