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Enhanced Self-Attention Network for Remote
Sensing Building Change Detection

Shike Liang, Zhen Hua , and Jinjiang Li

Abstract—The self-attention mechanism can break the limitation
of the receptive field, model in a global scope, and extract global
information efficiently. In this work, we propose a lightweight
remote sensing building change detection model (ESACD). In the
encoder, we use the enhanced self-attention layer, CoT layer, in-
stead of the normal convolution operation. The CoT layer fuses
the dynamic context with the static context. Compared with the
ordinary convolutional layer, this strategy can fully mine the local
features between the input keys to dynamically enhance the feature
representation. Subsequently, we use dual attention to further mine
the low-frequency information and high-frequency information of
the images and the semantic features of interest to the model. Dual
attention consists of the HiLo attention mechanism and the Tok-
enizer attention mechanism. HiLo extracts high-frequency infor-
mation and low-frequency information through two branches. In
the high-frequency branch, nonoverlapping windows are applied to
the features for self-attention. In the low-frequency branch, average
pooling is first performed on features before self-attention. After
Tokenizer attention extracts the feature tokens that the model is
interested in, it encodes its information and, then, converts the
tokens into pixel-level features. Tokenizer attention realizes the
efficient extraction of features and enhances the representation
ability of the model. Finally, we fuse feature information to enhance
the fluidity of information and improve accuracy. Through our
experiments on two change detection datasets, ESACD has better
performance than other state-of-the-art methods while maintain-
ing fewer parameters.

Index Terms—Change detection (CD), remote sensing building
images, self-attention.

I. INTRODUCTION

THE task of remote sensing change detection has developed
rapidly recently and has attracted the attention of a large

number of researchers. Given a bitemporal image of the same
area, the purpose of building change detection is to detect the
area where the building changes in the images. And by using
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a binary image to represent the change map, that is, the area
with architectural changes is represented by white, and the area
without architectural change detection is represented by black.
In particular, note that there are correlated and uncorrelated
changes in bitemporal images. Relevant changes refer to changes
in the building, and nonrelevant changes refer to changes due
to sunlight [1], soil [2], and seasonal changes. The model must
have the ability to distinguish relevant changes from nonrelated
changes to avoid misjudgment of nonrelated changes as archi-
tectural changes, resulting in a decrease in model accuracy. The
development of high-resolution remote sensing architectural im-
ages has played a vital role in the application of change detection.
Now remote sensing image change detection has been widely
used in various fields such as urban sprawl detection [3], [4], [5],
postdisaster reconstruction [1], [6], and land use detection [7].
In this work, we propose a lightweight change detection model
for remote sensing building images.

Many fields of computer vision are currently affected by deep
learning, and research progress has been greatly accelerated [8].
In the deep-learning model, the essence of CNN is to use the
convolution kernel training parameters to learn the local feature
information of pixels. By continuously stacking and expanding
the receptive field of the convolutional layer, the convolutional
layer can learn more semantic information [9], [10]. Due to the
existence of CNNs local mechanism, CNN has the character-
istics of local spatial locality and translation invariance. The
popularity of transformers can be seen from the original ViT [11]
and numerous ViT variants, such as Swin TransFormer [12] and
Fastformer [13]. ViT divides the image into multiple patches
and uses the linear embedding sequence of these patches as the
input of transformers. In transformers, patches are first expanded
into 2-D sequence blocks and positional embeddings are added
to encode positional information. Then, the overall information
is sent to the transformer encoder, and the self-attention op-
eration is used to perform remote semantic modeling to learn
global feature information. The reason why transformers can
show superior performance mainly depends on the self-attention
mechanism. The self-attention mechanism is a variant of the
attention mechanism, which reduces the dependence on external
information and has better performance in capturing the internal
correlation of data or features. We believe that the way CNN and
self-attention mechanisms extract features are complementary
forms, and we have been trying to fuse the characteristics of the
two. CNN uses the convolution kernel to mine the local pixel set
centered on a certain pixel, which can efficiently extract the in-
formation in the local semantic image. However, in the process of
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learning features, with the accumulation of convolutional layers,
it is easy to fail to fit and lack the ability to learn global features.
Transformer-based remote sensing change detection methods
are good at establishing long-distance dependencies. Compared
with expanding the receptive field in CNN, transformers can
perform remote modeling more directly and efficiently. How-
ever, the transformer-based remote sensing change detection
method faces the problems of many parameters and a large
amount of calculation and cannot efficiently process large-scale
image features. Therefore, many researchers are now paying
more attention to the lightweight direction of transformers.

