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Generation of Hypothetical Radiances for Missing
Green and Red Bands in Geostationary
Environment Monitoring Spectrometer

Han-Sol Ryu , Jeong-Eun Park , Jaehoon Jeong , and Sungwook Hong

Abstract—True-color imagery is essential for an intuitive com-
prehension of atmospheric data. However, the Geostationary En-
vironment Monitoring Spectrometer (GEMS) of the geostationary
Korea multipurpose satellite (GK) 2B lacks green and red bands,
which limits its ability to monitor atmospheric environments. To
mitigate this issue, we suggest an innovative method of generating
virtual GEMS green and red bands using conditional generative
adversarial networks with data observed in the blue-green-red
(RGB) bands of the Advanced Meteorological Imager sensor, a
payload of the GK-2A satellite. The paired datasets of the AMI
blue band and the AMI RGB bands were used to train and test
the data-to-data (D2D) translation model. Using the GEMS blue
band as input data, the D2D model generated GEMS hypotheti-
cal radiance data at the green and red bands. Our results show
that the D2D model generated hypothetical GEMS green and red
bands with outstanding performance. The averaged values of the
correlation coefficient, root-mean-square error, and bias between
the observed and D2D-generated GEMS blue band were 0.999,
3.450 W/cm2/cm/sr, and −1.858 W/cm2/cm/sr, respectively. This
research is expected to significantly contribute to the monitoring
and comprehension of atmospheric environments in Asia and po-
tentially improve the GEMS’s global ability to monitor air quality.
Additionally, the proposed method has the potential to enhance the
capabilities of other satellites with limited spectral bands.

Index Terms—Advanced meteorological imager (AMI), data-to
-data translation, geostationary environment monitoring spectro-
meter (GEMS), hypothetical blue-green-red (RGB), satellite
remote sensing.
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I. INTRODUCTION

A IR pollution is a global issue for the atmospheric environ-
ment owing to its detrimental effects on public health [1],

[2], [3]. Recently, Asia, which contains half of the global popu-
lation, has experienced high levels of air pollution. Atmospheric
pollution gases include aerosols, ozone (O3), nitrogen dioxide
(NO2), sulfur dioxide (SO2), carbon monoxide (CO), particulate
matter (PM2.5 and PM10), and formaldehyde (HCHO) [3].

Satellites are currently the only tools capable of quantitatively
monitoring global air quality, including pollutant quantities,
emissions, and transportation [4]. Since the late 1970s, aerosols
and numerous atmospheric pollution gases have been observed
and monitored using a variety of sensors mounted on satellites,
including the Global Ozone Monitoring Experiments 1 and 2
[5], [6], [7], the moderate resolution imaging spectroradiometer
[8], the ozone mapping profiler suite [9], the Ozone Monitoring
Instrument (OMI) [4], the scanning imaging absorption spec-
trometer for atmospheric cartography [10], the Solar Backscatter
Ultraviolet Radiometer [11], the Total Ozone Mapping Spec-
trometer (TOMS) [11], the tropospheric monitoring instrument
(TROPOMI) [12], and the visible infrared imaging radiometer
suite [13].

The geostationary Korea multipurpose satellite (GK) 2A
satellite carrying the Advanced Meteorological Imager (AMI)
was launched for meteorological purposes in Dec. 2018. In
Feb. 2020, the GK-2B satellite equipped with a Geostationary
Ocean Color Imager (GOCI) 2 and Geostationary Environment
Monitoring Spectrometer (GEMS) was launched for ocean color
and environmental monitoring purposes [14], [15].

GEMS provides Level 2 products such as aerosols, clouds,
O3, NO2, SO2, HCHO, surface reflectivity, and ultraviolet (UV)
index (UVI). Notably, the GEMS has 1000 bands between 300
and 500 nm with a full width at a half-maximum of 0.6 nm.
The spatial resolutions of the GEMS over Seoul, South Korea,
are 7 km × 8 km for gases and 3.5 km × 8 km for aerosols,
respectively [3], [16]. The GEMS aerosol products were esti-
mated using the OMI aerosol algorithm and an optical estimation
method [17], [18], [19], [20], and the Lambertian cloud model
forms the basis of the GEMS cloud products [21]. The GEMS O3

retrieval algorithm implements the TOMS version 9 algorithm
[22], [23]. The GEMS NO2 products were retrieved using a
differential optical absorption spectroscopy (DOAS) algorithm
that fits spectral optical NO2 depths in the 432–450 nm range
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[24], [25]. The GEMS SO2 products were retrieved using the
principal component analysis and DOAS techniques [26]. The
GEMS HCHO products were estimated using a nonlinear direct
fitting method in the 328.5–356.5 nm and 435–461 nm ranges
[15], [27], [28], [29]. The GEMS surface reflectivity products
include the geometry-dependent Lambertian equivalent reflec-
tivity and daily bidirectional reflectance distribution function
[30]. The GEMS UVI products were produced using radiative
transfer modeling [31].

