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MLBR-YOLOX: An Efficient SAR Ship Detection
Network With Multilevel Background
Removing Modules

Jindong Zhang, Weixing Sheng

Abstract—On the remote sensing images of marine synthetic
aperture radar (SAR), ship targets often occupy only a small part of
an image, and the rest are all sea and coastal backgrounds. Existing
neural networks based on SAR ship detection often directly detect
an entire SAR image, which consumes a large amount of comput-
ing resources. In this article, a new marine SAR ship detection
network, called multilevel background removing—you only look
once X (MLBR-YOLOX), is proposed. First, a new plug-and-play
module, called standalone spatial patch detector, is proposed to
predetect the position of ships and filter out most of the sea back-
grounds at the source image level. Second, a deep spatial feature
detector is presented for detecting deep semantic features of the
output of the backbone module to further reduce the computational
cost of the neck and head modules. Finally, the original YOLOX
network is adopted to locate and classify the pre-detected results.
Experimental results on the SAR ship detection dataset and the
high-resolution SAR images dataset indicate that the detection
performance of MLBR-YOLOX is close to that of YOLOX, but
the computational complexity is merely 23.97% and 12.50% of
YOLOX’s, respectively. Moreover, the experiment conducted on
a large-scene Sentinel-1 SAR image illustrates that the proposed
network has good migration application capability.

Index Terms—Convolutional neural network (CNN), multilevel
background removing modules, ship detection, synthetic aperture
radar (SAR) image.

1. INTRODUCTION

YNTHETIC aperture radar (SAR) is an active remote
S sensing device that utilizes microwave imaging to gain
large-area and high-resolution images (all day and all weather
conditions). By actively transmitting and receiving microwave
signals in a specified frequency band, SAR sensors can con-
tinuously get geographic information in complex weather envi-
ronments and have strong adaptability to the changing marine
environment [1], [2]. Therefore, SAR has been widely applied
in marine ecosystem protection, resource exploration, and mil-
itary reconnaissance [3], [4], [5]. Furthermore, SAR plays an
important role in marine ship detection [6], [7]. Due to the
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special angular reflectivity of ships, the echo signal intensity
of ships obtained by the SAR system is stronger than that
of oceans. Thus, ships appear bright in SAR images, while
the sea backgrounds often are dark. Nevertheless, SAR ship
detection still faces many challenges. For example, some coasts
and islands appear reflection characteristics similar to ships in
SAR images and they may be misclassified as targets in ship
detection. A majority of ships are considered small and densely
distributed targets, which makes them harder to accurately de-
tect. Meanwhile, the existence of speckle noise in marine SAR
images seriously reduces the interpretability of images [8], [9],
[10]. Moreover, most CNN-based ship detection networks only
focus on detection accuracy, ignoring the computational com-
plexity of networks, which increases the strain on a computing
platform. Therefore, SAR ship detection is still a focus of marine
research.

Conventional methods for the analysis of marine SAR im-
ages mainly include detection methods based on background
clutter statistical distribution [11], [12], polarization character-
istics [13], and saliency [14], among which the most common
method is ship detection algorithms based on background clutter
statistical distribution. The constant false alarm rate (CFAR)
algorithm [15], [16] is one of the most widely studied and applied
ship detection algorithms, which uses statistical distribution to
model background clutter and calculates an adaptive threshold
to determine whether a pixel belongs to the target area. On
the basis of CFAR, a majority of researchers carried out SAR
ship detection research works and proposed many improvement
strategies. To improve the ship detection accuracy in the situation
of multiscale targets, Dai etal. [11] introduced an object proposal
generator based on gradient features and regarded the object
proposals as the CFAR guard windows. Li et al. [12] proposed
an improved two-stage superpixel-level CFAR detection algo-
rithm, using a global CFAR detector based on the weighted
information entropy to find out candidate target superpixels and
a local detector to clutter parameter estimation and overcome
the multitarget situations. To reduce the interference of SAR
ambiguities and sea clutter, Leng et al. [15] presented a kernel
density estimation algorithm to estimate the spatial distribution
and proposed a bilateral CFAR ship detector combining both
the intensity distribution and spatial distribution of SAR images.
Nevertheless, these traditional methods are usually designed in
a cumbersome way that involves manual steps and heavily relies
on background conditions. When multiscale ships appear in a
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new complex background, the detection performance becomes
not stable and the robustness of these algorithms is poor.

With the development of machine learning technology, tar-
get detection methods based on convolutional neural networks
(CNN) have become a research priority, and many CNN methods
have emerged and achieved cracking performance. The existing
CNN-based detectors can be divided into two categories: the
two-stage methods and the one-stage methods. For the two-stage
detection methods, the first stage is generating some region
candidate proposals through region proposal algorithms, such
as selective search (SS) [17], region proposal network (RPN)
[18], and so on. The second stage is to further locate and classify
the target for the region proposals. The two-stage methods, such
as the regions with CNN features (RCNN) series [18], [19],
[20], spatial pyramid pooling network [21], usually achieve
high accuracy in target detection. Nevertheless, these networks
consume a large amount of computation, and are difficult to
meet the demand for real-time detection. The one-stage detection
methods directly predict the category probability and location
information of the object through the extracted features. Classic
one-stage algorithms include you only look once (YOLO) series
[22], [23], [24], [25], single shot multibox detector [26], Reti-
naNet [27], and so on. Since the one-stage methods directly
predict the target classification and regression, the detection
speed of the one-stage methods is faster than that of the two-
stage algorithms while having a similar detection effect to the
two-stage methods.