What we need to know is that the image contains rich fre-
quency information, and the low frequency and high frequency
play different roles. The authors in [14] and [15] analyzed the
role of frequency in computer vision tasks. Low frequencies in
an image usually represent global information, such as global
structure, color, etc.; high frequencies in an image represent
detailed features, such as sharp edges. Based on this high-
and low-frequency information, researchers have proposed nu-
merous solutions for image rescaling [16], generalization [17],
image superresolution [18], [19], and neural network compres-
sion [20], [21]. At present, there is not much work to apply
the extraction of different frequencies of images to remote
sensing change detection tasks. We hope to make full use of
the information carried by different frequencies in the images to
enhance the model’s ability to represent features and simulate
global relationships. Two attention heads are adopted in [22] to
model local and global features. Among them, the first attention
head is used to capture the local features of the image and
focus on the local area in the image by calculating the attention
weight on the low-resolution feature map of the image. The
second attention head is used for global feature modeling, by
calculating the attention weight on the high-resolution feature
map of the image, so as to focus on the global information of
the entire image. Affected by the excellent performance in [22],
we introduce the HiLo attention mechanism to mine global and
fine features by using low-frequency and high-frequency infor-
mation in the images. For the high-frequency and low-frequency
information in the images, different branches are used to encode
the multihead self-attention mechanism. In the high-frequency
branch, the high-resolution feature maps are extracted through
the local window self-attention mechanism of a certain number
of attention heads for high-frequency feature extraction. In the
low-frequency branch, the global self-attention mechanism of
the remaining attention heads is used to encode low-frequency
information on the downsampled feature maps, which can re-
duce the computational load of the model and maintain a faster
speed. The low-frequency branch is then fused with the high-
frequency branch to simulate global and local features. HiLo
is more friendly to hardware requirements. Experiments have
proved that HiLo has achieved excellent performance and is
more memory efficient.

In this work, we use the enhanced self-attention CoT layer [23]
to replace the ordinary convolutional layer and use dual atten-
tion to enhance the expressiveness of the model. Li et al. [23]
propose to use a context-aware transformer network to improve
visual recognition performance, which can capture contextual

information in images and use this information to improve
the effect of the model. CoT first utilizes 3 × 3 convolutions
to encode the static context and then utilizes two consecutive
1 × 1 convolutions to dynamically learn the multihead attention
matrix. Finally, the learned weight matrix is multiplied by the
input value to obtain a dynamic context representation, which is
fused with the static context to obtain the final output. We use a
typical U-Net architecture to extract semantic features of differ-
ent resolutions in bitemporal images. In the encoder in U-Net,
we use the CoT layer to extract the local feature information in
the images; in the decoder, we subtract the two-channel features
to learn the feature difference and then use the CoT layer to
decode the features. Compared with ordinary convolution, CoT
is more able to strengthen the connection of input keys to context.
Then, we utilize the dual-attention mechanism including HiLo
attention and Tokenizer attention [24] to enhance the model-
ing ability of the model. Chen et al. [24] proposed to extract
only the features of interest in the image, convert pixel-level
information into a small number of tags, and provide a better
input representation for subsequent deep-learning models. The
dual-attention mechanism model can enhance the learning of
context and capture the connection between key pixels. Finally,
the learned features are fully fused and predicted to get the best
results.

In summary, our contributions are threefold.
1) In this work, we propose a lightweight change detection

model for remote sensing building images. We use the CoT
layer instead of ordinary convolution operation to mine dynamic
context and static context in parallel, so that dynamic context
can alleviate the limitation of receptive field on model effect in
convolution operation with the assistance of static context. At
the same time, the fusion of dynamic context and static context
also enables the model to learn richer contextual semantic infor-
mation and enhances the feature expression ability of the model.
After our extensive experiments on two datasets, our model has
excellent performance with a small number of parameters.

2) In order to further mine the global structure information
and fine feature information carried by the low frequency and
high frequency in the images, we introduce the HiLo atten-
tion mechanism. By giving the low-frequency branch and the
high-frequency branch a certain number of attention heads to
extract the information carried by the two, the ability of the
model to simulate the feature relationship is enhanced. In the
high-frequency branch, nonoverlapping windows are used for
self-attention mechanism operation, and the average pooling
operation is performed on the feature maps in the low-frequency
branch to reduce image resolution. Through the above two
strategies, the HiLo mechanism has low complexity and high
throughput.

3) We propose a lightweight ESACD implementation for
change detection. It follows the U-Net architecture, uses a
parameter-shared encoder to process bitemporal images, and
then passes the bitemporal feature differences to the decoder
for decoding. We also convert changes of interest to the model
into compact tokens using Tokenizer attention. Subsequently,
use Tokens encoder and Tokens decoder for context modeling
and project back to pixel-level features to supplement details.
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II. RELATED WORK

A. Traditional CD Method

In the remote sensing change detection network based on the
traditional method, it mainly includes the following three steps:
1) data preprocessing, 2) feature extraction, 3) discrimination
and classification. Data preprocessing is to reduce spurious
changes due to data reasons. Commonly used data preprocess-
ing techniques mainly include georeferencing and radiometric
correction, both of which are mainly used to solve the problem
of the geographical location of remote sensing images and the
radiation differences generated when different sensors acquire
remote sensing images. In the following process of feature
extraction and discriminative classification, the model converts
the information in the images into other forms and then analyzes
the differences to obtain the final difference map. Common tradi-
tional methods mainly include clustering and PCA methods [25],
[26]. Due to the development of technology, it is also easier to
obtain high-quality remote sensing images. High-quality remote
sensing images contain a large number of texture features and
spatial structure information. The use of traditional remote sens-
ing change detection methods has been unable to meet the needs
of people to achieve high-precision prediction results. With the
hot momentum of deep learning, many researchers pay more
attention to deep learning, expecting to use deep learning to
achieve better change detection results.

