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Swin-Conv-Dspp and Global Local Transformer for
Remote Sensing Image Semantic Segmentation

Youda Mo , Huihui Li , Xiangling Xiao , Huimin Zhao , Xiaoyong Liu , and Jin Zhan

Abstract—Compared with the traditional method based on
hand-crafted features, deep neural network has achieved a cer-
tain degree of success on remote sensing (RS) image semantic
segmentation. However, there are still serious holes, rough edge
segmentation, and false detection or even missed detection due to
the light and its shadow in the segmentation. Aiming at the above
problems, this article proposes a RS semantic segmentation model
SCG-TransNet that is a hybrid model of Swin transformer and
Deeplabv3+, which includes Swin-Conv-Dspp (SCD) and global
local transformer block (GLTB). First, the SCD module which
can efficiently extract feature information from objects at differ-
ent scales is used to mitigate the hole phenomenon, reducing the
loss of detailed information. Second, we construct a GLTB with
spatial pyramid pooling shuffle module to extract critical detail
information from the limited visible pixels of the occluded objects,
which alleviates the problem of difficult object recognition due to
occlusion effectively. Finally, the experimental results show that our
SCG-TransNet achieves a mean intersection over union of 70.29%
on the Vaihingen datasets, which is 3% higher than the baseline
model. It also achieved good results on POSDAM datasets. These
demonstrate the effectiveness, robustness, and superiority of our
proposed method compared with existing state-of-the-art methods.

Index Terms—Global local transformer block (GLTB), remote
sensing (RS) image, semantic segmentation, Swin transformer,
Swin-Conv-Dspp (SCD).

I. INTRODUCTION

S EMANTIC segmentation provides pixel-level classification
and is applied in many real applications. In the field of
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remote sensing (RS), semantic segmentation is also known as
land use and land cover type classification [1]. In addition, RS
technology can provide rich data sources for Earth observation.
At present, RS images have been widely used in urban plan-
ning [2], [3], [4], housing planning [5], road detection [6], and
forest protection [7], [8].

In recent years, with the rapid development of deep learning
technology, segmentation models based on convolutional neural
networks (CNN) and full convolutional networks (FCN) [9]
have gradually become the most advanced image processing
technology. In the process of this development, the encoder–
decoder [10] structure showed extremely good segmentation
performance, which also made it gradually become the ba-
sic architecture of many excellent models in the future. As a
well-known encoder–decoder network model, UNet [11] fuses
the feature information of deep granularity and shallow gran-
ularity through skip connections, which effectively alleviates
the feature information lost by upsampling and downsampling.
In addition, the well-known DeeplabV3+ [12] also follows
the encoder–decoder structure, which is mainly improved on
DeeplabV3 [13]. It extracts the information from different scales
of the deep feature map in the encoder by using the hole
spatial pyramid pooling, and fuses it with the shallow feature
information in the decoder stage. Finally, it achieves very good
performance.

However, RS images have complex imaging, redundant infor-
mation, high similarity between classes, and are easily affected
by the particularity of light intensity, light incident angle, and
ground objects (small scale [14], high similarity [15], and mutual
occlusion [16]). We have summarized two main issues, as shown
in Fig. 1. From the examples, we can see that they are filled with
a large number of objects occluded by shadows, easily leading
to rough segmentation of the target edge and serious holes in
the segmentation, which resulted it faces huge challenges in
the application process. How to effectively utilize the occluded
objects which have extremely small number of pixels has be-
come the key to RS image segmentation. In traditional CNN,
the encoder often uses multiple downsampling to reduce the
amount of computation while increasing the receptive field. But
multiple downsampling tends to lose a lot of valuable informa-
tion, especially for occluded objects. If such a small number
of precious pixels is lost, the effect of identifying occluded
objects will become very bad. And CNN have inductive biases
of locality and weight sharing [17], which lead to their inevitable
constraints in learning long-range dependencies [18] and spatial
correlations [19].
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Fig. 1. Examples of the characteristics of RS images, which are taken from
the Vaihingen dataset. 1) Affected by the shadow of the light. Like (a) and (b),
it is hard to recognize the “Car,” “Low vegetation,” “Impervious surface,” and
“Tree”; 2) Interclass similarity and intraclass variability. Due to uneven lighting,
the “Building” in (c) are difficult to identify.

Recently, vision transformer (VIT) [20] has been brilliant
in the application of computer vision, and various transformer
variants applied in the field of computer vision are emerging
one after another. For example, the pyramid vision transformer
(PVT) proposed by Wang et al. [21], as one of the representative
models of transformer applied to the visual field, has achieved
excellent results in many tasks. Although PVT reduces the
consumption of computing resources to a certain extent, its
computational complexity has a square relationship with the
sequence length. In order to reduce the computational cost,
Liu et al. [22] proposed a Swin transformer based on a shifted
window strategy, which limits the computation of multihead
self-attention to nonoverlapping windows while allowing cross-
window information interaction. It broke through the problem of
very high computational complexity of the transformer in vision
tasks. Lin et al. [23] proposed cross attention in the transformer,
a novel cross-attention mechanism to capture local as well as
global information. Shao et al. [24] proposed a local transformer
network embedded in a multiscale structure to explicitly learn
the correspondence between multimodal inputs. The network
can effectively and accurately capture the correspondence be-
tween long and short distances. Zhang et al. [25] proposed the
Swin-Conv module, which combined the residual convolution
and the capabilities of the Swin transformer then inserted it into
the UNet [26] architecture. They also designed a practical noise
degradation module, which was used in image denoising. Guo
et al. [27] proposed a new visual network architecture, CNNs
meet transformers. By simply combining traditional convolution
and transformer, the network performance can achieve good
performance, which is superior to Swin transformer and so on.
Zhu et al. [28] proposed a unified framework to segment objects
by considering contextual information and boundary artifacts.
Azad et al. [29] proposed a new architecture based on a pure
transformer named TransDeeplab, which combined transformer
and deeplab architecture for the first time, and achieved the effect
of state-of-the-art( (SOTA) in medical image segmentation.