The majority of target detection networks are developed ac-
cording to optical images. However, due to the special imaging
characteristics of SAR images, the detection networks based on
optical images may not be applicable to SAR images. Therefore,
more and more scholars have begun to design and propose ship
detection networks based on the characteristics of SAR images.
For example, Zhang et al. [28] proposed a quad-feature pyramid
network (FPN) for complex backgrounds and multiscale features
of ships, which improved the ship detection accuracy by cascad-
ing four unique FPN modules. Yang et al. [29] introduced a co-
ordinate attention module to mitigate the disturbance from SAR
complex background and designed a receptive field increased
module for capturing contextual information of multiscale ships.
Xiao et al. [30] utilized a power-based convolution block to
suppress speckle noise and coasts, and designed a feature align-
ment guided block to prevent the problem of ship dislocation. To
enhance the ship outline feature and weaken the speckle noise, Li
etal. [31] proposed a ship feature enhancement category through
outline extraction based on side window mean filtering, which
improved the ability to extract key features. To suppress scat-
tered spots and noises, Bai et al. [32] constructed an enhanced
feature pyramid that employed a spatial attention mechanism.
In the meantime, a shallow feature reconstruction module was
presented for effectively detecting small-scale ships.

Most of the above CNN-based SAR ship detection networks
improved the detection accuracy at the cost of increasing the
amounts of parameters and computation of the network. How-
ever, in some specific radar application scenarios, the computing
resource and power consumption of computing devices are
limited. It leads to the difficulty of deploying large-scale and
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Fig. 1. Ships marked in green boxes in SAR images. (a) Offshore scene. (b)
Inshore scene.

high-computation target detection networks on the hardware
platform. How to achieve a better tradeoff between detection
accuracy and computational complexity has become a challenge.
To reduce the computational cost, most existing ship detection
networks tend to design lightweight structures. Nevertheless,
few scholars have considered the characteristics of ship distri-
bution in SAR images.

Inmarine SAR images, sea and coastal regions usually occupy
most of the areas of images, whereas ships simply take a small
part, as shown in Fig. 1. If the target regions can be selected
from the SAR image using a simple algorithm and then putinto a
complex detection network, the amount of network computation
will be reduced at the source image level, which is similar to
the two-stage network. Nevertheless, existing algorithms for
generating candidate regions, suchas SSin [17] and RPN in [18],
have some disadvantages. For the SS algorithm, there are a lot of
overlapping regions in the proposed candidate boxes, and most
of them are redundant boxes, which wastes a lot of computational
cost. RPN is designed after the feature extraction module, and
it is not conducive to detecting small-scale ships. Moreover,
RPN also has the problem of generating plenty of redundant
boxes. Thus, this article focuses on designing a new module
to select ship regions from SAR image and filter out the back-
grounds. Image segmentation methods can be used to generate
target regions, which divide the SAR image into several regions
according to the features of shape, gray, and semantics [33],
[34]. Additionally, texture features such as skewness wavelet
energy [35] and kurtosis wavelet energy [36] are efficient and
useful for SAR image segmentation. In recent years, many SAR
image segmentation algorithms based on deep learning have
been proposed and achieved good segmentation results [37].
However, the difference between ships and sea is significant in
SAR images, so it is not necessary to separate these two regions
by complex algorithms.

In response to the aforementioned problems, this article pro-
poses a new SAR ship detection network, called multilevel
background removing-YOLOX (MLBR-YOLOX), based on the
one-stage detection network (i.e., YOLOX [38]). First, accord-
ing to the special angular reflectivity of ships and backgrounds,
a standalone spatial patch detector (SSPD) is designed to pre-
detect the SAR image at the source image level. Since SSPD that
has simple structure is not suitable for detecting the whole SAR
image, the SAR image is first cropped into small-scale patches.
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SSPD detects these patches and determines whether the detected
patches belong to the ship regions. It filters out the large sea
and coastal areas of marine SAR images and only the regions
of interest (Rols) are input to YOLOX, drastically reducing the
computational cost of the YOLOX network. After extracting the
deep features of the retained Rols using the backbone module,
a deep spatial feature detector (DSFD) is proposed to detect
the deep semantic features of the extracted feature blocks. It
classifies the features at different spatial locations in the feature
map to further filter out the regions of sea and coasts, which
reduces the size of the extracted feature blocks and the compu-
tational cost of the neck and head modules. Finally, the retained
target features are fed into the neck and head modules for
target classification and localization. MLBR-YOLOX can obtain
accurate detection results with quite lower computation. Exper-
imental results based on the SAR ship detection dataset (SSDD)
[39] and the high-resolution SAR images dataset (HRSID) [40]
show that the proposed MLBR-YOLOX network achieves much
smaller computational cost with similar ship detection accuracy
compared with most existing advanced detection networks.