B. Deep Learning CD Method

Feature extraction is divided into pixel-based [27], [28],
object-based [29], [30], [31] and feature-based [32], [33] based
on the basic unit of processing. Pixel-level-based methods are
similar to traditional image-transformation-based methods [34].
A neural network is used to convert the images into a deep
feature space and then perform a pixel-by-pixel comparison of
the deep features to distinguish changing pixels. For example,
Zhang et al. [35] learned deep features and then maps bitem-
poral features to a 2-D polar domain for differential change
recognition. Saha et al. [36] used a pretrained neural network
to extract semantic features change vector analysis (CVA) and
compare features to generate a change map. Object-level-based
methods mainly use superpixels to segment building objects to
accurately identify building boundaries. The features are then
learned using a deep CNN for change recognition. For example,
Zhang et al. [37] extracted fine features and superpixel branches
through parallel neural networks to strengthen the retention of
boundary information of building objects. Finally, the detailed
features are added to the superpixel branch feature maps, and the
feature details of different resolutions are fused to achieve the
final change prediction. Feature-based methods tend to utilize
end-to-end neural networks to learn features in a supervised
manner for change detection.

CD method based on pure CNN: At present, the mainstream
structure based on the neural network is to use the Siamese
structure. According to whether parameter sharing is used, it
can be divided into pure Siamese network and pseudo-Siamese
network. The pure Siamese network is able to measure the

similarity of bitemporal images by extracting common features
of them. Undoubtedly, this is more suitable for the change de-
tection task. The pseudo-Siamese network extracts its semantic
features through two branches. This increases the flexibility of
the model, but at the same time inevitably increases the number
of trainable parameters and complexity. Later, on the basis of the
Siamese network, Daudt et al. [38] used the fully connected layer
FCN architecture for the first time to realize the remote sensing
change detection task and proposed three benchmark models:
1) FC-EF, 2) FC-Siam-Diff, and 3) FC-Siam-Conc. This makes
an important contribution to the research of change detection in
the future. FC-EF first added the bitemporal images directly and
then implemented the remote sensing change detection network
by applying the skip-connected U-Net architecture. FC-Siam-
Diff learned bitemporal image similarity by applying a pure
Siamese network with a parameter-sharing encoder. FC-Siam-
Conc achieved change detection by subtracting the bitemporal
features shared by parameters to obtain the difference between
them. It should be noted that the strategy of directly adding
bitemporal images in FC-EF lacks the advantage of comparing
similar features over the dual-channel Siamese network, so few
researchers use this strategy. Then, in order to further improve
the accuracy of predicting the boundaries of building regions,
Liu et al. [39] proposed a deep pure Siamese dual-task building
change detection network. The network used semantic segmen-
tation tasks to assist the model to further improve the accuracy
of building recognition before predicting differences but this
also imposed requirements on the dataset. At the same time,
the network also introduced an attention module to strengthen
the learning channel and spatial features and improved the loss
function. Zhang et al. [35] proposed a deeply supervised image
fusion network, IFNet. First, the pseudo-Siamese encoder is
used to learn features of different resolutions, and then, deep
supervision is used to distinguish feature differences. Finally,
spatial attention and channel attention are used to fully inte-
grate different features. However, due to the existence of the
pseudo-Siamese network, the IFNet model had a large amount
of parameters.

Transformer-based CD method: After transformers have
achieved excellent results in the NLP field. Many researchers
have begun to try to apply transformers to the field of com-
puter vision [40]. ViT [11] was proposed in 2020 and showed
the surprising performance of transformers. However, ViT also
has obvious shortcomings. The premise of ViT showing good
results is that there are enough data for pretraining; otherwise,
transformers will not be able to break through the limitation
of lack of inductive bias. Subsequently, many variants of ViT
began to emerge, such as Swin Transformer [12], Pyramid Vision
Transformer [41], Lite Transformer [42], and DelighT [43].
Transformer models proved its effect in the CV field. In the
field of change detection, many researchers have introduced
transformers and achieved good results. Chen et al. [24] used
the ResNet dual channel with parameter sharing for feature
extraction and then sent the features to the encoder by block
to simulate the global relationship. Then, the decoder is used to
complete the feature relationship for prediction. In [44], Bandara
and Patel proposed a transformer-based Siamese network, which