Nonetheless, the computational complexity of these VIT vari-
ants is still very high. The amount of parameters is very large,
and the local and global context information is not sufficiently
combined. This is not conducive to solving the problems of
rough edge segmentation and serious holes in segmentation
caused by shadow occlusion.

In order to solve the above problems, this article proposes a
new RS image semantic segmentation network framework SCG-
TransNet, which combines the network structure of the Swin
transformer and Deeplabv3+. Deeplabv3+ is a network based on
CNN that employs spatial pyramid pooling. The SCG-TransNet
framework uses a Swin transformer as the encoder and decoder
to extract features from high-resolution information. In the final
stage of the encoder, Swin-Conv-Dspp (SCD) is used to capture
multiscale feature information, and suppress the negative effects
of high interclass similarity and intraclass difference caused by
light factors, so as to alleviate the hole phenomenon in seg-
mentation. In addition, a global local transformer block (GLTB)
module is added before each visual upsampling to capture local
feature information and global feature information to explore the
spatial correlation between global and local features, improve
target edge localization blur and alleviate segmentation blur
caused by target occlusion. The main contributions of this article
are as follows.

1) We propose an SCG-TransNet architecture that combines
the Swin transformer with Deeplabv3+, which is applied
to RS image segmentation for the first time.

2) We propose a SCD module to alleviate the hole phe-
nomenon generated during segmentation. SCD can be
helpful to extract feature information from objects at
different scales and suppress the negative effects of noise
such as chromatic aberration caused by light.

3) To extract discriminative information better, especially for
small objects, we construct a GLTB with spatial pyramid
pooling shuffle module (SPPS), which improves the accu-
racy of target edge localization.

II. RELATED WORKS

A. Semantic Segmentation of RS Images Based on CNN

FCN [9], a framework proposed by Jonathan et al. in 2015
for images semantic segmentation, has dominated the semantic
segmentation tasks in RS in the subsequent years. However, the
results obtained from fully convolutional neural networks are not
fine-grained and sensitive to detail, and lack spatial consistency
by lacking consideration of pixel-to-pixel relationships.

To better address these issues, an encoder–decoder network
Deeplabv3+ [12] based on atrous spatial pyramid pooling
(ASPP) is proposed. ASPP mines the contextual information of
features of different resolutions through receptive field pooling
of different sizes, while the encoder–decoder can better capture
the edge information of different targets by gradually recon-
structing the spatial information. Subsequently, the encoder–
decoder architecture has been widely used in the framework
of RS image semantic segmentation. Liu et al. [30] adopted a
dual attention mechanism algorithm to improve the Deeplabv3+
network, which effectively enhanced the edge localization of
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images and the accuracy of segmentation. Baheti et al. [31]
adopted the idea of a two-stage attention mechanism and firstly
proposed Attention Deeplabv3+ by assigning weights to each
channel to capture the relationship between channels of a set
of feature maps. Akcay et al. [32] developed an end-to-end
two-stream architecture considering geospatial imagery based
on the DeepLabv3+ architecture. Wang et al. [33] proposed
a class feature attention mechanism fused with the improved
Deeplabv3+ network CFAMNet for semantic segmentation of
common features in RS images and achieved good segmen-
tation results. Wang et al. [34] proposed a road segmentation
method based on the receptive field and improved Deeplabv3+,
innovatively used the initialization method to extract the layer
backbone network in the network structure, and better extracted
the characteristics of the road in the RS image. In addition, Li
et al. [35] proposed a semisupervised semantic segmentation
strategy for RS images, which improves the problems existing in
the semisupervised semantic segmentation method of confronta-
tion network by using a consistent self-training framework.

B. Semantic Segmentation of RS Images Based on Transformer

In recent years, VIT [20] has made great achievements in
the field of RS image semantic segmentation. The traditional
transformer structure is mainly used to process word vectors in
the field of natural language [36], while the VIT is compatible
with the transformer framework architecture into the field of
computer vision. It can still achieve very good results on RS
image segmentation tasks without relying on convolution. The
convolution operation often causes the network to focus too
much on the local features of the feature map, while the attention
mechanism in the transformer can consider the global semantic
feature information. Benefiting from the transformer’s strong
modeling ability for sequences, it has achieved advanced results
in many basic vision tasks.