The main contributions of this article can be summarized as
follows.

1) To predetect SAR images and filter out the regions of the
background, a tiny plug-and-play module, namely stan-
dalone spatial patch detector, is proposed. This module
selects the target areas from the SAR image and filters
out most of the sea and coastal backgrounds with a small
amount of computation.

A deep spatial feature detector is designed and detects the
deep semantic features of different spatial locations from
the backbone module and removes most deep features that
contain the sea and coast information.

A novel SAR ship detection network, MLBR-YOLOX,
is proposed based on YOLOX. The SSPD and DSFD
modules are inserted into the YOLOX network to filter out
the majority of the background regions of SAR images.
Experiments on SSDD and HRSID demonstrate that the
detection performance of MLBR-YOLOX is close to that
of the state-of-the-art CNN networks, while the compu-
tational cost is only 23.97% and 12.50% of that of the
baseline, YOLOX, respectively. Additionally, based on the
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Architecture of MLBR-YOLOX. Red and green lines represent the cropped marks in cropped regions.

well-trained model, the detection results on a large-scene
Sentinel-1 SAR image prove that the proposed network
has good migration application ability.

II. PROPOSED METHOD

Fig. 2 presents the architecture of the proposed MLBR-
YOLOX network. MLBR-YOLOX comprises five modules:
SSPD, CSPDarknet, DSFD, PA-FPN, and Decoupled Head. The
SSPD and DSFD modules are proposed in this article, whereas
the other three modules are included in the YOLOX network.
The first part of MLBR-YOLOX is the image predetection
module, SSPD, which selects the regions of targets and filters
out large areas of sea and coastal backgrounds in the SAR image
level. The predetected results are fed to the backbone module,
CSPDarknet, for extracting the semantic features of SAR im-
ages. Then the DSFD module detects the deep semantic features
of the dark5 output and further separates the features that contain
ships and coasts. The selected target features are input into the
neck module, PA-FPN, for fusing the semantics with different
scales. Finally, Decoupled Head is employed to generate the
prediction results of target location and classification.

YOLOX is introduced as the baseline network, which is the
first network that adopts an anchor-free structure in the YOLO
series. As ships have multiple scales and sparseness in SAR
images, an anchor-free structure is more suitable for predicting
ships compared with an anchor-based structure. Additionally,
YOLOX presents the SimOTA algorithm to better allocate fuzzy
samples, which is conducive to assigning the prediction samples
of ship targets in complex backgrounds. Without changing the
YOLOX network, we propose the SSPD and DSFD modules to
filter out the large regions of sea and coastal backgrounds while
preserving ship features.

Section II-A introduces the SSPD module employed to clas-
sify the regions of targets and backgrounds in the SAR images.
The YOLOX network is presented in Section II-B. In Section
II-C, DSFD is described in detail.

A. SSPD

Due to different backscattering features in the echo signals
of ships and sea backgrounds obtained by the SAR system, the
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Fig. 3. Architecture of SSPD.

ships are represented as bright pixels in SAR images, whereas
most of the sea backgrounds are represented as dark pixels.
Considering this characteristic of a marine SAR image, a plug-
and-play module, SSPD, is designed to identify the regions of
ships and sea backgrounds in SAR images. Independent of the
YOLOX network, SSPD detects SAR images to filter out the
regions of the backgrounds without missing any ships.

The architecture of SSPD is shown in Fig. 3. The SSPD
module is a tiny CNN structure and simply has seven layers.
It adopts depthwise separable convolution [41] to substitute
for conventional convolution. Fig. 4 shows the architectures of
conventional convolution and depthwise separable convolution,
where I;—I3 are input channels, K;—Ko, k1—kj2 are convolu-
tion kernels, and O1-03 are output channels. In conventional
convolution, each input channel corresponds to a convolutional
kernel, and an output channel is the sum of the outputs of
all convolutional kernels. Depthwise separable convolution is
divided into depthwise convolution and 1 x 1 convolution which
is called pointwise convolution. Depthwise convolution has the
same convolution kernel size as conventional convolution, but
each output channel is determined only by a convolution kernel
sliding in an input channel. Then pointwise convolution is used
to generate a linear combination of the depthwise layer outputs.
Similar to conventional convolutions, depthwise separable con-
volution adds batch normalization (BN) [42] and rectified linear
unit function after each convolution. Compared with the conven-
tional convolution, the amounts of parameters and computation
for depthwise separable convolution are drastically decreased.
In addition, the SSPD module employs a max pooling to expand
the receptive field of the network and a global average pooling to
extract the global semantic features of the SAR image. Finally,
a fully connected layer is adopted and outputs two elements,
which predict whether the detection image contains targets.