Recent attention has been drawn to various research fields that
combine machine learning (ML) and deep learning (DL) with
large amounts of data. The evolution of graphics processing units
(GPU) has increased computing power and eliminated numer-
ous limitations in the application of artificial neural networks
(ANNs) [32]. The exponential expansion of digital data has
opened up significant opportunities and transformational poten-
tial in numerous scientific disciplines that rely on data-driven
research [33]. The ML and DL techniques have proven to be
effective in analyzing satellite data by a multiple researches [34].

Advanced DL techniques, including convolutional long short-
term memory [35], convolutional neural networks (CNNs) [36],
[37], generative adversarial networks (GANs), and conditional
GAN (CGAN) [38], [39], [40], [41], [42], [43], [44], have
been utilized in a number of satellite remote sensing researches
[45], [46], [47], [48]. These techniques have exhibited beneficial
results in overcoming the limitations of conventional approaches
relying on satellite observations.

Numerous researches have used ML and DL techniques in
conjunction with Korean geostationary satellites to examine the
atmospheric environment in Far East Asia. The PM2.5 and PM10

over South Korea utilizing a random forest (RF) ML-based
model were estimated using combined data with model-based
meteorological parameters, emission parameters, and satellite-
derived aerosol optical depth (AOD) [49]. The ANN method
was used to recalibrate the erroneous pixels in the GEMS data
[50]. The spatiotemporal properties of the hourly AOD over
Northeast Asia observed by the GOCI sensor were estimated
using a physical model, ML-based models (RF and support
vector regression methods), and a deep neural network model
[51].

True-color imagery captured by a satellite’s blue-green-red
(RGB) bands can provide both expert and general users with
diverse atmospheric and surface information due to their visu-
alization, intuitive understanding, and minimal loss of obser-
vational data [52]. Notably, GEMS has only one blue band in
the visible (VIS) wavelength range because of its narrow light
spectrum range [53].

AMI, GEMS, and GOCI-2 sensors sharing the satellite loca-
tions provide advantages and disadvantages regarding synergis-
tic effects. The AMI VIS and infrared (IR) bands and the GOCI-2
VIS bands aid in cloud detection. Notably, the relatively higher
spatial resolutions of VIS bands in both GOCI-2 (0.25 km) and
AMI (0.5–1 km) are advantageous for detecting small-scale
cloud contamination [54]. In contrast to AMI and GOCI-2,
GEMS lacks VIS bands beyond 500 nm and has a coarser spatial
resolution in VIS bands [14].

A few researches have utilized DL techniques to generate
synthetic RGB bands through image-to-image translation for
satellites, compensating for the absence of specific components
within the RGB bands. For instance, one research used CGAN
and CNN to create virtual green bands in an Advanced Baseline
Imager (ABI) by leveraging the Advanced Himawari Imager
(AHI) RGB bands [48]. Another research employed the CGAN
method to generate hypothetical RGB bands during daytime and
nighttime by using a combination of AMI RGB bands and IR
bands [55].

The precise detection of clouds plays a crucial role in con-
ducting accurate atmospheric environmental research and gen-
erating secondary products from environmental satellites like
GK-2B with GEMS. Currently, GEMS heavily relies on cloud
information derived from AMI cloud products, which introduces
a time lag. Therefore, this study was motivated to provide
real-time GEMS cloud information, enhance the accuracy of
GEMS secondary products, and reduce the dependence on AMI
data by using the observed GEMS blue band and virtual GEMS
green and red bands.

This research aims to present a DL technique utilizing data-
to-data (D2D) translation for generating virtual radiances of
GEMS green and red bands using the observed radiance at
GEMS blue band. The CGAN technique was adopted in this
research, using Pix2Pix software [56], to generate the GEMS
hypothetical green and red bands. Paired datasets of AMI blue
band and AMI RGB bands were utilized to train and test the
D2D model, based on the hypothesis that the D2D model trained
with AMI data could be applied to the GEMS data, given the
identical central wavelength of 470 nm. The D2D-generated
GEMS green and red bands could enhance GEMS applications
in environmental and atmospheric research and provide valuable
support for operational forecasters and analysts.

II. DATA AND RESEARCH AREA

This research used the original Level 1 datasets observed from
the GEMS blue band and AMI RGB bands. The data from AMI
and GEMS were obtained through the National Meteorological
Satellite Center of the Korea Meteorological Administration and
the National Environmental Satellite Center of Korea’s Ministry
of Environment.