With such excellent results, many RS image researchers have
also applied transformer to the semantic segmentation of high-
resolution RS images. However, most of the existing transformer
architecture networks for semantic segmentation still used the
encoder–decoder architecture. For example, Li et al. [37] pro-
posed a multistream RS spatiotemporal fusion network (MSNet)
based on transformer and convolution, which achieved ex-
cellent segmentation accuracy on multiple RS datasets. Gao
et al. [38] designed an adaptive fusion module, and proposed
STransFuse by adopting a self-attention mechanism to adap-
tively fuse the semantic feature information of feature maps of
different resolutions, which improved the segmentation quality
of various RS images. Chen et al. [39] creatively proposed a
new algorithm based on Swin transformer and linear spectral
mixture theory for high-resolution RS images, and achieved
state-of-the-art results in multiple public datasets. Li et al. [40]
designed a modified transformer to capture global spatial lo-
cation features across different scales, and demonstrated on
object detection in optical remote sensing images (DIOR) [41]
and northwestern polytechnical university very high resolution
-10 (NWPU VHR-10) [42] high-resolution RS image datasets’
excellent segmentation accuracy. Wang et al. [43] proposed a

Swin transformer-based densely connected feature aggregation
module by recovering resolution and generating segmentation
maps by designing shared spatial attention and shared channel
attention. It enhanced the relationship between semantic features
in space and channels, and effectively alleviated the problems
of multiscale and confusing geospatial targets that often appear
in high-resolution RS images. Kaselimi et al. [44] proposed a
multilabel visual transformer model ForestVIT, which applied
transformer with a self-attention mechanism to the detection
of deforestation. Zhang et al. [45] proposed a hybrid deep
neural network based on transformer and CNN for semantic
segmentation of ultrahigh-resolution RS images. Sun et al. [46]
proposed a spectral spatial feature tokenized transformer based
on the transformer framework, which can effectively capture
spectral spatial features and advanced semantic features so that
the model can better extract deep semantic features.

C. Attention Mechanism

In order to improve the defect that the CNN network focuses
too much on local features due to convolution and cannot capture
global information well, many scholars have begun to integrate
attention into the network. Li et al. [47] adaptively refine features
by integrating lightweight spatial and channel attention modules.
Chen et al. [48] proposed a feature map attention mechanism
for image super-resolution reconstruction. By using features of
different resolutions to adaptively adjust the channel features,
we recover more details and relieve the network from focusing
too much on local areas.

Li et al. [49] proposed a high-resolution RS image change
detection model with a multiscale attention mechanism. By
applying the attention mechanism to feature maps of different
resolution scales, feature representations of various scales are
generated and then improved of the defect of over-focusing on
local context. Liu et al. [50] proposed a self-attention negative
feedback network applied to real-time image segmentation,
which reconstructed more realistic and clearer real-time images.
Hu et al. [51] proposed a dual-region learning network applied to
high-resolution image reconstruction to extract continuous and
fine pixel-level features through the spatial spectrum module
with efficient feature fusion. Xia et al. [52] proposed a new
deformable self-attention module, which can select the positions
of key and value pairs in self-attention according to different
dependencies of the data. This self-attention mechanism can
focus on the associated regions and capture more informative
features. Zhang et al. [53] proposed a lightweight multiscale
attention block to build attention between feature maps of differ-
ent resolutions, achieving better results. Sun et al. [54] proposed
a successive pooling attention network including a successive
pooling attention module and a feature fusion module, which
effectively alleviates the difficulty of accurately segmenting
small-scale objects and object boundaries in RS images.

Nonetheless, the computational complexity of the proposed
state-of-the-art transformer-based encoders tends to be very
large, and the extraction of global contextual information is still
insufficient. This will still lead to missed detection due to the hole
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Fig. 2. (a) Architecture of our proposed SCG-TransNet. SCG-TransNet contains two important modules: SCD and GLTB with SPPS; (b) Components of the
GLTB; (c) Components of the FPN.

phenomenon. Therefore, in order to fully extract the global con-
text information, we propose a hybrid of Swin transformer and
Deeplabv3+ as the encoder–decoder for efficient segmentation
of RS images. Specifically, for the proposed SCG-TransNet, we
avoid the problem of the loss of detail information and discontin-
uous pixel segmentation due to high-fold direct upsampling by
using feature pyramid networks (FPN). In the final stage of the
encoder, we use SCD to efficiently extract feature information
of objects of different scales while suppressing noise. In the
decoder, we introduce the GLTB with SPPS before each visual
up-sampling, and finally achieve a high-precision segmentation
effect.

III. METHOD

In this section, we detail the overall structure of the proposed
SCG-TransNet and introduce the involved Swin transformer.
Subsequently, two important modules in SCG-TransNet, namely
SCD and GLTB with SPPS, are introduced.

A. Overview

The overall architecture of the proposed SCG-TransNet
is shown in Fig. 2. As a hybrid of Swin transformer and
Deeplabv3+, our SCG-TransNet follows the encoder–decoder
paradigm. In the encoder stage, we adopt the Swin transformer
as the backbone network for feature extraction, and introduce
the SCD module in the final stage of the encoder. In the decoder,
FPN is used to fuse the features of different resolutions generated
by Stage 2 and Stage 3, followed by stacking on the channel with
the feature map twice upsampled after SCD, which enhances the
communication of multiscale features and solves the problem
of loss of important pixel information caused by direct high-
multiple upsampling, and effectively enhances the continuity of
pixel information. In addition, a normalization-based attention
module (NAM) attention mechanism [55] is added before SCD
and before concat of shallow and deep features to redistribute the

weights of multiscale feature maps for better feature extraction.
Finally, a GLTB module is added before each visual upsampling.