SSPD is not appropriate to detect large-scale images due to its
simple structure. Hence, we crop sequentially the original SAR
image into small-scale patches with asize of 32 x 32, and there is
no overlap between patches. To prevent small-scale ships from
being segmented and missed, a SAR image is cropped twice.
The twice-cropped patches have a 25% overlap, and the cropped
regions of Fig. 2 depict the cropped positions on the SAR image.
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The SSPD module considers these patches as the input, and
selects the patches that belong to the pieces of targets. Then,
these patches are numbered and mapped back to the original
image for classification. The steps of the patch classification are
as follows.
1) Assume that the pixel center coordinates of two patches
in the original image are (x1, y1) and (x2, y2), respectively.
The distance d between the pixel centers of these two
patches is as follows:

d= \/($1 — $2)2 + (y1 — 92)2~ (1)

2) If d < 32, the corresponding regions of these two patches
in the original image belong to a same Rol. The serial
numbers of two patches are recorded to form a sequence
pair. Find all the sequence pairs. If a patch does not form
a sequence pair with all other patches, it is considered as
an independent Rol.

3) All sequence pairs are classified again. If two sequence
pairs contain a same serial number, it is considered that
the patches corresponding to the serial numbers in the two
sequence pairs belong to a same Rol. The classification is
repeated until all the sequence pairs are classified.

4) The principle of the minimum external rectangle [43] is
employed to determine the regions of all the Rols. Since
the width and height of the image inputting to YOLOX
should be an integer multiple of 32. If the size of the Rol
does not meet it, we expand the Rol region on the original
image until both the width and height reach an integer
multiple of 32. Then the Rols are cropped from the original
SAR image.

Since SSPD is a binary classification module, the cross en-
tropy loss function [44] is chosen to measure the errors between
the prediction results and the actual label, i.e., the ground truth
(GT). The loss function is formulated as follows:

Loss = — (ylogp + (1 — y) log (1 — p)) (@)

where y donates the GT of the detected patch. If the detected
patch belongs to the ship region, y = 1; otherwise, y = 0.
The p donates the probability that the patch may contain the
ship features. Combined with the adaptive momentum (Adam)
optimizer [45], the SSPD module is trained as a classifier for
ships and backgrounds.

The SSPD module selects and crops the regions that may be
the target from SAR images, which achieves the effect of prede-
tection of the SAR images and effectively reduces the calculation
amount of subsequent detection. To retain the characteristics of
targets, CSPDarknet is input with the predetected Rols without
resizing.

B. YOLOX

YOLOX is the latest target detection network in the YOLO
series that adopts the anchor-free method. The YOLOX network
achieves high detection accuracy by combining the anchor-free
structure with a new label assignment strategy, SimOTA. To
obtain a better balance between parameter amount and detection
performance, the YOLOX-s model is chosen as the baseline.
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Fig. 5. Architecture of YOLOX-s.

The architecture of YOLOX-s is shown in Fig. 5. It is mainly
composed of three parts: CSPDarknet, PA-FPN, and Decoupled
Head, which are described below.

CSPDarknet serves as the backbone module to extract the
features of a SAR image. Focus structure is added at the be-
ginning of CSPDarknet to split a high-resolution feature map
into four low-resolution feature map slices. It converts the width
and height features of the SAR image to the channel dimension.
Then the features of different channels are extracted by a3 x 3
convolution. Compared with the original three-layer convolu-
tions, the Focus structure reduces the amounts of parameters
and computation, which can further improve the training speed
of the network. The CBS structure consists of conventional
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convolution, BN, and sigmoid-weighted linear units (SiLu) [46]
activation function, as the basic convolutional unit of the CSP-
Darknet module. The definition of SiLu is as follows:

X

SILU( ) m

3)

Meanwhile, CSPDarknet adopts residual block [47], cross
stage partial (CSP) [48], and SPP structures [21] to strengthen
the effect of feature extraction. Residual block increases the
gradient of back-propagation between layers to avoid gradient
disappearance. The CSP structure divides the input feature map
into two branches for extracting the features of different scales,
and then concatenates the two branches. As shown in Fig. 5,
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there are two types of CSP structure: CSP1 and CSP2. In CSP1,
the residual block is employed in one branch, while it is replaced
with two CBS structures in CSP2. The CSP structure enhances
the learning ability of different layers. The SPP module fuses
the feature map of local and global features, which enriches the
expression ability of the feature map and improves the detec-
tion performance. CSPDarknet has three output layers, namely
dark3, dark4, and dark5, and they output the deep semantic
features P3, P4, and P5. Ps is chosen as the input of the DSFD
module.

PA-FPN functions as the neck part and comprises FPN [49]
and path aggregation network (PAN) [50]. They are employed
to fuse different information of P, P4, and P5. FPN conveys the
semantic features of the SAR images from top to bottom, while
PAN conveys the localization features of targets from bottom
to top. The PA-FPN module outputs the fused features of three
scales that are adopted to predict large, medium, and small-scale
targets, respectively.