The AMI and GEMS sensors are located at a longitude of
128.2 °E and 128.0° above the earth’s equator, respectively, with
distinct spectral response functions (SRF), bandwidths, spa-
tiotemporal resolutions, and scanning modes. The blue (470 nm)
band of GEMS has a spatial resolution of 3.5 km×8 km, while
the AMI has spatial resolutions of 1 km×1 km in the blue
(470 nm) and green (510 nm) bands, and 0.5 km×0.5 km in the
red (640 nm) band. The GEMS observes the coverage within
the latitudes −6.128°S to 51.187°N and longitudes 49.174°E to
133.306°E, covering most of Asia. For Far-East Asia, the AMI
observes the area between latitudes 11.304°N and 61.935°N
and longitudes 76.801°E and 175.199°E. The spectral band
characteristics of the AMI and GEMS are summarized in Table I.
In this study, the GEMS data were collocated and adjusted with
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TABLE I
SPECTRAL BAND CHARACTERISTICS OF THE AMI AND GEMS

Fig. 1. Study area including parts of Japan, China, and the Korean peninsula.

an effective spatial resolution of 2 km, identical to the AMI data,
using the nearest interpolation method.

Fig. 1 shows the study area defined as the far-east region
between 17.15°N to 44°N latitudes and 100°E to 131.7°E lon-
gitudes, which includes parts of Japan, China, and the Korean
Peninsula.

In this research, the D2D model was constructed using the
AMI blue band radiance data in units of “rad” (=W/cm2/cm/sr)
as input and the AMI RGB bands radiance data as output. The
GEMS blue band radiance data, which has a central wavelength
of 470 nm identical to that of the AMI blue band, was applied
to the constructed D2D model.

Fig. 2 shows the SRFs of the AMI RGB bands (dotted lines)
and the GEMS blue band (solid line). Notably, the two sensors
had identical central wavelengths of the blue band (470 nm) with
different spectral resolution (see Table I).

The D2D model must have the same two-dimensional size
arrangement [56]. Therefore, to ensure spatial consistency be-
tween the GEMS and AMI data, the original GEMS data,
which had a different spatial resolution than the AMI data, was
preprocessed using a nearest-neighbor interpolation technique.

Fig. 3 shows the scatterplot of the AMI and GEMS blue band
(470 nm) with correlation coefficient (CC) = 0.957, root-mean-
square error (RMSE) = 31.685 rad, and bias = 11.174 rad on

Fig. 2. SRFs of the GEMS blue band and the AMI RGB bands.

Fig. 3. Scatterplot between the AMI blue band at 03:40 UTC and the GEMS
blue band at 03:45 UTC on Jan. 1, 2021. The term "rad" indicates radiance,
measured in in W/cm2/cm/sr units.

Jan. 1, 2021. In this case, the AMI was observed at 03:40 UTC,
while the GEMS was performed at 03:45 UTC with a 5-min time
difference. Particularly, the AMI has a wide bandwidth of 75 nm
for the blue band, while the GEMS has a narrow bandwidth of
0.6 nm at maximum for the blue band. This difference can lead
to a variation in the radiance ranges observed by the two sensors.

III. METHODS

A. Pre- and Postprocessing of Datasets for D2D Translation

The D2D model employed in this research comprises both
preprocessing and postprocessing steps. In the preprocessing
step, the paired original input datasets were transformed to
ensure compatibility with the Pix2Pix software [57]. Meanwhile,
in the postprocessing step, the range of the virtual output datasets
were adjusted to conform to that of the original datasets.

In this research, pairs of the AMI input datasets, represented
as (XO, YO), were used to train and test the D2D model

XO = xi ∈ {AMIO, Blue} (1)

YO = yi ∈ {AMIO, RGB} (2)
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where the radiance data observed in the AMI is denoted as
AMIO. Subscripts Blue and RGB indicate the radiance data of
the AMI blue band and RGB bands, respectively.

To preprocess the datasets, the radiance values of all the RGB
bands of the AMI were converted to normalized numerical val-
ues ranging from 0 to 1. The minimum and maximum radiance
values of each band were used to normalize the data, and the
equation is expressed as follows:

Rn =
RO −Rmin

Rmax −Rmin
(3)

where the notation R denotes the radiance data. The subscripts
n, O, max, and min represent normalized data, observed data
(XO or YO), and each band’s maximum and minimum radiance
values, respectively.

