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DAFT: Differential Feature Extraction Network
Based on Adaptive Frequency Transformer for

Remote Sensing Change Detection
Zhaojin Fu, Jinjiang Li , Zheng Chen , Lu Ren , and Zhen Hua

Abstract—Remote sensing change detection is an important re-
search direction in the field of remote sensing. It is mainly used
to focus on the changing information on the ground over a period
of time, and to identify the interested change targets from it. The
rapid changes in ground information due to social development
undoubtedly increase the importance of change detection. Cur-
rently, change detection methods still have some shortcomings
in dealing with complex targets, environmental noise, and other
aspects. Therefore, we propose a differential feature extraction
network based on adaptive frequency transformer for remote
sensing change detection (DAFT). Adaptive frequency transformer
(AFFormer) is capable of separating change targets and envi-
ronments from a frequency perspective and capturing long-range
dependencies between feature information through self-attention.
Therefore, in DAFT, we use AFFormer as the backbone network to
extract feature information from bitemporal images, enhancing our
focus on change targets while obtaining richer and more detailed
information. To our knowledge, this is the first time that AFFormer
has been applied in the field of CD. To address the issues of missing
location information of change targets and insufficient local feature
correlation, DAFT proposes a differential features enhancement
module in the feature reconstruction stage of change targets. In
addition, DAFT uses DO-Conv to enhance pixel correlation calcu-
lation in convolutional operations, allowing the network to focus
on richer information. By outputting results at different scales
during the feature reconstruction stage, DAFT computes multiple
losses that are summed up to guide the training process for better
performance. The experimental results prove that DAFT achieves
high versus mainstream networks. On LEVIR-CD the F1 is 91.814
and the IoU is 84.866; on WHU-CD the F1 is 92.085 and the IoU is
85.330; on GZ-CD the F1 is 86.065 and the IoU is 74.512.

Index Terms—Attention mechanism, change detection (CD),
remote sensing, transformer.
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I. INTRODUCTION

CHANGE detection (CD) tasks aim to identify change
information in bitemporal images and annotate the change

information in the form of dichotomous classification for sub-
sequent analysis by researchers. CD tasks have become an
important topic in remote sensing and have received a lot of
attention from researchers in recent years. With the use of
specialized remote sensing satellites [1], [2], [3], the captured
image information in the remote sensing field has become rich
and diverse. Depending on the application scenario, the CD
task can be roughly divided into important subbranches such as
farmland change detection [4], [5], forest change detection [6],
postdisaster building damage assessment [7], and urban change
detection [8], [9].

Currently, CD methods can be divided into two categories:
1) deep learning methods [10], [11], [12]; and 2) traditional
methods [13], [14], [15]. Traditional methods are mainly de-
veloped from image processing algorithms [16], [17], [18] The
processing process of traditional methods is often affected by
noise factors such as lighting, climate, and clouds in the images.
With the continuous pursuit of image processing accuracy in
the field of remote sensing research, CD methods dominated by
traditional methods have gradually lost their leading position,
but still serve as important processing ideas and preprocessing
processes to help other methods.

Over the past forty years, traditional algorithms have made
important contributions to the data processing in the field of
remote sensing CD. Since bitemporal images may come from
different sensors and geographic locations, image registration
has become a difficult problem in CD data processing. Feature
detection algorithms such as SIFT [19] and Harris-Laplace [20]
and feature matching algorithms provide a theoretical basis for
solving the problem of image registration.

In recent years, deep learning methods receive a lot of atten-
tion from researchers and achieve excellent results [21], [22],
[23], [24], [25], [26] in the field of remote sensing. Convolutional
neural networks (CNN) possess strong recognition ability for
feature information and can effectively extract features within
their receptive field. However, due to the limitation of the recep-
tive field of the convolutional kernel, CNN can only establish
associations between local feature information and cannot es-
tablish associations between long-distance feature information.
In the task of remote sensing CD, it not only involves small
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Fig. 1. Change map display. Top left side shows the high-level semantic
information obtained by adaptive frequency transformer, and the bottom side
shows the high-level semantic information obtained by ResNet34. Right side
from top to bottom shows the results obtained on LEVIR-CD, WHU-CD, and
GZ-CD, respectively.

targets but also includes targets with large scales. Moreover,
some targets in the samples often have features such as high
density and large scope. In such sample environments, it is
particularly important to establish the dependency relationships
between long-distance features.

As Transformer [27] achieves excellent results in the segmen-
tation field, it is also being applied to the remote sensing CD field.
With self-attention focusing on global feature information, the
Transformer architecture can better weigh the information of a
single pixel in the global context to the pixel itself. However,
since self-attention involves matrix multiplication of pixels, it
has a high computational complexity. Therefore, reducing the
computational complexity becomes the goal of efforts to apply
Transformer architecture to the remote sensing CD field. In
addition, some methods aim to improve the description of edge
features and feature continuity by enhancing global feature at-
tention [27], [28], [29] and expanding network views [30], [31].

However, through extensive experiments, we find that cur-
rent methods still have shortcomings in edge features and fea-
ture continuity. In addition, the feature extraction of backbone
networks for bitemporal images is particularly important as
it helps obtain feature maps with richer detail information
and more complete representation of the change targets in the
prediction map.

The top left position of Fig. 1 shows the feature map of
high-level semantic information obtained by DAFT, while the
bottom left position shows the feature map of high-level seman-
tic information obtained byResNet34. Compared toResNet34,
the feature information captured by DAFT is more concentrated,
with less noise in the environment and the strength of nonfeature
information is significantly lower than that of feature informa-
tion. Additionally, FC-EF [32] adopts the U-Net architecture,
in which the bitemporal images inputted are concatenated and
learned by the encoder to identify the changed targets. The
decoder then reconstructs the changed targets. However, as
FC-EF adopts a pure convolutional structure, it can only corre-
late local features and cannot capture long-range dependencies.
MSCANet [33] adopts the CNN-Transformer architecture and
uses ResNet as the backbone network to extract the features
of bitemporal images. Although the method performs well,
ResNet [34] has limited feature-capturing ability and thus, fails
to accurately describe the edge information in some samples.