Decoupled Head serves as the head module and replaces the
original coupled head. It adopts two unique detection heads
to predict the information of target classification and position
regression, respectively. With a few more parameters and com-
putational complexity, Decoupled Head not only improves the
detection accuracy, but also accelerates the convergence speed.

For the input images, YOLOX adopts Mosaic and Mixup
strategies for data augmentation. Mosaic makes random scaling
and cropping of the input image, and then splices them into a new
image, which improves the detection performance of small-scale
targets and the robustness of the network. Mixup combines two
images into anew image in a certain proportion, and uses the new
image and label to participate in training, which increases the
diversity of targets and backgrounds. In addition, to assign labels
better, the SimOTA algorithm is proposed in YOLOX. First,
along with obtaining the training loss, the cost matrix of the pairs
of GT boxes and pre-screening prediction boxes (prediction-gt
pairs) is calculated. Second, the quantity of selecting prediction
boxes is determined according to the intersection over union
(IoU) of the prediction-gt pairs. Finally, based on the cost matrix,
the corresponding quantity of prediction boxes is selected as the
final positive samples.

C. DSFD

The SSPD module can filter out most of the sea background of
SAR images. Nevertheless, some patches containing coasts have
familiar features with those of ships, and SSPD does not have
good recognition ability with them. To improve the performance
of removing the backgrounds of SAR images, DSFD is designed.
Since the comparison between the features of ships and coastal
backgrounds becomes clearer after feature extraction of SAR
images, the outputs of the backbone module are selected as
the input. The DSFD module is employed to detect the deep
semantic features of different spatial locations and separate the
areas that contain ship and coastal features.

The backbone, CSPDarknet, has three output layers: dark3,
dark4, and dark5, and outputs three deep feature blocks: P3, Py,
and P5. Compared with the size of the input image, the feature
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maps’ sizes of P3, P4, and P5 are downsampled by 8, 16, and 32
times, respectively. However, the information contained in the
corresponding spatial location of their feature maps is the same.
Thus, we can merely detect one output of the backbone module,
and then the detection results can be mapped to the other two
outputs. To reduce the computational cost, P5 is selected as the
input of DSFD.

Fig. 6 shows the processing flowchart of the DSFD module.
First, the CSPDarknet module is fed with a SAR image and
generates the deep semantic features of three output layers. We
assume that the size of an input image is (3, H, W); hence, the
size of Py is (512, H/32, W/32). Second, Pj is fed into DSFD.
The steps of the DSFD module are as follows.

1) Thelocal textural features of P5 are fused using an average

pooling (kernel size = 3 x 3 and padding = 1).

2) The semantic feature block is reshaped to a two-
dimensional feature with a size of (HW/1024, 512), and
different spatial features whose size is (1, 512) are fed to
a classifier with two fully connected layers.

3) The classification results are mapped to the feature map
of P5 and the location that contains ship features is deter-
mined according to the principle of the minimum exter-
nal rectangle. To prevent some ship features from being
filtered, we expand two-pixel units around the obtained
target region in the feature map.

4) The feature map of P5 is upsampled four and two times,
and the regions of the ship features in P3 and P, are
predicted, as well.

5) The features predicted to contain ship information are
cropped from three output blocks, and they are input to
the neck and head modules for accurate positioning.

The DSFD module is employed to separate the ships and
backgrounds in the deep feature block. The background semantic
features are further filtered and the size of feature maps of Ps,
P4, and Py is reduced. Furthermore, the amount of computation
of PA-FPN and Decoupled Head is decreased.

III. EXPERIMENTAL RESULTS

The experiments are conducted on the PyTorch framework. A
computer equipped with Intel I7-7700K CPU, 32-GB RAM, and
Nvidia GeForce RTX 3060 GPU is used. The operating system
of the computer is Ubuntu 20.04.

A. Datasets and Evaluation Criteria

1) Datasets: In this article, we select the SSDD and HRSID
for a series of experiments to verify the detection performance of
MLBR-YOLOX. SSDD is the first public dataset used for SAR
ship detection, which is acquired by RadarSat-2, TerraSAR-X,
and Sentinel-1 sensors, with four polarization modes: HH, HV,
VYV, and VH. It contains 1160 SAR images and 2456 ships, and
can be mainly divided into two types of scenes: offshore and
inshore. The range resolution of SSDD ranges from 1 to 15 m.
According to [51], image indexes’ suffixes 1 and 9 are set as the
test set, and the rest are set as the training set. As for HRSID,
it has 5604 high-resolution SAR images with pixel resolution
800 x 800, containing a total of 16951 ships. HRSID is mainly



ZHANG et al.: MLBR-YOLOX: AN EFFICIENT SAR SHIP DETECTION NETWORK WITH MULTILEVEL BACKGROUND REMOVING MODULES

5337

UpSample 2 times H
UpSample 4 times

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .
|CSPDarknet - | P g CHEEEHHR BE e |rc :
| dark5 . ; > pool =5 —>HH" - 1 > 2 |
} ‘ R P | 2d 512 |
| darkd4 : P, W/32 | HW/1024 —— |
| | HW/1024 [
} dark3 [ : Feature map:
‘ ]
} | DSFD H/32 Hi
S

\ | W32 :
\

‘ |
\

‘ |
\ |
‘ |

Fig. 6. Processing flowchart of DSFD. FC = Fully connected layer.

used for ship detection and semantic segmentation tasks. The
resolution of SAR images varies from 0.5 to 3 m and the
polarization methods of the radar remote sensing system include
HH, HV, and VV. Following the given dataset configuration, the
proportion of SAR images used for training and testing is 65%
and 35%, respectively. Both datasets provide SAR images of
different sea conditions and scenarios, and their GTs of ship
targets.