LIANG et al.: ENHANCED SELF-ATTENTION NETWORK FOR REMOTE SENSING BUILDING CHANGE DETECTION 4903

Fig. 1. ESACD of the overall network architecture.

mainly included a transformer encoder to learn dual-channel
image features and then used a feature difference module for
each size to compare the differences between the two. Finally, a
lightweight MLP is used to decode and predict the final change
result. ChangeFormer showed excellent results. Liu et al. [45]
proposed an end-to-end transformer-based network, which com-
bined prior extraction and contextual fusion together by learning
prior-aware transformers. Wang et al. [46] proposed a network
for scene change detection. The work in [46] is mainly composed
of CNN backbone, Siamese ViT, and prediction head. CNN
backbone is mainly used to extract feature information. Siamese
ViT is used to establish the global semantic relationship and
the long-term context of the model, making the model more
robust to noise changes. The prediction head is mainly composed
of transposed convolutions to restore the original scale feature
relationship and then predict the change result.

Attention-based CD method: At the same time, it is also
common to use attention-based models in the field of remote
sensing [47]. In the field of remote sensing change detection,
Chen et al. [48] proposed a new Siamese neural network to
solve the CD algorithm problem by combining the spatial atten-
tion mechanism with the location attention mechanism. Zheng
et al. [49] utilized high-frequency attention HFAB-guided sym-
metric networks. HFAB aims to enhance the model’s ability to
acquire high-frequency information of buildings, and it mainly
consists of two stages, namely spatial attention mechanism
and high-frequency enhanced attention. The spatial attention
mechanism first guides the model to focus on the building area
of interest, and then high-frequency enhanced attention is used

to highlight the high-frequency information in the input feature
map, which can better detect the edges of changing buildings.
Chen et al. [50] proposed a fully convolutional Siamese remote
sensing change detection neural network based on dual attention
composed of spatial attention and channel attention. Long-range
dependencies are captured by a dual-attention mechanism for
more discriminative feature representations.

In this work, we propose a lightweight and efficient neural
network for remote sensing change detection. The backbone of
the network is a U-Net architecture based on shared parameters.
It should be noted that we use a CoT layer that combines self-
attention and convolution in the U-Net architecture to alleviate
the limitations of the receptive field of the convolutional layer.
And this will fully mine the global and local information to
improve the expressive ability of the model. We then use a
dual-attention module to improve the modeling ability of the
model.

III. METHOD

In this work, we propose a change detection network ESACD
for remote sensing, and the network structure diagram is shown
in Fig. 1. Our model is mainly composed of the classic U-Net
architecture based on self-attention mechanism, dual attention,
and feature fusion module (FFM). The input of the model is
a bitemporal image I1, I2 ∈ RH×W×3. Next, we elaborate on
each part of the model in detail.

The detailed logic details of our ESACD model are presented
in Algorithm 1.
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Fig. 2. CoT layer module structure.

Algorithm 1: Inference of ESACD-Based Model for
Change Detection.

Input: I1, I2

Output: change map
1: step1: Shallow Feature Extraction
2: F sf1, F sf2 = Shallow Feature Extraction(I1, I2)
3: step2: Use the CoT layer in the encoder to first encode

the bitemporal features
4: Aout ∈ {Aout1, Aout2, Aout3, Aout4} = CoT(F sf1)
5: P out ∈ {P out1, P out2, P out3, P out4} = CoT(F sf2)
6: step3: In the decoder, the dimensions of the

dual-temporal features are subtracted and decoded
7: Mout ∈ {Mout1,Mout2,Mout3,Mout4} =

CoT(Aout − P out)
8: step4: Subtract the extracted shallow features to perform

high- and low-frequency attention operations and then
add them to Mout2

9: Mout
HiLo = HiLo(F sf1 − F sf2)

10: step5: Enhance model modeling ability with the
Tokenizer attention mechanism

11: Mout
Token = Tokenizer(Mout2)

12: step6: Fusion and prediction of feature
13: change map = Feature Fusion(Mout,Mout

HiLo,M
out
Token)

14: return change map

A. CoT Layer

In the classic U-Net architecture, given the input bitemporal
images I1, I2, we first use shallow feature extraction to increase
the feature dimension to learn more feature information and get
feature maps (RH×W×3). Then, we pass the feature maps into
the U-Net network composed of encoder and decoder shared by
parameters to extract semantic features of different resolutions.
Different from the previous classic U-Net, we use the self-
attention mechanism of the CoT layer to replace the conventional
convolutional layer in the U-Net architecture to further learn