To obtain richer semantic information, Change Former [35]
adopts Transformer as the backbone network. The Difference
Module proposed by Change Former extracts the difference
features from bitemporal images obtained by each layer of the
backbone network and continuously integrates them. However,
we found that Change Former has a large number of parameters
and computational cost, and there are also shortcomings in target
continuity, among other aspects, in experiments.

In terms of data, the use of platforms such as Global Human
Settlement Layer, World Settlement Footprint evolution and
the improvement of image acquisition techniques have resulted
in CD data with higher accuracy, and at a larger scale. As a
result, objects with complex colours and shapes are more clearly
described, which in part makes the CD task more difficult.

Considering the current challenges in data processing in the
field of CD, and the shortcomings of current CD methods in
target edge feature processing and feature continuity, we propose
DAFT. Fig. 2 shows the overall architecture of DAFT. DAFT
uses AFFormer [36] as the backbone network to extract richer
feature information from bitemporal images. The use of AF-
Former solves the shortcomings of ResNet as the backbone net-
work in feature extraction. To solve the problem of insufficient
attention to edge feature information in the process of change tar-
get reconstruction, DAFT proposes DFEM, which first enhances
the attention to local feature information by expanding the local
field of view, thereby constructing richer local semantic infor-
mation, and then uses Coordinate Attention (CoordAttention) to
filter features and enhance attention to position information. In
order to further strengthen the calculation of pixel correlations,
DAFT replaces all traditional convolutions with DO-Conv [37]
convolutions. To better supervise the network’s reconstruction
of change targets, DAFT calculates the loss for each layer of the
accompanying output during the feature reconstruction phase.

In this article, our contributions are as follows.
1) The DFEM is proposed to effectively achieve the en-

hancement of bitemporal images feature information and
extraction of difference features. DAFT uses AFFormer
as a backbone network in the field of remote sensing CD.
By learning the frequency information of different feature
categories, AFFormer strengthens the differential features
in bitemporal images.

2) The computation of pixel correlation by DAFT is en-
hanced using DO-Conv. A deep supervision mechanism is
used to supervise the change target reconstruction process
and enhance the network training process.

3) The results of the experiments on the LEVIR-CD, WHU-
CD, and GZ-CD datasets show that the results achieved by
DAFT in terms of edge feature processing and feature con-
tinuity are better than the current state-of-the-art methods
in the field of CD.

II. RELATED WORK

This section provides an overview of historical work on deep
learning in the direction of remote sensing change detection
and concludes with an introduction to the adaptive frequency
transformer.
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Fig. 2. Architecture diagram of DAFT: (a) Shows the structure in each layer of the backbone network, (b) shows the structure diagram for PL and (c) shows the
structure diagram for pixel descriptor (PD).

A. Historical Work of Deep Learning in Remote Sensing
Change Detection

In recent years, numerous excellent deep learning meth-
ods [38], [39], [40], [41], [42] have emerged in the field of CD.
The “encoder–decoder” structure, named after the successful
U-Net [43] model in the segmentation field, has become an
important architecture in the CD field as well.

1) CNN-Based Method: FC-Siam-Conc [32] uses two iden-
tical U-Net encoders to perform feature extraction on bitemporal
images. The skip connection in FC-Siam-Conc transfers the
feature information produced by each layer of the two encoders
to the decoder to supplement the lost features during the feature
extraction process.

In contrast to FC-Siam-Conc, FC-Siam-Di [32] calculates the
absolute difference value of the feature information connected
by the skip connection in the same layer of the two encoders
in order to enhance the attention to the difference features. This
approach has played an important role in the development of CD
tasks.

Since traditional convolutions are limited by the receptive
field, they can only compute the relationship between pixels in

a certain area, which often leads to discontinuous feature infor-
mation for larger objects. Zhang et al. [39] used atrous spatial
pyramid pooling (ASPP) to expand the network’s receptive field
and enhance the attention to distant feature information.

2) Attention-Based Method: Although expanding convolu-
tion can improve CNN’s attention to feature information, it still
cannot consider the correlation of feature information from a
global perspective. Therefore, attention mechanisms [28], [29],
[44], [45], [46] have been gradually applied to the field of CD
and have given rise to numerous excellent algorithms [47], [48],
[49], [50], [51].

IFNet [47] proposes a difference discrimination network
(DDN) for extracting difference features from bitemporal im-
ages. In DDN, bitemporal features are first fused, and then
channel attention is used to obtain the information weight of
each channel and weight it to each pixel of the fused fea-
ture. After being processed by convolution layers, the spatial
attention labels the positions where the weight of the fused
feature is concentrated through pooling, thus further enhancing
the strength of the difference information in the fused feature.
SNUNet [49] uses a deep supervision mechanism to supervise
the feature extraction process of the network’s hidden layer. It
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adopts the same processing idea as U-Net++ [52], but outputs
multiple feature information of different scales and proposes
an Ensemble Channel Attention Module to fuse multiple scale
feature information, and finally obtains the prediction image.

MTCNet [53] also applies CBAM [29] and decomposes it into
a spatial attention module (SAM) and a channel attention module
(CAM). SAM is applied to weak features with low weights
before multiscale Transformer to enhance their attention, while
CAM is applied to highlight change targets in the feature recon-
struction stage. However, because MTCNet uses only one set
of feature maps output by ResNet, and the multiscale features
obtained by MTCNet all come from this set of feature maps, the
attention to feature information is not ideal.

3) Transformer-Based Method: The self-attention mecha-
nism proposed by Transformer calculates the weights of each
pixel in the feature map through matrix multiplication and
applies these weights to the pixel itself, thereby achieving the at-
tention of global semantic information. As a result, Transformer
effectively improves the issue of insufficient attention to long-
range dependencies in CD tasks. In recent years, Transformer
has gained widespread application in CD tasks.