2) Evaluation Criteria: The computational complexity of the
network and detection accuracy are selected as the evaluation
indexes in this article, represented by the average floating-point
operations (FLOPs) and mean average precision (mAP) respec-
tively. The FLOPs represents the amount of computation of a
detection network. The mAP is determined by recall rate R and
precisionrate P. The definition of R, P, and mAP are respectively

TP
= TP + FN )
TP
P= TP + FP )
1
mAP = / P(R)dR (6)
0

where TP, FN, and FP are the number of true positive, false
negative, and false positive, respectively. In the SAR ship detec-
tion, TP represents that the IoU of the ship prediction-gt pairs is
higher than 0.5, while FP means false alarms or the IoU of the
prediction-gt pairs is lower than 0.5. FN stands for the quantity of
missed ships. P(R) denotes the precision-recall curve. The mAP
represents the detection accuracy of the network. Both SSDD
and HRSID only have one class of target; hence, the mAP is the
average precision of ships.

Additionally, the F'1 score is introduced to weigh the recall
and precision, and it is a comprehensive evaluation metric of

detection performance, which is calculated by the following:

P xR
Fl1=2 . 7
“PT+R )

B. Implementation Details

1) Training Strategies: In the part of YOLOX, the YOLOX-s
model is selected as the baseline. When training the SSDD, the
epochis set to 500, and the batch-size is set to 8. The SAR images
resized to 512 x 512 are used as the input. Other parameters are
set according to the default parameters of the YOLOX network
[52]. As to HRSID, the size of the input images for training
is 800 x 800, and 300 epochs are trained while keeping other
parameters unchanged.

For training the SSPD module, the patches containing ships
and backgrounds are respectively cropped from SAR images
according to the given annotations. The batch-size is 16, and the
training epoch is 100. The learning rate of the Adam optimizer
is set to 0.001.

2) Test Strategies: When testing the SSDD dataset, to ensure
that the features of ships in SAR images remain unchanged,
SAR images are no longer resized, but the right and bottom of
SAR images are padded with zeros until the image size becomes
an integer multiple of 32. The processed image is input to the
MLBR-YOLOX network. As for HRSID, the size of the SAR
images is 800 x 800, so we feed the original images into the
proposed network directly.

When MLBR-YOLOX is employed for ship detection, SSPD
can filter out most of the sea backgrounds of SAR images. How-
ever, it does not work effectively for recognizing some coastal
backgrounds. Additionally, when the DSFD module is adopted
for semantic feature detection, some features containing ship
information may be lost, especially the features of small-scale
ships. After comprehensive consideration, we decide to merely
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TABLE I
ABLATION EXPERIMENTS OF MLBR-YOLOX

Model SSDD HRSID
mAP Average Rate mAP Average Rate
YOLOX  SSPD DSFD (%) FLOPs (%) (%) FLOPs (%)
v x x 96.97 112G 100 93.79 418G 100
v v X 96.62 32G 28.33 93.34 6.1G 14.69
v v 96.59 2.7G 23.97 92.16 52G 12.50
feed the large-scale P35 into the DSFD module. The Ps5, whose TABLE II
product of the width and height of the feature map is greater COMPARISON OF DIFFERENT METHODS ON SSDD
than 30, is defined as a large-scale feature block. Otherwise, it is
. . mAP  Average
defined as a small;scale feature block. Spemﬁcally, small-scale Network Input size (%) FLOPs
g?gi&bloeks skip DSFD and are put into the neck module Faster R-CNN [18] BRIGE 9371 266G
RetinaNet [27] 512 x 512 90.56 104.1G
) ) YOLO v3 [24] 512 x 512 96.69 98.9 G
C. Ablation Experiments of MLBR-YOLOX YOLO v3-tiny [24] 512 x 512 9542 82G
Ablation experiments are conducted on the SSDD and HRSID YOLO v5-s [25] 512 x 512 96.61 10.1 G
to verify the feasibility of MLBR-YOLOX. Table I presents the YOLOX [52] 512 x 512 96.84 171G
results of the ablation experiments. The average FLOPs repre- 320 x 256~
sents the average computational complexity of detecting a SAR YOLOX [52] 672 x 512 96.97 126
image on the test set, and the rate represents the proportion of MLBR-YOLOX 320 x 256~
anetwork’s computational cost compared with that of YOLOX. (ours) 672 x 512 96.59 276G
The following conclusions can be drawn from Table I.
1) When using the YOLOX network to detect SAR images TABLE III
of SSDD and HRSID, the mAPs are 96.97% and 93.79%, COMPARISON OF DIFFERENT METHODS ON HRSID
respectively, which prove that YOLOX has strong ability
in detecting SAR ships under various scenarios. Neverthe- Network Input size mAP  Average
less, the average FLOPs of detecting a SAR image is quite (%) FLOPs
large for a computing platform, increasing the difficulty Faster R-CNN [18] 800 x 800 88.10  269.0 G
of hardware transplantation. RetinaNet [27] 800 x 800 88.80 2544 G
2) The SSPD module is added to predetect SAR images, YOLO v3 [24] 800 x 800 94.19 2415G
and the detected results are fed to YOLOX for accurate YOLO v3-tiny [24] 800 x 800  90.11 20.1G
detection. The amount of computation is rapidly reduced, YOLO v5-s [25] 800 x 800 93.49 249G
and the FLOPs are respectively 28.33% and 14.69% that YOLOX [52] 800 x 800  93.74 418G
of YOLOX when testing SSDD and HRSID. That is MLBR-YOLOX
because most of the SAR images in both datasets are (ours) 800> 800 92.16 326