B. Swin Transformer Based Encoder and Decoder

The encoder is mainly composed of the Swin transformer
backbone network and SCD. Swin Transformer is used to extract
hierarchical feature maps, and SCD is used to capture multiscale
contextual information. The decoder is mainly composed of the
Swin transformer block, FPN, and GLTB. The FPN is used to
fuse feature maps of different depths. The GLTB is used to
capture global and local semantic information of feature maps.
This process can be expressed as

ei = EncoderSwim−Trans(images) (1)

di = DecoderSwim−Trans (ei) . (2)

The Swin transformer block is the core of the Swin trans-
former backbone network. The computational complexity of
the traditional VIT on the global receptive field is quadratic. In
order to reduce the computational complexity, Liu et al. designed
the Swin transformer. Between successive self-attention layers,
a multihead self-attention (MSA) module in transformer is re-
placed by a shift-window-based module. By sequentially con-
catenating the window-based multihead self-attention (W-MSA)
block with a shifted window-based multihead self-attention
(SW-MSA) block, the context information of the global space is
obtained in a more efficient manner. For the specific calculation
process refer to [22].

Under this shifted window partitioning scheme, a W-MSA
module and a SW-MSA module are applied in series to the
transformer block. The first Swin transformer block is a W-MSA
block. The input featurexl−1 passes through the LayerNorm and
W-MSA layers and establishes a residual connection to obtain
x̂l. After that, x̂l passes through the LayerNorm and multi-layer
perceptron (MLP) layers and establishes a residual connection
again to obtainxl. The SW-MSA block has only half the window
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size offset in the calculation of the W-MSA layer, and the other
structures are almost the same as the W-MSA block. This process
can be expressed as

x̂l = WMSA
(
LN

(
xl−1

))
+ xl−1. (3)

xl = MLP
(
LN(x̂l)

)
+ xl. (4)

x̂l+1 = SWMSA
(
LN

(
x̂l
))

+ xl. (5)

xl+1 = MLP
(
LN

(
x̂l+1

))
+ xl+1. (6)

Specific details of the calculations can be found in [22].
Compared with the backbone network based on CNN, the

Swin transformer is a sequence-to-sequence model, which
makes it easier to combine multimodal data. Its long-range
modeling capability from the attention mechanism releases the
limitations of traditional CNN-based models. The Swin trans-
former does not contain inductive biases, so it does a good job
of capturing long-range spatial dependencies in images. Second,
compared with other transformer-based backbone networks, the
computational complexity of the Swin transformer is lower, and
the speed of recognition and reasoning will be faster.

C. Swin-Conv-Dspp

Since atrous convolution [56] easily leads to the loss of
continuous information in space, it is not conducive to capture
object features of different scales. To solve this problem, ASPP
in Deeplabv3+ uses multiple parallel atrous convolutional layers
with different sampling rates to obtain information of different
scales of objects. And in the case of reducing the loss of in-
formation as much as possible, the construction of the feature
extraction network is strengthened by increasing the receptive
field. RS images often contain a lot of noise [57], such as light
intensity and light incident angle. How to effectively suppress
the negative effects of these noises has become the key to
semantic segmentation of RS urban scenes. Atrous convolution
is extracted across pixels in feature point extraction, which is a
sparse sampling method. This will inevitably lead to the loss of
pixel information, resulting in a lack of correlation between the
results obtained by long-distance convolution, which is not con-
ducive to suppressing noise. This will make it difficult to identify
targets with too high interclass similarity or too large intraclass
differences due to light incident angle and light intensity, and
eventually lead to the appearance of holes.

Therefore, we combined the characteristics of CNN and the
Swin transformer to design a dual-space pyramid pooling layer,
using Swin transformer’s strong information extraction ability
in the global context to make up for the key details lost by
using atrous convolution information, and strengthen the ability
to extract global context feature information to alleviate the
difficulty of ASPP to capture the long-range dependence of
semantic information. The proposed SCD is shown in Fig. 3.
Atrous convolution is essentially a superposition of many high-
pass filters [58], which continuously enhances high-frequency
information, so it tends to be better at extracting high-frequency
information of features. The transformer is essentially a low-
pass filter [59], which continuously strengthens the underlying

Fig. 3. Structure of the SCD module, of which the top branch is the Swin
transformer branch and the bottom branch is the CNN branch.

semantic information of the image, so it is often better at ex-
tracting low-frequency information of features. By combining
the advantages of the two to reduce the differences within classes
and expand the frequency of information between classes, the
negative effects of various noises in RS images are effectively
suppressed. It improves the phenomenon that it is difficult to dis-
tinguish due to excessive intraclass differences or high interclass
similarity, and alleviates the problem of hole phenomenon.

Specifically, SCD has Swin transformer branch and con-
volution branch. As shown in Fig. 3, shiftable windows of
different sizes are used to better extract semantic information
between patches with different distances to capture multiscale
information. Smaller window scales aim to capture local infor-
mation, while larger windows aim to capture global contextual
information. The convolution branch utilizes 1, 4, 8, and 12
atrous convolutions with different dilation rates, and it broadly
extracts objects of different scales by expanding the receptive
field of the convolution. Try to expand the receptive field to
extract feature information of different scales without reducing
the loss of information. By combining the strong local feature
extraction ability of convolution and the excellent capture ability
of the transformer in global context and long-range dependen-
cies, SCD shows excellent antinoise performance, effectively
alleviating the problem of holes caused by excessive similarity
between classes.

D. Global-Local Transformer Block

The proposed GLTB is mainly composed of the following two
branches: 1) the global context branch and 2) the local context
branch.