After training the D2D model, the virtual normalized AMI
RGB data (Y ′

V ) were generated as output datasets with a numer-
ical array form of size (1850 × 1900 × 3) and ranging from 0
to 1

YV = Ymin + Y ′
V × (Ymax − Ymin) . (4)

Finally, the virtual normalized AMI RGB data (Y ′
V ) were

denormalized into the D2D-generated output dataset ( YV =
YV,RGB ) in the range of the original datasets as follows: where
Ymax and Ymin denote the corresponding band’s maximum and
minimum radiance values, respectively.

B. D2D Model Using Pix2Pix Software

For the D2D translation conducted in this research, we em-
ployed the Pix2Pix software [57] along with the paired and
normalized input datasets. The Pix2Pix software is equipped
with the CGAN method, which is derived from the GANs. Like
the GANs, the CGAN also comprises two adversarial models,
i.e., the generator (G) and the discriminator (D). The generator
is a mathematical function that models the distribution of the
input numerical array (Y ′

O) and generates a corresponding virtual
output numerical array (Y ′

V ). On the other hand, the discrimi-
nator is a function that scales and evaluates the probability of
the synthesized output data, obtained from the input numerical
arrays, belonging to the same distribution as the input numerical
array [56], [58].

The Pix2Pix employed a loss function (LD2D) and a combi-
nation of adversarial loss (La) and reconstruction loss (L1), as
demonstrated below [56]

LD2D = min
G

max
D

{La} + λ · L1 (5)

where min
G

max
D

{} indicates the minimum-maximum function

betweenG andD. λ is a factor that explains the balance between
adversarial loss (La) and reconstruction loss (L1). This research
assigned a value of 1 to λ.

The adversarial loss (La) is expressed as follows [56], [58],
[59], [60]:

La = E [log (1−D (Y ′
O, Y

′
V ))] + E [log (D (Y ′

O, Y
′
V ))] (6)

where Y ′
O denote the normalized output data. Y ′

V is the vir-
tual output normalized data, expressed as G(X ′

O,Y ′
O). The log

Fig. 4. Example of a paired dataset at the blue band and RGB bands of the
AMI on Jan. 1, 2020, 03:40 UTC.

TABLE II
PAIRS OF INPUT AND OUTPUT DATA FOR MODEL CONSTRUCTION AND

APPLICATION

functions in the cross-entropies (E) were introduced to solve
the gradient insufficiency problem during the early stage of
model training [60]. The first cross-entropy loss function is
utilized by the discriminator model to maximize the probability
of accurately distinguishing between the observed and generated
output data, while the generator model minimizes the second
cross-entropy loss function.

The reconstruction loss (L1) plays a role in minimizing the
distance between the hypothetical output dataset (Y ′

V ) and the
observed output dataset (Y ′

O) to reduce the blurry effects [61],
which was calculated as follows [57]:

L1 (G) = E (‖Y ′
O − Y ′

V ‖1) . (7)

This research designated the AMI blue band data asXO , while
the combinations of AMI blue, green, and red bands data were
utilized as YO. It is worth noting that we assumed the GEMS
blue band to be similar to the AMI blue band, which led to the
generation of virtual GEMS RGB bands using the D2D model.

Fig. 4 illustrates the concept of our D2D model development
using the AMI blue band with dimensions of (1850 × 1900 ×
1) as input data to produce virtual output data (RGB bands) with
dimensions of (1850 × 1900 × 3) for training the D2D model.
Table II summarizes the band pairs used for adversarial learning
in the D2D model.

C. D2D Model Training and Test

This research utilized the preprocessed datasets of XO and
YO. XO represents the AMI blue band radiance data, which has
a size of (1850 × 1900 × 1), while YO is a (1850 × 1900 × 3)
array created by stacking the AMI RGB bands radiance data.

During the training process, our D2D model was designed to
simulate the generated virtual AMI RGB radiance data through
the D2D translation and differentiate it from the observed
AMI RGB radiance data. The D2D model experienced iterative
training, and the iteration step was chosen to achieve the best
possible values for CC and RMSE between the observed and
D2D-generated AMI RGB radiance data. The constructed D2D
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Fig. 5. Structure of the D2D model with generator (G) and discriminator (D).

model was tested using other input AMI blue band datasets not
used during the model training processes. Remarkably, the D2D
model exhibited an impressive ability to convert the AMI blue
band data into quantitative AMI RGB data.

This research utilized the AMI datasets consisting of 703 pairs
of data captured at 03:40 and 04:40 UTC from Jan. 01, 2020,
to Dec. 31, 2020, for training the D2D model. Additionally, 72
pairs of AMI data were used for testing the D2D model, which
were captured at 03:40 and 04:40 UTC on the 1st, 11th, and 21st
day of every month between Jan. and Dec. 2021.