taken offshore, and sea regions occupy the majority of the
areas of marine SAR images. The SSPD module can easily
filter out the sea backgrounds and retain the target regions,
whereas the detection accuracy of YOLOX on both SAR
datasets is slightly reduced. Nevertheless, as some patches
containing coasts have features similar to those of ships,
they are predicted as the patches that contain ships, and
that produces false alarms.

To further filter out the coastal backgrounds and lower
computational cost, the SSPD and DSFD modules are
inserted into the YOLOX network. On SSDD, the mAP
is 96.59% and the gap of the mAP between YOLOX and
MLBR-YOLOX is merely 0.38%. However, the average
FLOPs of MLBR-YOLOX only requires 23.97% com-
pared with YOLOX. When testing HRSID, the mAP de-
creased by 1.63% compared with YOLOX. The reduction
of the detection accuracy is acceptable because the size

3)

of most ships in HRSID is small. Some small-scale ships
in SAR images have little texture information and may be
missed in DSFD. Moreover, the average FLOPs is only
12.50% of the original YOLOX network, which saves
massive computation resources.

D. Comparison With Different Detection Methods

1) Comparison With Latest Target Detection Methods: To
further confirm the detection performance of our proposed
method, we conduct experiments on SSDD and HRSID, and
compare them with other existing target detectors. These de-
tectors include Faster RCNN, RetinaNet, YOLO v3, YOLO
v5, and the baseline, YOLOX. The comparison results of the
detection performance and computational complexity are shown
in Tables II and III.
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Fig. 7.

Visual detection results of MLBR-YOLOX. (a) Small-scale and offshore targets on SSDD. (b) Small-scale, inshore and densely distributed targets under

speckle noise on SSDD. (c¢) Large-scale targets under speckle noise on SSDD. (d) Small-scale and offshore targets on HRSID. (e) Small-scale, inshore and densely

distributed targets on HRSID. (f) Large-scale and inshore targets on HRSID.

Table II presents the comparison between MLBR-YOLOX
and other advanced detection networks on SSDD. Experimental
results indicate that the original YOLOX’s mAP of detecting
SAR images without resizing reaches 96.97%, and that is higher
than those of other detection networks. It further verifies that the
baseline network has great detection performance. Nevertheless,
its average FLOPs is 11.2G. Although the FLOPs of YOLOX
is far less than that of Faster RCNN, RetinaNet, and YOLO v3,
it still consumes a lot of computing resources and increases the
strain on a computing platform. The mAP of MLBR-YOLOX
is 96.59%. Compared with the classic Faster RCNN and Reti-
naNet, the proposed MLBR-YOLOX can improve 2.88% and
6.03%, respectively. As for YOLO v3 and YOLO v5, the mAP of
our detector simply reduce about 0.1%. Meanwhile, the average
FLOPs of MLBR-YOLOX is only 2.7 G, which is quite smaller
than other detection networks.

Compared with SSDD, the backgrounds of the SAR images
on HRSID are more complicated and the quantity of small-scale
ships is larger. Thus, it can better reflect the detection effect
of different algorithms. As shown in Table III, the detection
performance of YOLO v3 outperforms other detection networks,
but its FLOPs is 241.5G, which is nearly six times as much as
that of YOLOX. The mAP of MLBR-YOLOX reaches 92.16%
and is close to that of YOLOX and YOLO v5. Additionally,
MLBR-YOLOX is 4.06% higher than Faster RCNN and also
exceeds RetinaNet by 3.36%. Moreover, it is worth noting that

TABLE IV
COMPARISON OF SAR SHIP DETECTION NETWORKS

Network mAP (%) Average FLOPs
DSDet [6] 90.70 143G
Pow-FAN [30] 89.74 -
LPEDet [53] 89.70 18.4 G
SAR-Net [54] 87.49 1042 G
Reference [29] 92.70 123.5G
Reference [55] 88.39 285G
MLBR-YOLOX (ours) 92.16 52G

the FLOPs of the proposed network is merely 5.2G, and it is also
far less than other detectors. Tables II and III indicate that the
proposed network can greatly reduce the computational burden
while having a similar detection effect to the existing advanced
networks.