In RS images, the distribution of cars is often clustered,
such as parking lots, temporary parking spaces on roads, and
the parking locations and distributions are often regular. If the
global context information can be effectively extracted, learnt,
and captured car parking the rules of the model, the accuracy of
the car class prediction will be greatly improved. The same is
true for the building class, the distribution structure of the house
is strongly related to the location. Houses are always arranged
in a determinant layout, with buildings arranged in parallel to
form a regular determinant. And the shape of the house is often
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rectangular, square, and rarely other shapes. Although global
context information is very important in semantic segmentation
of complex urban scenes, local information also plays a pivotal
role in the rich spatial details of images. Only using traditional
convolution to extract semantic features is not ideal because
it is too limited to local information. Local information is very
important for RS segmentation, and only using the global context
capture ability of transformer will result in the inability to effec-
tively extract local information features of high-resolution RS
images. The advantages of both can be combined to effectively
extract local context information and global context information.

In the global branch, which is mainly captured by window-
based multihead autonomous attention, we first use standard
1 × 1 convolution to expand the channel dimension of the input
2-D feature map ∈ RB×C×H×W by a factor of 3. Next, the
1-D sequence ∈ R

(
3×B × H

W × W
W × h

h

)× (w × w)× C
h is

converted into Q, K, and V vectors using the window division
operation. For details, the channel dimension is set to 64, and
the window size and attention head are both set to 8. Details
of window-based multihead self-attention can be found in [60].
Although self-attention based on shiftable windows can capture
feature information across windows, the amount of computa-
tion is greatly increased. Therefore, we introduce the context
interaction module of the cross-shaped window to fuse the two
feature maps generated by the horizontal average pooling layer
and the vertical average pooling layer, so as to capture the global
context efficiently. Details of the computation of GLTB in the
global branch can be found in [61].

In addition, in RS images, a certain category is often obscured
by shadows or other objects. For example, houses on both sides
of the road can easily occlude parked or moving cars on the
road. In this way, it is easy to cause problems such as blurred
boundaries, false detections or even missed detections during
segmentation. In order to solve the problem that the target to be
recognized is occluded, Li et al. [62] proposed spatial pyramid
convolutional shuffle in you only look once (YOLO), hoping
to solve the recognition of the occluded human body. However,
it does not take into account the loss of detailed information
caused by the use of parallel convolution, and is still limited
to the capture of local information by convolution, lacking
the extraction of global context information, which obviously
cannot be directly applied to the field of RS. Inspired by it,
in the local branch, we propose an SPPS whose structure is
shown in Fig. 4. Specifically, it covers different ranges by using
four parallel convolution kernels of different sizes and dilation
rate convolutions, and then stacks the results obtained by each
branch convolution on the channel. Since the limited visible
pixels of the occluded object are very rare, it is inevitable that
some pixel information will be lost after passing through the
convolution kernels of different sizes. For the occluded object,
these rare pixel information often becomes the final occlusion
whether objects can be correctly identified. Therefore, we use a
global average pooling layer and skip connections to compensate
for the loss of key details in utilizing different kernel sizes.
Then, we use PixelShuffle to combine the adjacent elements.
PixelShuffle will combine the information of the same position
extracted from convolution kernals of different sizes such as

Fig. 4. Structure of the SPPS module.

Algorithm 1: Training Process of SCG-TransNet.
Input: Vaihingen or Potsdam dataset D;

1: for epoch < epochs do
2: Extract features by (1) with SCD module;
3: Fusing features by (2) with GLTB module;
4: Get segmentation maps;
5: Update the parameters of the module;
6: end for

Output: Trained SCG-TransNet;

blue, green, yellow, and purple in the figure in an adjacent
manner. In the feature graph output by SPPS, the information
of adjacent combination of features extracted from the same
position in the original feature graph by convolution kernel of
different sizes and expansion rate is called a cell. Each cell
contains information extracted by different kernel sizes at the
same position in the original feature map. These information
can provide multilevel information extracted from the same
position of the original feature map, and realize the extraction of
multireceptive field information from the same position of the
feature map. SPPS can improve the ability to extract key details
and generate distinguishable features from the limited visible
pixels of occluded objects. What is more, it further enhances the
extraction ability of local information, and refines the global and
local feature information of the feature map when upsampling
restores the feature map. At the same time, the module can be
plug-and-play and can be efficiently migrated to other models
for use.

Furthermore, we provide Algorithm 1 to describe our pro-
posed SCD-TransNet in detail.

IV. EXPERIMENTS

A. Datasets

1) Vaihingen Dataset: The Vaihingen dataset [63] contains
33 remotely sensed images of different sizes, which extracted
from a very large top-level orthophoto image, covering more
than 1.38 km2 of the city of Vaihingen. The RS image format
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is an 8-b tag image file format (TIFF) file consisting of the
following three bands: 1) near infrared; 2) red and 3) green.
The digital surface model (DSM) is a single-band TIFF file with
the gray level (corresponding to the DSM height) encoded as a
32-b floating point value. In our experiments, we cropped them
each to a size of 256 × 256, and the details of the experiments
are given in [64].

2) POTSDAM Dataset: The POTSDAM dataset [63] has 38
remotely sensed images all of 6000 × 6000 resolution in size.
The dataset covers 3.42 km2 of complex buildings and dense
settlement structures. The dataset has six categories for semantic
segmentation. Again, we cropped each of them to a size of
256 × 256.