D. Virtual GEMS RGB Data Generation Using D2D Model

The constructed D2D model generates the virtual GEMS
RGB bands radiance data using the observed GEMS blue band
radiance data as the input dataset in the following manner:

YV = GEMSV,RGB = D2D model (GEMSO,Blue) (8)

where GEMSV,RGB are the D2D-generated virtual GEMS RGB
bands radiance data and GEMSO,Blue are the observed GEMS
blue band radiance data.

Fig. 5 illustrates the D2D structure utilized in this research.
The green- and yellow-colored arrows indicate the different

TABLE III
D2D MODEL PERFORMANCE CRITERIA

operational layer types of each layer, whereas the purple boxes
indicate feature maps and the grey boxes represent copied feature
maps.

To apply the model, 71 pairs of GEMS blue band data were
utilized at 03:45 and 04:45 UTC on the 1st, 11th, and 21st day
of every month between Jan. and Dec. 2021. Notably, due to
the missing GEMS data on May 11, 2021, at 06:45 UTC, 71
datasets of the GEMS were used for applying the constructed
D2D model.

Our D2D model was implemented on a system consisting
of an Intel Xeon CPU and two NVIDIA Titan-RTX GPUs,
utilizing TensorFlow with Python 3.7.4 on a Linux Ubuntu
18.04.5 operating system with CUDA 10.0 and cuDNN 8.0.5.

E. Statistical Comparison

This research performed a statistical analysis between the
D2D-generated results and the observed AMI RGB bands, using
five indicators. Among them, CC, RMSE, and bias values were
expressed as [62]

CC =

∑n
i=1

(
YV,i − YV

) ∑n
i=1

(
YO,i − YO

)
√ ∑n

i=1

(
YV,i − YV

)2√ ∑n
i=1

(
YO,i − YO

)2
(9)

RMSE =

√√√√
n∑

i=1

( YV,i − YO,i )
2/n (10)

Bias =
n∑

i = 1

( YV,i − YO,i ) /n (11)

where n denotes the total number of pixels in the AMI and
GEMS data, i represents the index ranging from 1 to n, YO,i is
the ith pixel radiance data in the observed AMI data, and YV,i

means the virtual radiance of the ith pixel in the D2D-generated
AMI and GEMS data. Moreover, YO and YV correspond to the
averaged radiance values of the observed and D2D-generated
data. Two additional indicators, relative RMSE (rRMSE) and
relative mean bias error (rMBE) values, can show the D2D model
performance criteria [62], which are classified as excellent,
good, average, and poor. Table III summarizes the D2D model
performance criteria

rRMSE = RMSE/ YO (12)

rMBE = Bias/ YO. (13)
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Fig. 6. CC and RMSE changes during model training iterations at (a) blue,
(b) green, and (c) red bands between the observed and D2D-generated AMI on
Jan. 1, 2021, at 03:40 UTC.

IV. RESULTS

A. Advanced Meteorological Imager

Fig. 6 displays the changes in CC and RMSE values of the
observed and D2D-generated AMI RGB band radiance data
during the model training iterations. This research adopted the
optimum model corresponding to iteration 110 152 as the D2D
model. At 03:40 UTC on Jan. 1, 2021, the adopted D2D model
demonstrated the CC and RMSE with 1 and 0.977 rad for the
blue band; 0.999 and 2.360 rad for the green band; 0.996 and
7.087 rad for the red band, respectively.

Fig. 7 depicts the variations in CC, RMSE, bias, rRMSE,
and rMBE of test cases for the RGB bands of the observed
and D2D-generated AMI. The quantitative statistical results in
the blue and green bands show better performance than those
in the red band. Table IV presents a summary of the accuracy
of the developed D2D model, indicating outstanding values of
CC, RMSE, bias, rRMSE, and rMBE between the observed and
D2D-generated AMI RGB bands. The rMBE and rRMSE, which

Fig. 7. Changes in CC, RMSE, bias, rRMSE, and rMBE for test cases at
(a) blue, (b) green, and (c) red bands between the observed and D2D-generated
AMI.

TABLE IV
AVERAGED STATISTICAL RESULTS FOR TEST CASES COMPARING THE

OBSERVED AND D2D-GENERATED AMI RGB BANDS

are the model performance assessment criteria, showed excellent
performance except for the red band’s rRMSE, which showed
good performance.