2) Comparison With SAR Ship Detection Networks: We carry
out the performance comparison on HRSID with some exist-
ing advanced SAR ship detection networks to demonstrate the
effectiveness of our proposed network, as shown in Table IV.

The networks and detection results listed in Table IV need
to be specially explained. Since all these SAR ship detection
networks are not open source, and some parameters and de-
tails involved in the experiments are not specifically described,
their experimental codes and results are difficult to reproduce
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Fig. 8.  Visual detection results of the proposed network on a large-scene Sentinel-1 SAR image.

completely. Thus, to fairly compare the detection performance
and computational complexity of different networks, we use
as many of the same parameter settings as the comparison
networks, while citing the best experimental results reported
in the references of the comparison methods.

As can be seen from Table IV, the detection accuracy of the
proposed MLBR-YOLOX is merely 0.54% lower than that of
the network proposed in [29], and the FLOPs of our proposed
network is only 4.21% of it. Compared with other state-of-the-art
SAR ship detection networks, our proposed network achieves
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TABLE V
DETECTION RESULTS OF INSHORE SCENARIOS

Network GT TP FP FN R(%) P(%) F1(%)
YOLOX 163 159 30 4 975 841 903
MLBR-

yoLox 163 156 24 7 957 8.7 910

higher detection accuracy and computing efficiency. Further-
more, the proposed network gets a better balance between the
detection performance and computational cost compared with
other advanced SAR ship detectors.

E. Visual Detection Results

1) SSDD and HRSID: Fig. 7 shows some visual detection
results of MLBR-YOLOX on the SSDD and HRSID in which the
detected ships, false alarms, and missed ships are respectively
marked with yellow, red, and green rectangles. It can be seen
from the detection results that a majority of multiscale ships can
be detected accurately in various complicated situations, such
as inshore scenes, strong speckle noise, and densely distributed
targets. However, there are few missed ships and false alarms.
For one thing, some ships are so small-scale and densely dis-
tributed that the texture information of ships is not obvious. For
another, some backgrounds are complex, and some islands and
coasts have similar features of ships in SAR images. The vi-
sual detection results further demonstrate that MLBR-YOLOX
has strong ship detection capability and robustness in SAR
images.

2) Large-Scene SAR image: To test the migration capa-
bility of MLBR-YOLOX, we select a large-scene Sentinel-1
SAR image derived from the large-scale SAR ship detection
dataset-v1.0 (LS-SSDD-v1.0) [56] based on the model trained
on the SSDD dataset. The size of the image is 24000 x 16000
and the polarization mode is VV. The large-scene image is
firstly split into 800 x 800 subimages because of the lim-
itation of GPU memory. Then, the well-trained network is
used to detect these images. Finally, the prediction results are
integrated into the large-scene SAR image. The visual de-
tection results are shown in Fig. 8. It can be observed that
MLBR-YOLOX can accurately detect most ships with few false
alarms and missed ships. The satisfactory detection result con-
firms the good migration application capability of the proposed
network.

F. Detection Results of Inshore Scenarios

We also test and compare the detection performance of the
proposed network and the basic network, YOLOX, in inshore
scenarios. According to [51], 46 inshore SAR images are se-
lected from the SSDD test set and tested on YOLOX and
MLBR-YOLOX, respectively. The confidence threshold is set
to 0.35. The prediction results are shown in Table V. It can
be seen that, compared with YOLOX, although the quantity of
missed ships in the MLBR-YOLOX network increases by 3,
the false alarms in MLBR-YOLOX are significantly reduced.
Meanwhile, the F1 score of the proposed network is 91.0%,
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which is better than YOLOX. Table V shows that our proposed
network can effectively reduce the number of false detection of
nearshore factories and other buildings in complex scenarios,
and it further confirms the strong detection performance of
MLBR-YOLOX.

IV. CONCLUSION

To obtain low computational cost in SAR ship detection,
we propose a new SAR ship detection network, called MLBR-
YOLOX. Without changing the YOLOX network, the SSPD and
DSFD modules are proposed to filter out large regions of sea and
coastal backgrounds in SAR images from different levels. Only
the regions predicted to contain ship features are adopted and in-
put into YOLOX for accurate positioning. Experimental results
on the SSDD and HRSID indicate that MLBR-YOLOX has good
detection performance close to advanced detection networks
with quite lower computational complexity. Meanwhile, based
on the trained model, a large-scene SAR image of Sentinel-1 is
used to test the migration ability of MLBR-YOLOX. Satisfac-
tory detection results prove that the proposed network has good
migration application capability. Furthermore, experimental re-
sults based on inshore images show that the proposed network re-
duces the number of false detection in inshore scenes compared
to YOLOX.
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