We ignore the category of “background” in the quantitative
evaluation of the two datasets.

B. Implementation Details

1) Training Setup: Our network model is built on Pytorch’s
deep learning framework. For fast convergence, we use Adam as
the optimizer and set the propulsion to 0.9 to train the model. The
initial learning rate was set to 0.001 and the learning rate was
adjusted using a step strategy. All experiments were deployed
on NVIDIA GTX 2060 and NVIDIA GTX 3090. The batch size
was set to 10 and the maximum epoch was 150.

2) Loss Function: Due to the category imbalance in the
Vaihingen and POTSDAM datasets, the model training focused
on the larger categories and ignored the smaller categories. To
improve this problem, we used the joint loss of dice Loss [65]
and cross entropy (CE) Loss, with the joint loss L denoted as

L = LCE + LDice. (7)

3) Evaluation Metrics: We use the mean cross-merge ratio
(MIoU) and the mean F1 (Ave F1) score to evaluate model per-
formance. These two evaluation metrics are based on confusion
matrices and contain the following four terms:

1) true positive (TP);
2) false positive (FP);
3) true negative (TN);
4) false negative (FN).
In addition, we added giga floating-point operations per

second (GFLOPs) and overall accuracy (OA) in the ablation
experiment to evaluate the computational complexity and overall
accuracy of the model, respectively. For each category, the
intersection over union (IOU) is defined as the intersection of
the predicted and true values and is calculated as follows:

IoU =
TP

TP + FP + FN
. (8)

The F1 score for each category is calculated as follows:

F1 = 2× precision × recall
precision + recall

. (9)

The overall accuracy rate OA is calculated as

OA =
TP

TP + FP + TN + FN
(10)

Fig. 5. Comparison of segmentation results before and after using SCD and
GLTB in the SCG-TransNet framework.

follows where precision = TP/(TP + FP) recall = TP/(TP +
FN). In addition, MIoU represents the average of IoU across
all categories, and Ave.F1 score is the average of F1 across all
categories.

C. Ablation Experiments

To evaluate the performance of the proposed network structure
and two important modules, we used SCG-TransNet without
the addition of SCD and GLTB as the baseline network and
conducted ablation experiments on the Vaihingen dataset. The
boldface of all tables in the text represents the maximum value
of each column. In our baseline network, the Swin transformer
is used for both encoder and decoder. In a large number of
experiments comparing different hyperparameters, we select
the hyperparameters with the best results to set the baseline
network. In the encoder, the ratio of mlp hidden dim to em-
bedding dim is set to 4, the patch size is set to 4 × 4 size
and the patch norm is used, the stochastic depth rate is set to
0.1, attention dropout rate is set to 0, the hidden size is set to
96, the window size is 8, the number of layers corresponding
to each stage is 2, 2, and 6, and the number of heads cor-
responding to each layer is 3, 6, and 12. In the decoder, the
number of layers corresponding to each stage is 2, 2, and 2,
and the number of heads corresponding to each layer is 3, 3,
and 3.

1) Effect of SCD: Table I shows that MIoU, OA, and average
F1 improve by 1.02%, 0.35%, and 0.79%, respectively, when
SCD is considered in the SCG-TransNet framework. The car
class shows the largest improvement in segmentation accuracy,
with a 3.07% increase in IoU, followed by the building class
with a 0.96% increase, validating the effectiveness of SCD in
the network. As Fig. 5 shows, in the first row of the ablation
experiment, the color of the “building” is not consistent on both
sides due to the angle of incidence of the light and the strong
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TABLE I
ABLATION EXPERIMENT OF THE PROPOSED MODULES ON THE VAIHINGEN DATASET

illumination. The shadow from the “building” also obscures
the “impervious surface” above it, resulting in a high intraclass
variability with little interclass variability. Before the addition of
the SCD, the black side of the “building,” which was obscured by
the shadow, showed varying degrees of holes, which were well
mitigated by the introduction of the SCD. In the second row, the
shadow from the high vegetation obscures the low vegetation in
its immediate vicinity, and because the obscured low vegetation
has very few and discontinuous pixel points, the model also
shows varying degrees of holes in the segmentation before the
introduction of SCD. The introduction of SCD effectively sup-
presses the negative effects of light and accurately separates out
the obscured low vegetation, while at the same time mitigating
the holes caused by the discontinuity of pixel points caused by
the obscured low vegetation. The visualization of Fig. 5 shows
that the introduction of SCD effectively mitigates the holes in the
segmentation and improves the accuracy of target recognition for
high interclass similarity.

2) Effect of GLTB: As shown in Table I, when GLTB is
considered in the SCG-TransNet framework, MIoU, OA, and
average F1 are improved by 2.23%, 0.78%, and 1.65%, respec-
tively. The car class has the most improvement in segmentation
accuracy, with a 4.07% improvement in IoU. The IoU of the
other four classes “impervious surface,” “building,” “low veg-
etation,” and “tree” improved by 2.43%, 2.13%, 2.24%, and
0.30%, respectively. As shown in Fig. 5, in the third row of the
ablation experiment, under the influence of oblique sidelight,
the shadow produced by “building” almost completely covers
the low vegetation category, which is certainly very challenging
for the model to identify. In the fifth row, the close proximity
of the cars leads to the problem of shadows within the class
obscuring each other. In the third and fourth rows, it can be seen
that before the introduction of GLTB, the model does a very
poor job of recognizing the obscured objects, not only incorrect
vvcly detecting the obscured low vegetation as houses, but also
missing the obscured cars. With the introduction of GLTB, the
model accurately segmented the obscured low vegetation and
cars, effectively reducing the negative effects of shadows. The
image in the fifth row was taken in a car park, with cars in close
proximity to each other, which tested the model’s performance
in segmenting small target edges in a densely distributed space.
Before the introduction of GLTB, the model was unable to refine
the features of each car, resulting in the edge pixels of the “car”
being mixed together and unable to distinguish between cars.
With the introduction of GLTB, the model almost perfectly
separates the pixels that were previously predicted to be mixed
in the car park, and separates the different cars. Secondly, in
rows 4–6, before the introduction of GLTB, the model showed
jagged edges for the segmentation of different categories. In