contextual key features. This can avoid introducing additional
branches to further learn the feature context and cause additional
parameters. The CoT layer structure is shown in Fig. 2. In the
face of input feature maps, the CoT layer will extract static and
dynamic context features in parallel. The CoT layer learns static
context keys by encoding input keys using a 3 × 3 convolutional
layer. The static context guarantees the local features learned by
taking advantage of the spatial locality of the convolution and
variability such as translation. In the dynamic context branch, the
relationship between each key and query is used to fuse them
to obtain the attention weight matrix between key and query.
The attention weight matrix is then multiplied with value to
achieve a dynamic contextual representation of the input. This
process fully integrates the information provided by key, query,
and value to realize the dynamic mining of the global context.
Finally, the dynamic context and the static context are fused to
realize self-attention learning. This design pays more attention
to the rich context between adjacent keys than the traditional
self-attention mechanism. At the same time, this also enables the
dynamic context to promote the learning of visual representation
under the guidance of the static context and effectively alleviates
the limitation effect of the convolutional layer receptive field on
learning global features. This process can be expressed as

Static = Conv3× 3 (Input) (1a)

QK = Cat ([Static, Input]) (1b)

V = Conv1× 1 (Input) (1c)

Dynamic = LocalConvolution [Conv1× 1(QK), V ] (1d)

Output = Conv1× 1 (Cat[Static,Dynamic]) (1e)

where Conv3× 3 means the convolution kernel is 3 and
Conv1× 1 means the convolution kernel is 1.

B. Dual Attention

In this work, we use Tokenizer attention [24] and HiLo
attention [22] in parallel to perform long-range modeling and
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Fig. 3. High- and low-frequency attention structure.

extract high-frequency and low-frequency information to en-
hance feature representation. Our dual-attention module consists
of Tokenizer attention and HiLo attention. We use dual attention
to enhance the model’s ability to express features and further
mine the high- and low-frequency features in the image to carry
and encode information. Tokenizer learns the feature representa-
tion of the model’s interest in the image and enhances the feature
expression ability of the model. In our work, Tokenizer learns
multiple sets of Tokens with varying features by utilizing spatial
attention, so we call this module Tokenizer attention. Tokenizer
can effectively improve the feature representation ability of
the model while maintaining a small amount of calculation.
HiLo attention uses two branches to learn the high-frequency
and low-frequency features contained in the image in different
forms. Dual attention plays the role of a strengthening link
in ESACD, and its two ends are, respectively, connected to
the U-Net architecture composed of CoT layer and FFM. Our
experiments have proved that dual attention can guarantee a
certain strengthening effect by using Tokenizer attention and
HiLo attention. The more intuitive effect can be observed in
Fig. 10.

1) HiLo Attention: In images, high frequencies capture lo-
cal fine details while low frequencies focus more on global
features. Therefore, we introduce HiLo attention to encode
high-frequency features and low-frequency features through
two branches and then fuse them to improve the efficiency of
feature extraction. As shown in Fig. 3, in the face of feature
maps F sf ∈ R256×256×64 two branches are used to unlock the
high frequency and low frequency of the attention layer, re-
spectively. In the high-frequency branch, the high frequency
is encoded through the self-attention in each local window; in
the low-frequency branch, the global relationship is modeled
by performing self-attention on each window’s average pooled
low-frequency key and each query of the input feature. In order
to achieve better efficiency, different numbers of heads are set
for the high-frequency and low-frequency branches. Keep the
same number N of heads in MSA and assign (1− α)N for

high-frequency feature encoding, and the other αN for low-
frequency feature extraction. Through such a strategy, HiLo can
maintain low complexity and high throughput, which helps to
reduce model parameters.

In detail, in the high-frequency branch, learning detail features
through local window self-attention is more efficient than stan-
dard MSA, so as to achieve high-frequency attention features. In
the low-frequency branch, the low-frequency signal is obtained
by pooling the window, and then, the remaining heads are used
to model the relationship between the low-frequency signal key
and the query in the feature map. Since the pooling operation
reduces the complexity of query and key, the complexity of
low-frequency branches is also reduced. Finally, the results
obtained by the two branches are fused using the concatenation
operation to realize the interaction between low-frequency in-
formation and high-frequency information. Benefiting from the
absence of time-consuming operations such as window sliding
and recursion in the two branches, HiLo runs very fast on the
device. Expressed as

Xinit = DownSample
(
Mout2

)
(2a)

Highout = High (Xinit) (2b)

Lowout = Low (Xinit) (2c)

Mout
HiLo = Cat

(
Highout,Lowout

)
+Xinit (2d)

where High(·) represents the high-frequency feature extraction
branch, and Low(·) represents the low-frequency feature ex-
traction branch. The DownSample module uses a convolutional
layer with a convolution kernel of 3× 3. After the HiLo attention
mechanism, we can get the output result Mout