The self-attention proposed by Transformer can obtain richer
semantic information by calculating the global correlation of
pixels. BIT [54] combines CNN with Transformer, first using
ResNet as the backbone network to complete feature extrac-
tion, then using the Transformer encoder to globally relate the
deep semantic information, and finally obtaining the predicted
image after processing through convolution layers. Although
BIT achieves good results, it still has instability in handling
small targets and details due to only semantic correlation of
deep feature information. ACABFNet [55] compensates for the
local semantic information obtained by CNN using the global
semantic information obtained by Transformer and proposes an
axial cross-attention to focus on the changing targets from both
horizontal and vertical directions.

Inspired by Transformer’s ability to capture long-range de-
pendencies, RCDT [56] proposes the Relational Cross Attention
Module (RCAM) to obtain change information in bitempo-
ral features. RCAM abandons self-attention in favor of cross-
attention, using earlier image features as “Query” and later im-
age features as “Key” and “Value” to complete cross-attention.
To address the limitations of using a standalone CNN or Trans-
former architecture for feature extraction, ICIF-Net [57] adopts
a parallel architecture of CNN and Transformer to complete
bitemporal image feature extraction and proposes the intrascale
cross-interaction module to complement different feature infor-
mation. However, ICIF-Net still lacks information interaction in
the feature extraction stage.

Although attention mechanisms significantly improve the net-
work’s ability to focus on feature information, most attention
mechanisms focus on features only from a channel perspective,
neglecting to focus on pixel location information. In contrast, in
the CD domain, obtaining the location information of features
helps to locate discrepant features in bitemporal images.

Therefore, in DFEM, we use CoordAttention [58] to obtain
position information and weight it as a weight to bitempo-
ral images. In addition, most of the current mainstream CD

methods are based on pixels and channels to enhance the focus on
feature information, with little focus on frequency information.
In contrast, frequency information contains information that
is not focused on by vision, and the use of models to obtain
different frequency information can better enhance the focus on
feature information in bitemporal images. Therefore, in DAFT,
AFFormer is used as the backbone network to complete the
feature extraction.

B. Adaptive Frequency Transformer

AFFormer is initially proposed for semantic segmentation,
which abandons the traditional “encoder–decoder” structure and
removes the decoder, using a parallel architecture to accom-
plish semantic information extraction and feature reconstruc-
tion. AFFormer proposes Frequency Similarity Kernel (FSK),
a Transformer variant with linear complexity O(n). First, the
feature G is encoded with relative positional encoding through a
convolutional layer to obtain feature X ∈ R(h×w)×C . FSK uses
a fixed-size similarity kernel to obtain correlations between dif-
ferent frequency components and enhance important frequency
components. X is then transformed into keys K, values V, and
query Q through linear layers in FSK. As in (1), the results of
the linear computation of keys K and values V are normalized by
Softmax to obtain the similarity kernel Ai,j for the frequency
components, where ki represents the frequency components of
keys K and vi represents the frequency components of values V.
Finally, the similarity kernel is computed linearly with query Q,
which in turn enhances the frequency information of different
categories.

Ai.j = ekiv
T
i

/
n∑

j=1

eki . (1)

Different object categories have their own unique frequency
information, which is not perceivable by human vision. Ob-
taining frequency information can better distinguish between
categories [59], [60]. In order to enhance the network’s ability to
distinguish category boundaries in images, AFFormer uses FSK
to create adaptive frequency filter (AFF) in prototype learning
(PL), as in Fig. 2. In AFF, dynamic low-pass filters (DLF)
and dynamic high-pass filters (DHF) are proposed to extract
frequency information from different bands, thereby obtain-
ing low-frequency information and high-frequency information
from the spatial domain.

DLF is mainly used to extract low-frequency information
from semantic information. Specifically, DLF uses average pool-
ing to process the spatial domain. After grouping the channels,
different average pooling kernels are used to simulate frequency
thresholds, and thus obtain low-frequency information in dif-
ferent frequency ranges. Finally, the frequency information is
restored to the same size as X through bilinear interpolation. The
low-frequency information of the mth group can be represented
as in (2), where Γ (·) stands for adaptive average pooling, s× s
stands for different pooling kernels, and vm stands for the mth
group of values V in FSK.

Dlf
m (vm) = Γs×s (v

m) . (2)
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Fig. 3. Comparison of the acquisition characteristics of different backbone networks.

DHF is mainly used to extract high-frequency information,
and convolution can retain information with higher intensity
in pixel semantic information. Therefore, DHF uses convolu-
tional layers to extract high-frequency semantic information.
Like DLF, values V is also grouped, and different convolutional
kernels are used to extract high-frequency semantic information
from different groups, as in (3), where Φ(·) represents the
DO-Conv layer and k× k represents the size of the convolutional
kernel.

Dhf
n (vn) = Φk×k (vn) . (3)

Finally, the frequency information extracted by the DLF as
well as the DHF is superimposed on the globally enhanced
frequency information obtained by FSK, as in (4).

AFF (X) =
i=1∑

cat H

Dfsk
h (X) +

j=1∑
cat M

Dlf
m(X)

+
k=1∑
cat N

Dhf
n (X). (4)

As in Fig. 3, we compare the feature maps obtained by
ResNet34 and AFFormer as the backbone network under the
same number of training epochs. It is observed that AFFormer
has a higher ability to capture feature information, and the feature
information is relatively more concentrated. Therefore, in DAFT
we use AFFormer as the backbone network for feature extraction
of bitemporal images.

III. METHOD

This section focuses on the overall architecture of the network,
the Differential Features Enhancement Module.