Fig. 8(a) and (b) shows the true-color RGB images for one
of the validation datasets of the AMI data with the observed
and D2D-generated AMI on Feb. 21, 2021, 03:40 UTC. The
D2D-generated AMI RGB bands exhibited qualitative accuracy.
Fig. 8(c), (d), and (e) shows the spatial differences between the
observed and D2D-generated AMI RGB bands. The differences
of the blue and green bands radiance data were smaller than
those in the red band due to the different spectral responses in
each band. The D2D-generated AMI red band underestimated
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Fig. 8. (a) Observed and (b) D2D-generated AMI RGB images; spatial differences between the observed and D2D-generated AMI at the (c) blue, (d) green, and
(e) red bands in radiance ranging from −10 to 10; scatterplots between the observed and D2D-generated AMI at the (f) blue, (g) green, and (h) red bands. The time
was 03:40 UTC on Feb. 21, 2021.

the radiance values in a part of inland China, whereas it partially
overestimated the radiance values in the clouds. Fig. 8(f), (g),
and (h) displays the scatterplots between the observed and
D2D-generated AMI RGB bands with CC = 1.000, RMSE =
0.822 rad, bias = −0.555 rad, rRMSE = 0.716%, and rMBE =
−0.484% for the blue band; CC = 0.999, RMSE = 2.523 rad,
bias = −0.120 rad, rRMSE = 2.534%, and rMBE = −0.120%
for the green band; and CC = 0.992, RMSE = 7.750 rad, bias
= −1.408 rad, rRMSE = 10.063%, and rMBE = −1.828% for
the red band.

The obtained results suggest that the proposed D2D model
exhibits remarkable accuracy. Notably, the blue and green bands

exhibit similar accuracy, while the red band shows relatively
lower accuracy due to its wider spectral bandwidth compared to
the other visible bands, as well as the spectral difference between
blue and red bands.

B. Geostationary Environment Monitoring Spectrometer

Fig. 9 shows the changes in statistical results for application
cases at the blue band between the observed and D2D-generated
GEMS. Table V indicates the averaged values with CC = 0.999,
RMSE = 3.450 rad, bias =−1.858 rad, rRMSE = 1.559%, and
rMBE = 0.847%.
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Fig. 9. Changes in CC, RMSE, bias, rRMSE, and rMBE for application cases
at the blue band between the observed and D2D-generated GEMS.

TABLE V
AVERAGED STATISTICAL RESULTS FOR APPLICATION CASES COMPARING THE

OBSERVED AND D2D-GENERATED GEMS BLUE BAND

TABLE VI
AVERAGED STATISTICAL RESULTS FOR APPLICATION CASES COMPARING THE

OBSERVED AMI AND THE D2D-GENERATED GEMS RGB BANDS

Fig. 10(a) shows the scatterplot between the observed and
D2D-generated GEMS blue band on Feb. 21, 2021, at 03:45
UTC. In terms of radiance, the CC, RMSE, bias, rRMSE, and
rMBE comparing the two data were 1.000, 0.794 rad, −0.560
rad, 0.651%, and −0.459%, respectively. These results appear
to be similar to those of the AMI blue band comparison. Further-
more, Fig. 10(b) shows good agreement in the spatial difference
between the observed and D2D-generated GEMS blue band.
However, the D2D-generated GEMS blue band showed a slight
underestimation of high radiance values, which was observed in
the cloud area.

Fig. 11 shows the changes in quantitative statistical results
for application cases at the RGB bands between the observed
AMI and the D2D-generated GEMS. Since there was a 5-min
difference in the observation time between the AMI and GEMS,
the accuracy was relatively low compared to the AMI test cases.
Similar to the AMI test results, the accuracy of the blue and
green bands in the GEMS application results were relatively
better than that of the red band. Table VI indicates the averaged
statistical values comparing the observed AMI and the D2D-
generated GEMS RGB bands. Regarding the radiance range,
the D2D-generated GEMS exhibit the averaged uncertainties of
approximately 6.624%, 7.142%, and 7.697% for the blue, green,
and red bands, respectively, despite the 5-min observation time
difference with the AMI.

Fig. 12(a) shows the observed AMI true-color RGB image
on Feb. 21, 2021, at 03:40 UTC, and Fig. 12(b) shows the
D2D-generated GEMS true-color RGB images on Feb. 21, 2021,
at 03:45 UTC using the D2D-generated GEMS RGB bands.

Fig. 10. (a) Scatterplot and (b) spatial difference between the observed and
D2D-generated GEMS blue band. The time was Feb. 21, 2021, at 03:45 UTC.