HiLo ∈ R64×64×64.
2) Tokenizer Attention: We introduce Tokenizer to learn the

feature representation of the model’s interest in the image and
enhance the feature expression ability of the model. In our
work, Tokenizer learns multiple sets of Tokens with varying
features by utilizing spatial attention, so we call this module
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Tokenizer Attention. Tokenizer can effectively improve the fea-
ture representation ability of the model while maintaining a
small amount of calculation. During the positive transmission
of Tokenizer attention, a token extractor is first used to convert
feature maps into semantic tokens to represent the changed
features of interest to the model in bitemporal images. Similar
to tokens in natural language processing, the token extractor
divides the entire feature map into several tokens, and each token
corresponds to a label vector. In this process, facing feature maps
F1 ∈ R64×64×64. First, a convolutional layer is used to obtain L
semantic groups, and then, the spatial attention calculation and
SoftMax operation are performed on each semantic group to ob-
tain the spatial attention map. Finally, the attention map is used to
calculate the weighted average sum of the pixels in F1 to obtain
semantic tokens T1 ∈ RL×C . This process can be expressed as

T1 = (SoftMax (Conv1× 1 (F1;W )))T F 1 (3)

where W ∈ RL×C represents a learnable kernel.
The Tokenizer encoder is composed of N layers of multihead

self-attention (MSA) and multilayer perceptron (MLP) blocks.
And the prenorm residual unit (PreNorm) is used for normal-
ization before each layer of MSA and MLP. The Tokenizer
encoder is to model the context of tokens and simulate the global
relationship. At layer k, MSA accepts tokens from layer k−1 and
obtainsQ,K, andV for multihead self-attention operations. The
specific formula is as follows:

Q = T k−1W q (4a)

K = T k−1W k (4b)

V = T k−1W v (4c)

Attention(Q,K, V ) = SoftMax

(
QKT

√
d

)
V (4d)

where W q,W k, and W v are the learnable parameters of three
linear projection layers.

MSA processes multiple attention heads in parallel and uses
the concatenation operation to fuse multiple attention heads
to obtain the final value. MSA plays an important role in the
Tokenizer encoder capturing the long-term relationship of to-
kens. We then need to project the token representations back
to pixel space to obtain pixel-level features. To this end, we use
Tokens decoder to refine pixel features. Tokens decoder consists
ofM layers of multihead cross attention (MA) and MLP blocks.
Except for using MA, the rest of the structure is similar to Tokens
encoder. We use MA to avoid the model to heavily compute
dense relationships between F1 pixels. It should be noted that in
MSA, the query, key, and value are derived from the same input
sequence, whereas in MA, the query is from the image features,
and the key and value are from the tokens. The detailed process
can be expressed by the formula as follows:

token = Token_Extractor
(
Mout2

)
(5a)

Mmid
Token = Token_Encoder(token) (5b)

Mout
Token = Token_Decoder(Mmid

Token). (5c)

After the above process, we can get the output result Mout
tokens ∈

R64×64×64.

TABLE I
MORE DETAILS ON THE OVERALL STRUCTURE OF THE ESACD MODEL

C. Feature Fusion Module

We use FFM to fully fuse features of different resolutions. The
FFM structure is shown in Fig. 4. FFM first uses the Upsample
module to unify the size to 256 × 256. Before performing this
process, first, add the feature maps that have undergone HiLo
attention and Tokenizer attention. For the Upsample module,
we use the linear interpolation algorithm bilinear to achieve
upsampling. Next, we apply a convolution layer fusion feature
with a 3 × 3 convolution kernel to the feature maps after the
concatenation operation to obtain the final prediction result
change map R256×256×2. This process can be used with the
formula expressed as

Wmid = Upsample
(
Mout,Mout

HiLo +Mout
Token

)
(6a)

W out = Cat
(
Conv3× 3

(
Wmid

))
) (6b)

change map = Pred
(
Conv3× 3

(
Conv3× 3

(
W out

)))
(6c)

where Pred represents prediction head, and the number of change
map channels is 2.

In Table I, we present more details on the overall structure of
the ESACD model in a tabular form. It should be noted that the
parameters following Conv, Max pool, and ConvTranspose2d
are the convolution kernel size and stride, and the parameters
following CoT are the input dimension, output dimension, and
convolution kernel size.

D. Loss Function

Cross-entropy (CE) loss is used to evaluate the difference
between bitemporal features. CE is a widely used loss function
for remote sensing change detection. The model first calculates
the error between the predicted value and the original label and
then uses the loss function to backpropagate the error, calculates
the gradient of the error relative to the network parameters,
moves the parameters in the opposite direction of the gradient,
and continuously updates the parameters to reach the lowest
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Fig. 4. FFM structure.

value of the loss. The formula of the loss function is as follows:

L =
1

H0 ×W0

H,W∑
h=1,w=1

l (Phw, Yhw) (7)

where Yhw is the label for the pixel at location (h,w),
l(Phw, y) = −log(Phwy) is the CE loss and H0 and W0 rep-
resent the length and width of the original image, respectively.