A. Network Structure

As in Fig. 2, the DAFT adopts a CNN-Transformer architec-
ture, which can be divided into three stages. In the first stage,
the feature extraction of the bitemporal images is completed, and
AFFormer is used as the backbone network in this stage. The
processing method of AFFormer adopts parallel heterogeneous
architecture (PHA) and describes pixel semantic information
through prototype learning. In each layer of AFFormer, the
network first aggregates feature information F ∈ RH×W×C

using a 3 × 3 convolutional layer to generate a new pixel
matrix G ∈ Rh×w×C , and then feeds the feature information
into the PHA. The PHA uses a parallel architecture in which
the PL uses the AFF for prototype learning and constantly
updates each aggregation centre to obtain G′ ∈ Rh×w×C . PD
recovers the abstract semantic information from the PL and fuses
the abstract semantic information (G′) with the pixel semantic
information (F).

In the second stage, we fuse the high-level semantic informa-
tion from the third and fourth layers of the AFFormer. Specif-
ically, Ii3 ∈ RH/4×W/4×512 is the feature information output
from the third layer and Ii4 ∈ RH/8×W/8×512 is the feature
information output from the fourth layer. Ii3 is downsampled
and then summed with Ii4 after channel attention processing
respectively, as in (5) and (6). Where σ is Sigmoid, α is ReLU,
h = H/4, w = W/4, i ∈ [1, 2], and f1×1(·) is 1 × 1 convolu-
tion. The feature information of the bitemporal images is then
fused using dimensional stitching and dimensionality reduction
using 1 × 1 convolution to obtain deep semantic information D,
as in (7).

Zi3 = σf1×1

⎛
⎝αf1×1

⎛
⎝ 1

h× w

h∑
k=1

w∑
j=1

Ii3(k, j)

⎞
⎠
⎞
⎠ (5)

Xi = Zi3 ⊗ Ii3 + Zi4 ⊗ Ii4 (6)

D = αf1×1 (cat (X1, X2)) . (7)

The third stage completes the detection of the difference
features between the bitemporal images. We propose DFEM
to enhance the difference features. In DFEM, CoordAttention is
used to obtain the position information of the features and embed
it into the pixel semantics, thereby enhancing the prediction and
reconstruction of the difference feature information.

We combine the idea of deep supervision mechanism and
set up accompanying outputs for the feature fusion process in
the second stage and the DFEM processing in the third stage.
After calculating the loss between the accompanying outputs
and corresponding Ground Truth (GT) with different weights,
we add them to the total loss function to better supervise the
hidden layers of the network and optimize the overall training
effect of the network. DO-Conv combines the calculation ideas
of traditional convolution and depth convolution, focusing on
more pixel correlations when calculating feature correlations.
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Fig. 4. Differential Features Enhancement Module.

Fig. 5. Coordinate Attention.

Therefore, to achieve better training results, traditional convo-
lution and depth convolution involved in the network are both
replaced by DO-Conv.

B. Differential Features Enhancement Module

In the first and second phases of the network, the backbone
network acquires rich and varying frequency of feature infor-
mation from bitemporal images, which contain both change and
nonchange features. The main objective of the CD task is to
complete the reconstruction of the change target. Therefore, in
the third stage of the network, we propose DFEM mainly for
the extraction of variation features from bitemporal images, as
in Fig. 4.

The semantic information captured by the shallow backbone
network contains a large amount of detailed information, but
some of these details have weak intensities. Therefore, the
primary task of DFEM is to enhance the feature information.
Specifically, in the upper-level network of DFEM [Fig. 4(a)],
influenced by the idea of field expansion, we propose Vision
Expansion. This module expands the receptive field of the
convolutional layer by changing the distance between 3 × 3
convolutional kernel operators, allowing the network to focus
on long-range dependencies in local processing. As a result,
the local features are enhanced, as in (8), where Φdilation

3×3 (·)
represents the DO-Convolution with an expanded field of view.

In the process of local feature enhancement, some of the non-
change features may be similarly enhanced, and these features
will ultimately affect the accuracy of the change target recon-
struction. In order to be able to enhance the focus on location
information while suppressing the channels where nontarget
features are located. We use Coordinate Attention (Fig. 5) to
process the results obtained from Vision Expansion.

Coordinate Attention uses horizontal pooling and vertical
pooling to obtain horizontal features and vertical features, and
encodes them separately as in (9) and (10). Then, the horizontally

Fig. 6. Results of DFEM’s focus on feature information.

and vertically pooled features containing global information are
fused together through 1 × 1 convolution to obtain feature F,
as in (11).Where δ is ReLU and f1×1(·) is 1 × 1 convolution.
Feature F is decomposed into horizontal and vertical compo-
nents in the spatial domain, which are processed by horizontal
1 × 1 convolution and vertical 1 × 1 convolution, respectively,
to obtain horizontal and vertical weights. Finally, the weights
are assigned to the original feature through multiplication, as in
(12), where σ is the Sigmoid, fh

1×1(·) is the horizontal 1 × 1
convolution, fw

1×1(·) is the vertical 1 × 1 convolution, Fh is the
vertical component, and Fw is the horizontal component.

Ive =

i=2∑
cat [2,3,5]

Φdilation=i
3×3 (I) (8)

Zh
I (h) =

1

W

∑
0≤i≤W

I(h, i) (9)

Zw
I (w) =

1

H

∑
0≤j≤H

I(j, w) (10)

F = δf1×1

(
cat

(
Zh
I , Z

w
I

))
(11)

I(i, j)′ = I(i, j)× σ
(
fh
1×1

(
Fh

))× σ
(
fw
1×1 (F

w)
)
. (12)

Since the deep semantic information D from the backbone
network also contains nonchanging features, in the second stage
of DFEM [Fig. 4(b)], the features of the changing target are
also augmented using Coordinate Attention to obtain D′. The
detailed information in the shallow features is important for
the edge reconstruction of the change target, while the deep
features are able to localize the change target from a macroscopic
perspective. Therefore, in order to highlight the features of the
change target, in the third stage [Fig. 7(c)], the features with
rich detail information (I ′1i, I

′
2i) obtained in the first stage and

the features with rich semantic information (D′) obtained in the
second stage are fused, as in (13).