Notably, there was a 5-min difference in the observation time
between the AMI and GEMS. The D2D-generated GEMS RGB
image was qualitatively accurate and was similar to the observed
AMI RGB image. Fig. 12(c), (d), and (e) shows the spatial
differences between the AMI and GEMS in the RGB bands.
There are relatively large variances in the cloudy pixels owing
to the 5-min time difference between the AMI and GEMS
observations. Nevertheless, these outcomes exhibit a superior
level of precision and minimal error in the D2D-generated
GEMS RGB bands as compared to the observed AMI RGB
band. Fig. 12(f), (g), and (h) shows the scatterplots between the
observed AMI and the D2D-generated GEMS at the RGB bands.
The CC, RMSE, and bias values between the observed AMI and
the D2D-generated GEMS data were 0.920, 27.803 rad, and
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Fig. 11. Changes in CC, RMSE, and bias for application cases at the (a) blue,
(b) green, and (c) red bands between the observed AMI and the D2D-generated
GEMS.

6.776 rad in the blue band; 0.918, 28.065 rad, and 6.908 rad in
the green band; and 0.907, 28.028 rad, and 4.671 rad in the red
band, respectively.

Despite the 5-min time difference, the D2D-generated GEMS
RGB band data matched the observed AMI RGB band data with
consistent accuracy (see Fig. 3). The D2D-generated GEMS
red band has a similar accuracy to the D2D-generated GEMS
blue and green bands compared to the results of the D2D-
generated AMI data. The D2D-generated GEMS RGB bands
overestimated the cloud pixels because of the rapid movement of
clouds within five minutes of the two sensors’ observation time
difference. In contrast, the D2D-generated GEMS demonstrated
comparable or reduced radiance values at cloud-free pixels and
followed a similar pattern to the D2D-generated AMI RGB
bands.

V. DISCUSSION

This research presented a D2D-driven approach to simulate
the virtual green and red bands of the GEMS with a blue band,

based on the assumption that the DL model constructed using the
AMI observed RGB bands can produce the radiances of virtual
GEMS blue, green, and red bands. This research represents a
significant contribution to the field of satellite remote sensing, as
it enables the simulation of physically meaningful information
for nonexistent observations of a satellite using deep-learning
techniques, in contrast to previous researches dealing with
image-to-image translation.

In previous research [48], the generation of virtual green
bands in an ABI sensor was investigated using an analogous
AHI sensor with similar SRFs to the ABI sensor. However, the
research encountered errors and limitations due to different solar
effects caused by the different locations of the two sensors. In
another research [55], hypothetical nighttime AMI RGB bands
were developed using the pairs of VIS and IR bands of the same
sensor and location. Nevertheless, this approach had limitations
in assuming consistent IR bands during day and night, making
it unsuitable for regions with high daily variation in surface
temperature, such as desert areas. In contrast to the previous
research, this research used two different sensors at the exact
location.

This research has a limitation in that it relies on the highly
correlated bands of the GEMS and the adjacent AMI, which
possess similar VIS bands.

Another limitation of this research is caused by the differences
between the AMI and GEMS. First, the approximately five-
minute observation time difference led to different solar-sensor
geometries between the AMI and GEMS. In addition, the two
sensors captured different cloud locations and shapes, as shown
in Fig. 12(c), (d), and (e). As a result, the D2D-generated
GEMS RGB bands caused the overestimation of clouds and
underestimation at the edges of clouds. Second, the GEMS and
AMI blue bands have the same central wavelength of 470 nm but
different bandwidths. Hence, the two sensors observed different
amounts of energy reflected from Earth, as shown in Fig. 3. The
difference in the SRFs between the AMI and GEMS blue bands
resulted in the overestimation of cloud pixels in the observed
GEMS blue band (see Fig. 3).

The degraded results of the D2D models may be related to var-
ious noise effects and spectral variabilities between the GEMS
and AMI, resulting in different land, sea, and cloud responses,
as presented in Figs. 8 and 12. For instance, the D2D-generated
GEMS blue and green bands overestimate surface reflectance in
land, sea, and cloud in Fig. 12, while the D2D-generated AMI
blue and green bands underestimate land and stratiform cloud
in Fig. 8. It is worth noting that only radiances were used as
input data in this research. Thus, incorporating additional phys-
ical variables such as surface albedo and clear-sky reflectance
based on rigorous radiative transfer calculation for training
the D2D model in future work could improve the over- and
underestimation produced in the proposed D2D model and yield
more accurate and reliable results.