contrast, after the introduction of GLTB, the model segmented
the edges of different targets very smoothly, with almost no
jagged fuzzy edges, and the model’s performance in segmenting
the edges of targets improved substantially. As can be seen
from the visualization of the ablation experiments in the fourth,
fifth, and sixth rows, GLTB shows excellent edge segmentation
capability, effectively improving the situation of false detection
or missed detection due to shadow obscuration from oblique
sidelight.

3) Joint Effect: Table I reflects that the joint effect between
the two modules is studied under the SCG-TransNet framework.
When SCD and GLTB are introduced simultaneously, MIoU,
OA, and average F1 are improved by 3.00%, 0.93%, and 2.31%,
respectively. It is obvious that after adding GLTB, the IOU of
the “car” class is increased by nearly 9.37%, followed by the
“low vegetation” class, the segmentation accuracy is improved
by 3.29%, and the remaining three classes “impervious surface,”
“building,” the IoU of “tree” has increased by 0.72%, 1.59%, and
0.05%, respectively. From Fig. 5, we can clearly see that in the
first row, the model effectively alleviates the hole phenomenon
caused by high intensity light, which is caused by large intraclass
difference and high interclass similarity. In the second, third, and
fourth rows, the model effectively suppresses the negative effects
of interclass and intraclass mutual occlusion caused by shadows
generated by oblique side lights. In the fifth row, the model
also achieves excellent segmentation performance in dense and
complex small-object aggregation scenarios. In addition, we can
clearly see that the SCG-TransNet combining SCD and GLTB
has greatly improved the edge information localization ability
of the model, and almost smoothes all segmentation edges.

D. Comparison With Other Methods

1) Results on the Vaihingen Dataset: Table II lists the ex-
perimental results of different existing methods. Our proposed
SCG-TransNet achieves 70.29% MIoU and 82.27% average F1
segmentation, outperforming the other methods. In traditional
CNN, the UNet network combines high-level semantic features
from decoder and low-level features from encoder correspond-
ing scales by using skip connections, Deeplabv3+ uses atrous
convolutions with different dilation rates to build spatial pooling
pyramids, and experimental data show that the segmentation
effect is better than other traditional CNN methods. Compared
to UNet, our model improves 3.94% on MIoU and 3.14% on
average F1, and compared to Deeplabv3+, our model improves
3.13% on MIoU and 2.56% on average F1. UperNet and DANet
with pyramidal structure are not as good as our SCG-TransNet
in extracting global contextual information. Swin-UNet uses a
pure transformer structure, which is not ideal in segmentation.
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TABLE II
COMPARISON OF SEGMENTATION RESULTS ON THE VAIHINGEN DATASET

Fig. 6. Visualization results of the Vaihingen dataset.

TransUnet uses a transformer and CNN serial in the encoding
stage structure for feature extraction, while ST-U-shaped net-
work (ST-UNet) uses a parallel structure of transformer and
CNN in the encoding phase. Compared with ST-UNet, our
model improves 0.06% in MIoU and 0.12% in average F1,
demonstrating the superiority of our proposed SCG-TransNet.

A visual comparison of several semantic segmentation meth-
ods used in Table II is shown in Fig. 6. Compared with other
models, SCG-TransNet effectively alleviates the problem of
poor segmentation accuracy caused by high similarity between
classes due to differences in light intensity and light incident
angle. As shown in the first line, the “impervious surface” in
“building” and “low vegetation” is very similar to the adjacent
“low vegetation” category due to light, and other models in-
correctly identify “impervious surface” for “low vegetation”,
SCG-TransNet makes an accurate judgment. In the second row,
“building” in the yellow box presents two colors of black and
light gray due to the incident angle of the light. Especially in the
yellow box, the white car has serious reflections under the action
of strong light, which is very similar to the “building” class.
Under such harsh environmental conditions, no other models can
recognize the color of “building” in black and the “building” in
strong reflection. “Car,” while SCG-TransNet effectively elimi-
nates the interference caused by light, and accurately recognizes
the black “building” and the strongly reflective “car”. In the third

row, the shadows produced by high vegetation block nearby
low vegetation. Under the influence of shadows, other models
mistakenly identify the occluded low vegetation as “tree,” while
our model effectively extracts distinguishable feature informa-
tion from the limited pixels of the occluded target, perfectly
obstructed low vegetation is identified. In the fourth row, the
white car also has reflected light, similar to the second row, and
obscures the car next to it due to the difference in the height
of the car and the angle of incidence of the light. Under the
influence of reflected light, almost all other models misdetected
the car as “building,” but SCG-TransNet accurately identified
and segmented it. As shown in Fig. 6, SCG-TransNet effectively
identified the occluded target shows excellent segmentation
performance.