Out = δ (cat (I ′1i, I
′
2i) +D)×D′. (13)

As in Fig. 6, we demonstrate the processing results of the
DFEM stage. After the DFEM processing, the differential fea-
tures in the spatiotemporal feature information are significantly
enhanced. After being processed by the Sigmoid function, the
differential features are significantly highlighted.



FU et al.: DAFT: DIFFERENTIAL FEATURE EXTRACTION NETWORK BASED ON ADAPTIVE FREQUENCY TRANSFORMER 5067

Fig. 7. Processing results of each method on LEVIR-CD.

IV. EXPERIMENT

In this section, the specific details of the experimental proce-
dure are outlined, including: experimental parameters, compar-
ison methods, experimental datasets, comparison experiments,
and ablation experiments.

A. Experimental Parameters

All participating experimental methods are trained in a Linux
environment, with computing power provided by NVIDIA TI-
TAN RTX, Pytorch version 1.4.0, and Python version 3.8.

To ensure the comparability of experiments, the maximum
number of training epochs for all comparison methods is set to
200, and the current best model is saved after each iteration. All
comparison methods use 0.001 as the initial learning rate and
utilize Adam as the optimizer.

We use binary cross-entropy loss as the loss function [as in
(14)]. As in Fig. 2, we set accompanying outputs for the network
feature fusion stage and DFEM module, and calculate the ac-
companying losses Loss1, Loss2, Loss3, Loss4, where Loss1,
Loss2 are the losses of different spatiotemporal images. Loss3,
Loss4 are the accompanying losses of the DFEM module. After
experimenting with the two types of losses, we set different
parameters to control their proportion in the total loss, as in
(15), where θ is 0.2 and ϕ is 0.5.

LCE(p,p̂) = − 1

WH

W−1∑
x=0

H−1∑
y=0

p(x, y) log p̂(x, y)

+ (1− p(x, y)) log (1− p̂(x, y)) (14)

L = θ(Loss1 + Loss2) + ϕ(Loss3 + Loss4) + Loss.
(15)

For the objective evaluation of the performance of each net-
work, we calculate five evaluation metrics using PyCharm: OA
[as in (16)], F1 [as in (17)], IoU [as in (18)], Precision [as in (19)],
and Recall [as in (20)]. In the Equation, TP for true positive, TN

for true negative, FP for false positive, and FN for false negative.

OA =
TP + TN

TP + TN + FN + FP
(16)

F1 =
2TP

2TP + FP + FN
(17)

IoU =
TP

FP + FN + TP
(18)

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
. (20)

B. Experimental Datasets

LEVIR-CD [61] is currently the most widely used and valu-
able dataset in the field of CD. The dataset is collected from the
Google Earth platform, with a resolution of 0.5 meters/pixel and
a size of 1024 × 1024. LEVIR-CD collects ground environment
change images in Texas from 5 to 14 years. Due to the large time
span, LEVIR-CD has a complex sample environment. Different
functions of buildings lead to different sizes and shapes of the
acquired building groups. This puts higher demands on the
performance of the network. We divide the original images into
256 × 256 size images without overlap by default cropping
method, and divide them into training set (7120), validation set
(1024), and test set (2048).

WHU-CD [62] is a dataset consisting of aerial images with
a size of 32507 × 15354, covering approximately 22,000
buildings in Christchurch, New Zealand, with a resolution of
0.075 meters/pixel. This dataset has a high resolution, providing
clearer contour information for the buildings on the ground, but
also contains more noise such as lighting and shadows. There-
fore, WHU-CD presents a challenge for the network’s ability to
handle noise. To adapt to the GPU memory, we applied default
cropping to the WHU-CD, obtaining a training set (6096), a
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validation set (762), and a test set (762), all with a size of
256 × 256.

GZ-CD [63] is collected using the Google Earth platform and
contains VHR (Very High Resolution) images ranging in size
from 1006 × 1168 to 4936 × 5224. This dataset records the
environmental changes in Guangzhou, China over a period of
ten years, covering buildings with different colors and having
diverse samples, with a resolution of 0.55 meters/pixel. We
have cropped the samples in GZ-CD into nonoverlapping image
blocks of size 256 × 256 and divided them into training set
(2834), validation set (400), and test set (325).

C. Comparison Method

To validate the performance of DAFT, we select nine main-
stream methods that are representative of the CD. Among them,
three CNN-based methods (FC-EF, FC-Siam-Conc, FC-Siam-
Di), three attention-based methods (IFNet, SNUNet, DTCD-
SCN), and three Transformer-based methods (MSCANet, BIT,
Change Former).

FC-EF [32] uses a U-Net architecture, where feature informa-
tion is fused through dimension concatenation before entering
the network.

FC-Siam-Conc [32] employs a dual-encoder structure to
process two spatiotemporal images separately, and fuses the
difference feature with the bitemporal images in the decoder
stage.

FC-Siam-Di [32] passes the bitemporal images features used
for skip connections to the decoder stage by taking the absolute
difference.

IFNet [47] uses a deep supervision mechanism to supervise
the hidden layers of the network and provide feedback through
the loss function. Channel attention and spatial attention are used
to enhance the feature focus in the bitemporal images.

DTCDSCN [48] uses channel attention to enhance the back-
bone network’s attention to feature information.

SNUNet [49] adopts the architecture of UNet++ and also
uses the deep supervision mechanism to optimize the training
process. An Ensemble Channel Attention Module is proposed
to fuse the output features at multiple scales.

MSCANet [33] uses Transformer to parallelly process the
feature information obtained by each layer of the backbone
network. It adopts a processing method that combines CNN and
Transformer.

BIT [54] uses a Transformer encoder to globally associate
deep semantic information and reconstructs the difference fea-
tures through convolutional layers.