This study encountered another limitation by utilizing the
AMI and GEMS data at a specific time, neglecting the tem-
poral variation of solar effects. Future research to enhance
the applicability of the developed D2D model throughout the
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Fig. 12. (a) Observed AMI RGB (03:40 UTC) and (b) D2D-generated GEMS RGB images (03:45 UTC); Spatial differences between the observed AMI and
the D2D-generated GEMS at the (c) blue, (d) green, and (e) red bands in radiance from −30 to 30, scatterplots between the observed AMI and the D2D-generated
GEMS at the (f) blue, (g) green, and (h) red bands. The time difference between the two sensors was 5 min. The date was Feb. 21, 2021.

entire daytime will include a data processing procedure that
mitigates the influence of solar effects. One potential approach
involves normalizing the AMI and GEMS data using the cosine
of the solar zenith angle to mitigate the dependency on temporal
variations in radiance levels.

An additional limitation of this research was the computa-
tional demand required to generate high-resolution full-disk data
using the DL model, which was memory-intensive on GPUs
despite rapid advancements in hardware performance.

In this study, the absence of a normalization process could
converge to local optima during the D2D model training process
for simulating AMI and GEMS data due to the differences
and discrepancies in the spectral range of the AMI and GEMS
sensors. A denormalization process in the D2D model enabled
the restoration of the virtual results to the radiance ranges of
AMI and GEMS observations. Additionally, a GAN-based DL
approach, among other DL methods, was fit to generate virtual
GEMS green and red bands. The quantitative validation of the
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D2D model was infeasible without the availability of overlap-
ping observation data between AMI and GEMS. Nevertheless,
the use of ResNet instead of the UNet in the generator, different
normalization and denormalization, and various types of GANs
may impact the results of this study.

Despite these limitations, this research still offers the valuable
capability of generating nonexistent RGB bands for an existing
GEMS. It produced virtual RGB band observation data, which
was impossible using the current GEMS and traditional ap-
proaches to satellite remote sensing. The presented D2D method
can support global atmospheric environment monitoring and
estimate the movement and distribution of AOD and dust in
Asia. As a potential future research to enhance the proposed D2D
model for virtual GEMS RGB generation, advanced DL models
will be explored, including a fusion of DL methods [63], diverse
fusion and training strategies using a multimodal DL framework
[64], and integration of the u-net in u-net architecture [65] within
the D2D model.

VI. SUMMARY AND CONCLUSIONS

Geostationary satellites equipped with UV and VIS sensors
have been instrumental in monitoring the global atmospheric en-
vironment and tracing the transportation of atmospheric chem-
ical compositions. The GEMS, onboard the GK-2B satellite,
is the first next-generation atmospheric environmental sensor
on GEO satellites that monitors the atmospheric environment
spatiotemporally, including aerosols, clouds, O3, NO2, SO2,
HCHO, surface reflectivity, and UVI information. However,
GEMS lacks green and red bands in its VIS spectrum, which
are helpful in understanding and visualizing diverse surface and
atmospheric information for both specialists and nonexperts.

This research presents a novel method for generating virtual
GEMS green and red bands radiance data using DL techniques
with paired datasets of the AMI RGB bands. The proposed
DL model was trained using pairs of the AMI blue band and
AMI RGB bands through an adversarial DL method with the
Pix2Pix program implemented on Linux-based operating sys-
tems, utilizing two NVIDIA Titan-RTX GPUs and an Intel Xeon
CPU. The radiance data of the D2D-generated AMI green and
red bands exhibited a remarkable statistical agreement with the
observed AMI green and red bands radiance data. Based on the
validation results, the D2D model was employed to generate
the nonexistent GEMS green and red bands radiance data. The
observed AMI RGB bands and the D2D-generated GEMS RGB
bands were compared and showed excellent agreement, with
high CC, low RMSE, and bias values.

As future research, the methodology presented in this research
can be extended to generate missing VIS bands in polar orbit
satellites for monitoring atmospheric environments, such as
the TROPOMI sensor aboard the Sentinel-5 Precursor satellite.
The TROPOMI sensor covers UV and VIS (270–495 nm),
near-infrared (710–775 nm), and short-wave infrared (2305–
2385 nm) bands. Moreover, the D2D methodology may be
relevant to other geostationary atmospheric environment satel-
lites lacking VIS bands. For instance, NASA’s Tropospheric
Emissions Monitoring of Pollution (TEMPO), launched on Apr.

7, 2023, has UV and VIS spectrometers. Similarly, the ESA’s
Sentinel-4 satellite, equipped with an ultraviolet-visible near-
infrared imaging spectrometer (UVN) covering the UV (305–
400 nm), VIS (400–500 nm), and near-infrared (750–775 nm)
bands, will be launched in 2024.

The D2D method detailed in this research can potentially pro-
duce in situ virtual RGB images of TROPOMI, OMI, TEMPO,
and UVN instruments for monitoring atmospheric environ-
ments. Such capability could enhance our understanding and
management of air quality, climate change, and other environ-
mental issues.
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