2) Results on the POTSDAM Dataset: Table III shows the
segmentation results of each method on the POTSDAM dataset.
The proposed SCG-TransNet achieves 76.04% on MIoU and
86.20% on average F1, outperforming the results of other meth-
ods, demonstrating the superiority of the model. Among the
traditional CNN models, Deeplabv3+ outperforms other tradi-
tional CNN segmentation models. Compared with Deeplabv3+,
SCG-TransNet improves MIoU and average F1 by 1.56% and
1.07%, respectively. Compared with ST-UNet with 160.97 MB
of parameters, SCG-TransNet with only 26% of ST-UNet pa-
rameters still surpasses 0.07% and 0.12% in MIoU and average
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TABLE III
COMPARISON OF SEGMENTATION RESULTS ON THE POTSDAM DATASET

Fig. 7. Visualization results of the POTSDAM dataset.

F1, achieving SOTA results. Compared with Swin-UNet, SCG-
TransNet improves MIoU and average F1 by 10.52% and 7.41%,
respectively.

The visualization of segmentation results for each model is
shown in Fig. 7. Looking at the first row, the similarity between
“low vegetation” and its adjacent “impervious surface” is very
high, and both appear dark gray. Obviously, the ability of the
model to localize edge information is particularly important in
the face of adjacent targets with such high interclass similarity.
From the comparison of segmentation results of different mod-
els, we can clearly see that our model has the best performance
for segmentation boundaries when the two classes are adjacent
and the similarity between classes is so high. Looking at the
third row, in the yellow box above, the sides of the “impervious
surface” are surrounded by low vegetation. In the bottom yellow
box, the shadows from the two houses cause the low vegetation
between them to appear black, making it difficult for the model
to be identified. Observe Fig. 7, some models mistakenly detect
it as “tree,” while our SCG-TransNet effectively suppresses
the adverse effects of shadows, accurately segment the low
vegetation that is obscured, and correctly distinguishes included
between “building,” “low vegetation,” and “impervious surface.”
In the fourth row, the “tree” in the yellow box is almost the same
color as its nearby low vegetation due to the light intensity. For
this reason, the segmentation edges of the “tree” in this box

are very blurred by other models and appear to have various
degrees of false detection. And our SCG-TransNet effectively
improves the phenomenon of false detection, blurred boundary,
and boundary fault, showing strong segmentation performance.

3) Parameter and Computation Complexity Analysis: An-
alyzing in terms of parameters, the proposed model has only
41.98 MB of parameters, which is far less than the 160.97 MB
parameter of the SOTA model, and only 26% of the SOTA
model. And the obtained 70.29%, 76.04% Miou, and 82.27%
on international society for photogrammetry and remote sensing
(ISPRS)-Vaihingen dataset and ISPRS-Potsdam dataset, respec-
tively, 86.20% average F1 surpassed SOTA’s 70.23%, 75.97%
Miou and 82.15%, 86.13% average F1. In addition, Swin-UNet
has only 25.89 MB of parameters, although the parameter
amount is very small, but due to its lack of convolution operation,
it ignores the attention to local information, which is obviously
not suitable for RS images with a large number of different
scales, resulting in poor performance. The final performance
of FCN with only 22.70 MB of parameters is also poor due
to the lack of attention to global information. Analyzing in
terms of model complexity, models with transformer or Swin
transformer blocks usually have greater computational complex-
ity than traditional CNN semantic segmentation models. For
example, the GFLOPs of TransUNet and ST-UNet are 35.84 G
and 78.69 G, respectively. Compared with the GFLOPs of the
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traditional CNN semantic segmentation models DeeplabV3+
and UpperNet, which are only 20.78 G and 26.03 G, while the
computational complexity GFLOPs of DANet with multiple at-
tention is as high as 125.78 G. The computational complexity of
our SCG-TransNet is 52.97 G. Although SCG-TransNet does not
have an advantage in computational complexity when compared
with the traditional CNN semantic segmentation models, it still
has a great effect when applied to scenarios where the model
efficiency requirements are not very high. At the same time, it is
still valuable for exploring how Swin Transformer can be better
applied to the field of RS with such a complex environment.

V. CONCLUSION

In this work, we propose SCG-TransNet, a semantic segmen-
tation framework combining Swin transformer and Deeplabv3+.
Compared with models based on CNN backbone network, the
Swin transformer does not contain inductive bias, which allows
for better representation of long-range dependencies. Compared
with other transformers, Swin transformer has lower compu-
tational complexity, fewer parameters, and output of hierar-
chical feature maps. The proposed SCD captures multiscale
information of features by combining the excellent local feature
extraction ability of convolution and the powerful capture ability
of Swin transformer in global context information, so as to obtain
more discriminative features and effectively inhibits the noise
caused by shadow occlusion caused by light. In addition, the
GLTB with SPPS can make full use of the limited pixels of
the occluded object to generate distinguishable representation
information, effectively alleviate the situation of false detec-
tion or even missed detection caused by the occlusion of the
target, and greatly improve the model’s localization of edge
information ability. In various RS image semantic segmen-
tation, SCG-TransNet shows great potential for constructing
long-range dependencies and outperforms other SOTA VITs
in our experiments. In the future, we will continue to improve
and optimize the model, expecting that the model can be more
lightweight while ensuring the segmentation ability, and can be
applied to a variety of different fields.
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