Change Former [35] uses a Transformer as the backbone
network and enhances the global correlation in semantic infor-
mation.

D. Comparison Experiment

This section evaluates the performance of the network on
three datasets, subjective evaluation of the network through the
network output and objective evaluation of the network through
the metric scores.

Fig. 8. Detailed comparison of processing results for large targets.

1) LEVIR-CD: A selection of the change maps obtained for
each comparison method on the LEVIR dataset is in Fig. 7.
We have processed the change maps by means of a visual
overlay, where the red part represents the misidentified areas
and the green represents the unidentified areas. The samples in
the change maps include large targets, complex changing targets,
dense targets, and small targets. The next analysis will be carried
out from these areas.

Sample A and B both contain large buildings. For sample
A, BIT and Change formerly exhibited obvious discontinuities,
while DTCDSCN and MSCANet not only show feature discon-
tinuities, but also target missing. In comparison, Ours accurately
locates all the change features, although there is still room
for improvement in edge judgment for this sample. However,
compared to the nine contrastive methods, Ours performs the
best. Due to the influence of sunlight, large shadows appear in
the middle of the buildings in sample B. The results of BIT
and Change Former are obviously affected by the shadow part.
FC-EF and FC-Siam-Di show poor feature continuity in their
output results due to the limitation of convolution’s field of view.
Although IFNet exhibits good edge processing results, there are
still many noise points within the features. Our method not only
shows good ability to counteract the effects of lighting, but also
exhibits good feature continuity.

To highlight the ability to handle large buildings, we selected
two sets of samples for local feature amplification comparison,
as in Fig. 8. In the first sample, the building in the upper right
corner is obscured by shadows due to sunlight. From the locally
amplified results, Ours can effectively deal with the lighting and
shadow issues. However, BIT and Change Former clearly exhibit
feature separation. Additionally, there are more noise artifacts in
the interior of the buildings in BIT and Change Former compared
to Ours. In the second sample, the building has a complex
structure and is surrounded by a complex environment. From
the processing results, although ours also has some shortcomings
in edge detection, compared to BIT and Change Former, ours
provides a more complete description of the overall contour of
the building.

Both input images in Sample C contain change targets, and
the two buildings have different colors and styles. In Image 1, the
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Fig. 9. Detailed comparison of processing results for small and complex
targets.

two buildings have a similar color to their surroundings, while
in Image 2, although the changed building is highlighted due
to lighting effects, its color is in the same color range as the
surrounding roads. From the processing results, all the compar-
ative methods missed identifying the buildings in Image 1. On
the other hand, ours, despite being affected by the environment,
has identified and labeled all the buildings in the prediction
map, although there are some issues with edge processing of
the buildings.

In terms of the recognition of dense and small targets, we
analyze it through sample D. Sample D contains a large number
of dense small buildings that are highly similar to the sur-
rounding environment. Networks such as IFNet, SNUNet, BIT,
and Change Former all have varying degrees of target missing.
However, Ours identifies all targets and annotates them in the
final prediction map.

The feature information of small targets mainly exists in the
feature information obtained by shallow networks. Ours uses a
backbone network based on transformer to create an adaptive
frequency Ffilter, which not only enhances the acquisition of
global feature information but also obtains feature information
of different categories of objects through frequency information
processing, thus more effectively recognizing small targets.

To highlight the detection of small and complex targets, we
select two sets of samples for local zooming comparison, as in
Fig. 9. In the first sample, the buildings have complex structures.
MSCANet and Change Former do not perform well in edge
judgment, while ours shows good results. In the second set of
samples, the volume of the buildings is small and the color depth
is roughly the same as the surrounding environment, which
brings considerable difficulty to the CD task. Compared with
MSCANet, Change Former, and IFNet, Ours shows excellent
performance.

In the following, we will objectively evaluate various net-
works based on their performance scores on the LEVIR dataset.
As in Table I, we present the metric results of each compared
method. Our DAFT achieved the best results in four metrics,
namely OA, F1, IoU, and Recall, and ranked second in Precision.
It is worth mentioning that DAFT outperforms the second-best

TABLE I
INDICATOR RESULTS OBTAINED FOR EACH METHOD ON THE

LEVIR-CD DATASET

method by 1.141 points in the F1 metric and 2.384 points in the
IoU metric.

Based on the comprehensive results and metrics, DAFT per-
forms well on the LEVIR dataset. Especially in small and com-
plex object detection, DAFT outperforms mainstream methods.
However, there is still room for improvement in edge processing
for some samples.

2) WHU-CD: As in Fig. 10, we also select several represen-
tative samples for display. Sample A contains a large building,
and the environment in the upper right corner of the building has
similar color information as the building. BIT and Change For-
mer do not handle environmental interference as well as Ours.
IFNet and SNUNet perform poorly in terms of the continuity
of large targets. Although DTCDSCN and MSCANet achieve
good processing results, there is still some gap between them and
Ours in edge processing. In the processing of sample B, feature
missing phenomena appeared in networks such as DTCDSCN,
SNUNet, and Change Former. This is mainly because there are
many vehicles around the buildings in the bitemporal images.
These environmental factors have a certain impact on the feature
discrimination of the networks. This also indicates that these
networks have shortcomings in feature recognition. On the
other hand, ours not only accurately detects the target but also
performs well in edge processing compared to FC-Siam-Conc.

In sample C, the protruding part of the building is obscured by
shadows due to lighting conditions. Networks such as SNUNet,
BIT, and Change Former are clearly affected by the shadows and
make recognition errors in the protruding part. In contrast, ours
demonstrates excellent ability in dealing with environmental
factors.

To highlight the ability to handle large buildings, we selected
two additional sets of samples for local detail display, as in
Fig. 11. In the first set of samples, both Image1 and Image2
contain the detection target, and the color information of the
target is similar to the surrounding environment. FC-Siam-
Di and MSCANet have some shortcomings in the ability to
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Fig. 10. Processing results of each method on WHU-CD.