IV. EXPERIMENT

A. Experiment Details

Our proposed model is implemented through Pytorch. In the
training process, we apply normal data augmentation to the input
image patches, including random flipping, random rescaling,
random color dithering, random cropping, and Gaussian blur.
Our ESACD is trained in an end-to-end fashion using AdamW
as the optimizer with a weight decay of 0.01 and a beta value of
(0.9, 0.999) to optimize the model. We set the batch size as B
= 256. The loss used for training is CE, the initial learning rate
is set to 0.0001 and it gradually decays to 0. We train it until the
model fits perfectly.

B. Datasets and Metrics

In this experiment, we use the WHU-CD [51] dataset and
the Google Data [52] dataset for comparative experiments and
ablation experiments.

WHU-CD [51] is a public building CD dataset. It includes
two aerial images with 0.075-m spatial resolution, both of which
were taken in Christchurch, but at different times, one in 2012
and the other in 2016. The original image size in WHU-CD
is 32507 × 15354 pixels. We will crop it to a nonoverlapping

256× 256 image block. Also, we randomly divide it into training
set, validation set, and test set in the ratio of 8:1:1.

The Google Data [52] collect 19 pairs of VHR images of
seasonal changes with a resolution of 0.55 m. The images
document changes in the suburbs of Guangzhou, China, be-
tween 2006 and 2019. Image sizes range from 1006 × 1168
to 4936 × 5224 pixels. We will crop it to a nonoverlapping
256 × 256 image block. We randomly divide it into the training
set and the test set in the ratio of 10:1.

In this experiment, in order to compare the effect of our
model with other models in many aspects, we use F1, IoU, over
accuracy (OA), precision, and recall as evaluation indicators.
Among them, since F1 and IoU are commonly used as evaluation
indicators in image segmentation tasks, we choose F1 and IoU as
our main evaluation indicators, and the rest of the indicators are
used as auxiliary indicators. F1 is used to measure the accuracy
of the binary classification model. IoU represents the correlation
between the predicted value and the real value, the higher the
correlation, the higher the value. Precision represents the propor-
tion of samples identified as positive that are correctly identified.
Recall represents the proportion of all positive samples that were
correctly identified in the prediction

F1 = 2× Pre × Rec
Pre + Rec

(8a)

IoU =
TP

TP + FN + FP
(8b)

OA =
TP + TN

TP + TN + FN + FP
(8c)

Rec = 2× TP
TP + FN

(8d)
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Pre =
TP

TP + FP
(8e)

where TN, TP, FP, and FN represent the number of true negative,
true positive, false positive, and false negative, respectively.

C. Comparison With Recent Methods

In order to verify the effectiveness of our model, we choose
methods that have performed well in recent years to compare
with them. These methods are mainly divided into three cat-
egories: The first category is CNN-based methods, including
FC-EF [38], FC-Siam-Di [38], and FC-Siam-Conc [38]. These
methods all adopt U-Net architecture to extract semantic infor-
mation at different levels. FC-EF, FC-Siam-Di, and FC-Siam-
Conc are classic models in the field of remote sensing building
change detection, which have great significance for the future
development of this field. The difference among the three lies in
the processing method of bitemporal images. FC-EF added the
input bitemporal images and then transfers them to the model;
FC-Siam-Di subtracted bitemporal features to extract features;
FC-Siam-Conc used parameter sharing to directly perform con-
catenation operations on bitemporal features. The second cate-
gory is attention-based methods, including DSIFN [35]. DSIFN
proposed a multidimensional image fusion network that fused
bitemporal features in a disparity discrimination network to
ensure effective interaction of bitemporal features through an
attention mechanism. In addition, depth supervision is used to
effectively improve the ability to discriminate changing pixels.
The third category is transformer-based methods, including BIT,
ChangeFormer, Transcd, and PaFormer. These methods used
transformer’s self-attention mechanism for remote semantic
modeling and have achieved excellent results. Chen et al. [24]
proposed a transformer-based approach for CD. It slices the
input image into multiple tokens and models the context based
on the tokens. In addition, BIT has good performance in terms
of efficiency and accuracy without using complex structures.
The work in [46] is a transformer-based neural network for
scene CD. Wang et al. [46] improve the recognition of regions
of interest in images and improve robustness to noise changes
by establishing long-term contextual relationships. The work
in [45] is an end-to-end transformer-based network, which
combines prior extraction and contextual fusion together by
learning prior-aware transformer. Bandara and Patel [44] used
the hierarchical transformer encoder as well as the lightweight
MLP decoder to add sensory fields to enhance context shaping
and feature representation capabilities.