Fig. 11. Detailed comparison of processing results for large targets.

discriminate features. Although Change Former has shown some
effect, it is still inferior to ours in edge feature processing. In
the second set of samples, Ours still performs better than the
other three comparison methods. However, there is still room
for improvement in the processing of edge features for ours,
which will be our future direction of efforts.

In sample D, there are densely packed buildings, and due to
image cropping, only a part of the building on the left is visible.
FC-EF, FC-Siam-Conc, Change Former, and other networks
show obvious deficiencies in recognizing the building on the
left. In addition, in terms of edge feature processing, IFNet
and BIT show unsatisfactory results. In contrast, ours shows
good performance in both building recognition and edge feature
processing, achieving results closest to the GT.

To highlight the ability to handle dense buildings, we select
two groups of samples for local detail enlargement, as in Fig. 12.
In the first sample, the building is shaded due to the influence
of sunlight. Ours shows good ability in handling environmental
factors. In contrast, DTCDSCN, SNUNet, and Change Former
are all affected to varying degrees. In the second sample, Ours

Fig. 12. Detailed comparison of treatment results for dense buildings.

performs significantly better in handling edge features than
SNUNet and Change Former.

Table II shows that DAFT achieves the best results in all
four metrics. DAFT outperforms the second-best method by
2.054 in F1 and 3.46 in IoU. Overall, DAFT demonstrates
good processing capability, particularly in handling shadows,
on the WHU-CD. Furthermore, our network also shows better
performance in feature continuity than mainstream networks.
However, DAFT still exhibits weaknesses in feature extraction
for certain samples, such as in the processing of long rectangular
buildings in sample E of Fig. 10.

3) GZ-CD: Fig. 13 displays partial experimental results on
GZ-CD. In the processing of sample A, DTCDSCN, MSCANet,
SNUNet, BIT, and ours all show good performance. Change
Former and IFNet do not perform satisfactorily. For sample B,
FC-Siam-Di and SNUNet exhibit less feature continuity than
Ours, due to the small size of the building. Although BIT and
Change Former complete the building detection more compre-
hensively, they do not handle edge features as well as ours due
to environmental interference.
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Fig. 13. Processing results of each method on GZ-CD. (a), (b), (c), (d), (e), respectively represent five different sets of bi-temporal images selected from the GZ
test set to compare our method with other excellent methods.

TABLE II
INDICATOR RESULTS OBTAINED FOR EACH METHOD ON THE

WHU-CD DATASET

In sample C, there are buildings with different colors, which
requires high feature recognition ability from the network. IFNet
and Change Former have missing recognition for the brown
building at the top of the sample, while DTCDSCN, SNUNet,
BIT, and other networks have completed the detection of all
buildings, but still not as good as ours in edge feature processing.

To highlight the ability to detect large buildings, two sets
of samples are reselected for local zoom-in comparison. As
in Fig. 14, both sets of samples have large buildings and the
buildings are closely spaced. The MSCANet, IFNet, and Change
Former networks showed coarser results in terms of edge fea-
tures, while ours’ results are the closest to GT and there is no
adhesion between the buildings.

Samples D and E both contain a large number of buildings,
and there are large shadows around the buildings due to lighting
conditions. DTCDSCN and Change Former have identified the
buildings more completely, but both have rough handling of edge

Fig. 14. Detailed comparison of processing results for large targets.

features. Although ours also has room for improvement in edge
processing, it is closer to GT compared to other methods.

As in Fig. 15, we select samples with edge blurring and small
targets for local magnification comparison. In the first sample,
due to the blurry edge information of the target building, FC-
Siam-Di, BIT, and Change Former all show varying degrees of
feature misjudgment. Although ours is not detailed enough in
edge labeling, the basic contour is roughly the same as the target.
In the second sample, the target building is small in size. BIT and
Change Former both miss the detection of the building, while
FC-Siam-Di and Oours show better performance.

As in Table III, we show the metric scores achieved by each
comparison method on the GZ-CD dataset. Although DAFT
does not achieve the best score on Precision, it achieves the
best on the other four metrics. DAFT is 1.815 higher than the
second place on F1, 1.726 higher than the second place on IoU,
and 1.774 higher than the second place on Recall.

Taking into account both subjective evaluation and objective
results, DAFT demonstrates good performance in edge feature
processing. It can accurately locate and predict targets with



5072 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 15. Detailed comparison of processing results for small target samples
and fuzzy samples.

TABLE III
INDICATOR RESULTS OBTAINED FOR EACH METHOD ON THE GZ-CD DATASET

different colors. However, DAFT still exhibits some instability
in handling some complex samples in this dataset. Therefore, in
future work, we will continue to explore feature extraction for
complex samples.

4) Parametric Quantities and Floating Point Calculations:
As in Table IV, we present the computational and model
complexities of all methods participating in the comparative
experiment. In terms of FLOPs, DAFT is lower than three
attention-based methods and three Transformer-based methods.
In addition, DAFT achieves lower parameter counts than Change
Former and MSCANet, but there is still room for improvement
compared to BIT. In the future, optimizing parameter counts will
also be a key focus of our research.

E. Ablation Experiments

In this section, we will provide a detailed description of the
ablation experiments. As in Table V, we present the specific
details of each ablation module.

Fig. 16. Results of ablation experiments on LEVIR-CD.

Fig. 17. Results of ablation experiments on WHU-CD.

In DAFT-1, we remove the deep supervision mechanism.
In DAFT-2, AFFormer is replaced with ResNet34. Regarding
DFEM, during the experiment, we propose two variants of
the DFEM module, namely DFEM-1 (DAFT-3) and DFEM-2
(DAFT-4). In DFEM-1, we remove the use of the vision expan-
sion unit. In DFEM-2, the bitemporal features from the backbone
network are first fused along the channel dimension, then enter
the CoordAttention, and finally complete feature enhancement
through vision expansion. DAFT-5 removes DO-Conv and uses
traditional convolution.

1) LEVIR-CD: Fig. 16 shows the experimental results of the
five ablation models and the original model on the LEVIR
dataset. In the first sample, the performance of DAFT-4 is
significantly lower than that of the original model. Although the
other four ablation models have detected buildings in the sample,
they do not perform as well as the original model in terms of
edge features. In the second sample, only DAFT-3 performs the
same as the original model, while the other four ablation models
have varying degrees of misidentification.

Table VI shows the performance metrics of the five ablation
models and the original model on the LEVIR dataset. All five
ablation models have some differences in performance metrics
compared to the original model. DFEM-1 and DFEM-2, corre-
sponding to DAFT-3 and DAFT-4, have a larger performance
gap with the original model, indicating the importance and
rationality of the DFEM structure.

2) WHU-CD: Fig. 17 shows partial results of the five abla-
tion models on the WHU dataset. In the first sample, DAFT-3,
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TABLE IV
PARAMETRIC QUANTITIES AND FLOATING POINT CALCULATIONS

TABLE V
ABLATION EXPERIMENTAL MODEL TABLE

TABLE VI
ABLATION EXPERIMENTAL METRICS ON THE LEVIR-CD DATASET

DAFT-4, and DAFT-5 perform poorly in terms of feature conti-
nuity. In the second sample, the buildings have a high similarity
with the surrounding environment, and are affected by lighting,
causing large shadows around the buildings, which leads to
misidentification of buildings by DAFT-2 and DAFT-5.

Table VII presents the performance of the ablation models
on the WHU-CD dataset. Based on the analysis of the metrics
and change maps, it can be concluded that the deep supervision
mechanism, AFFormer, DFEM, and DO-Conv all contribute
significantly to the performance of the network.

3) GZ-CD: Fig. 18 shows change maps of the ablation exper-
iments carried out on the GZ-CD. From the results of the whole
ablation experiment, the original model is the optimal structure

TABLE VII
ABLATION EXPERIMENTAL METRICS ON THE WHU-CD DATASET

Fig. 18. Results of ablation experiments on GZ-CD.

TABLE VIII
ABLATION EXPERIMENTAL METRICS ON THE GZ-CD DATASET
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TABLE IX
PARAMETRIC QUANTITIES AND FLOATING POINT CALCULATIONS FOR ABLATION EXPERIMENT

for this architecture. However, the DAFT still has room for im-
provement in issues such as fuzzy edge determination. As shown
in Table VIII, the metrics achieved by the five ablation modules
are somewhat different from the original model, which indirectly
proves the reasonableness of the original model structure.

Through the ablation experiments conducted on three
datasets, we have demonstrated the effectiveness of our model
architecture. The application of AFFormer as the backbone
network in CD has shown significant improvements in small
object detection and adversarial environmental interference.
The deep supervision mechanism can noticeably optimize the
training process of the network. DFEM is effective in enhancing
the difference features in the bitemporal images. Replacing
traditional convolution with DO-Conv can improve the feature
extraction ability of the CNN architecture.

4) Parametric Quantities and Floating Point Calculations:
Table IX displays the parameter and computational cost of
the five ablation models and the original model, as well as
their performance on the three datasets. DAFT-1 has the same
parameter and computational cost as the original model, but its
performance is significantly reduced on all three datasets due to
the cancellation of the deep supervision mechanism. DAFT-2,
which uses ResNet as the backbone network, has significantly
higher parameter and computational costs than the original
model and other ablation models, and its performance on all
datasets is significantly lower than the original model. Although
DAFT-3 and DAFT-4 have significantly lower parameter costs
than the original model, their results on all three datasets are
not ideal. In contrast, DAFT-5 demonstrates that DO-Conv can
significantly reduce model computational cost. Although this
results in a slight increase in parameter cost, it also achieves
better training performance.

V. LIMITATIONS AND FUTURE WORK

This article demonstrates the good performance of DAFT in
feature continuity and target localization through comparative
experiments. The effectiveness of the model architecture and
module application was verified through ablation experiments.
However, DAFT still has some shortcomings, especially in
edge detection for some samples, indicating that there is still
room for improvement in the robustness of DAFT. The detailed
information of the changing target mainly exists in the features
obtained by the shallow network, and we will focus on exploring

the capturing ability of DAFT for detailed information in the
future. We will consider further enhancing the features passed
by the skip connections to improve the weight of weak features
in the feature information.

Although DAFT achieves better results than mainstream
methods on the three datasets, it still has a higher parameter
and computation cost than lightweight networks such as BIT,
indicating that DAFT can still be simplified in terms of its
structure. In the future, we will conduct more extensive veri-
fication of the DAFT architecture to obtain the contribution of
each module to feature extraction and improve performance. In
terms of application, DAFT will be tested on more CD datasets
to demonstrate its effectiveness and adaptability.

VI. SUMMARY

In this article, we propose DAFT, a CNN-Transformer ar-
chitecture network for remote sensing CD. In the network,
we apply AFFormer as the backbone network in the field of
CD. AFFormer adopts a parallel architecture, abandons the
“encoder–decoder” structure, creates a linear complexity variant
of the Transformer, and uses it to create an AFF. Through
the AFF, AFFormer obtains rich frequency information and
better completes the feature extraction of bitemporal images.
We propose DFEM to receive the bitemporal feature information
transmitted by the backbone network and extract the difference
features from it. To allow convolution calculations to focus on
richer pixel information, we replace all traditional convolutions
with DO-Conv. DAFT uses a deep supervision mechanism to
optimize the training process, resulting in better performance.
DAFT performs well in detecting ground information changes
in Texas, USA; can effectively avoid the impact of environ-
mental factors and complete the detection of ground buildings
in Christchurch, New Zealand; and performs better than main-
stream methods in ground information detection in Guangzhou,
China. In the future, we will continue to develop more effective
architectures based on DAFT to promote the development of
remote sensing CD tasks.
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