The comparison results of our model with other excellent
models on the dataset WHU-CD and Google-CD test set are
shown in Tables II and III. In the WHU-CD dataset, our main
evaluation metrics F1 and IoU outperform the second place by
1.6% and 2.9%, respectively. In the Google-CD dataset, our main
evaluation metrics F1 and IoU outperform the second place by
0.7% and 1.2%, respectively. It is clear that the performance of
our proposed ESACD outperforms the rest of the models on both
datasets. To further demonstrate that our ESACD is lightweight,
we show in Fig. 5(a) and (b) how ESACD compares with other
methods on the WHU-CD dataset on the metrics F1 and number

TABLE II
COMPARISON OF RESULTS ON THE WHU-CD DATASET

TABLE III
COMPARISON OF RESULTS ON THE GOOGLE-CD DATASET

Fig. 5. (a) Comparison of parameter quantities between ESACD and other CD
methods on the WHU-CD dataset. (b) Comparison of FPS between ESACD and
other CD methods on the WHU-CD dataset.
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TABLE IV
PARAMETER DETAILS OF ESACD AND OTHER COMPARISON METHODS

of parameters and FPS, respectively. We can see that ESACD has
excellent performance and the parameter quantity is relatively
small. Although the number of ESACD parameters is not the
least, its evaluation indicators are very outstanding. In Fig. 5(b),
we can observe that ESACD has a higher FPS while maintaining
the highest F1. It should be noted that the higher the value of FPS,
the faster the running speed of the model. Meanwhile, we show
the specific parameter data of ESACD and other comparative
methods in Table IV.

Figs. 6 and 7 show the renderings of our model and other
excellent models on the dataset WHU-CD and Google-CD test
sets, respectively. White represents TP, black represents TN,
green represents FP, and pink represents FN.

In group a of Fig. 6, we can observe that ESACD has the
fewest misjudgment pixels, which are very close to Label. In
group b, Transcd and ESACD can more accurately identify
architectural change objects but ESACD has fewer misjudged
pixel regions than Transcd. In group c, FC-EF, FC-Siam-Di,
and FC-Siam-Conc have a serious problem of blurred boundary
information. ESACD can accurately judge the characteristics
of building boundaries and more accurately identify building
areas. In group d, it can be clearly found that ESACD has a
higher accuracy rate.

In group a of Fig. 7, we can find that other models cannot
accurately identify the subject of architectural change while
ESACD can identify objects relatively accurately but there is
a problem of fuzzy boundary information. In group b, BIT
and ESACD perform well, and other models have too many
misjudged pixel areas. In group c, ESACD has the least FN pixel
area and can identify the changing subject more completely. In
group d, ESACD shows better results than other models.

Overall, our ESACD performs well, with the ability to recog-
nize large building changes, and can accurately identify semantic
information of building boundaries. I think that dual attention
strengthens the global modeling ability of our model, and the
model can learn more similar architectural features and enhance
the feature representation ability. In Figs. 8 and 9, we show the
local detail images with good performance in Figs. 6 and 7 to
feel the effect of ESACD more intuitively.

D. Ablation Experiment

In this section, we will verify various parts of our model to
observe the impact of this module on our model. First, we will
build four different variants based on whether to add Tokenizer
Attention and HiLo Attention, ESACD (base), ESACD (TA),

TABLE V
ABLATION EXPERIMENT OF MODULES IN ESACD

TABLE VI
ABLATION EXPERIMENT OF COT LAYER MODULE IN ESACD

ESACD (HiLo), and ESACD (TA+HiLo). We use these four
variants. Experiments are carried out on the WHU-CD dataset,
and the main evaluation indicators F1 and IoU are used to
evaluate the experimental effect. The experimental results are
shown in Table V.

From Table V, we can observe that Tokenizer attention and
HiLo attention play a positive role in the training of our model.
At the same time, they spent as little param overhead as possible
while improving the model effect, especially HiLo attention.

CoT Layer: In order to verify the effectiveness of the CoT
layer, we use ordinary convolution to replace the CoT layer to
observe the comparative effect of the two. The specific results
are shown in Table VI. We can see that the effect of the model
using the CoT layer is significantly higher than that of using
ordinary convolution. We think this shows that the strategy of
the CoT layer learning dynamic and static context is effective.

Dual Attention: In order to verify the effectiveness of our
dual-attention module, we chose the attention module used in
STANet [53] and DASNet [50] networks to replace our dual-
attention module on the WHU-CD dataset. The details of these
two models are as follows.

STANet proposed a remote sensing transformation detection
method based on spatial and temporal attention mechanisms.
First, the features in the bitemporal image are extracted through
feature extraction, and then, the context information and se-
quence information are extracted by using the spatial and tem-
poral attention mechanisms, and the self-attention calculation is
performed on these information, and finally, the spatial and tem-
poral feature information is weighted and fused and predicted
to obtain final result.

DASNet is a twin network composed of two fully convolu-
tional neural networks and utilizes spatial attention and channel
attention mechanisms to better focus on changing information.
Among them, the spatial attention mechanism can adaptively
adjust the contribution of different regions of the image to
the model; the channel attention module can assign weights to
different channels according to the importance of feature maps.

The experimental results are shown in Table VII. From
Table VII, we can see that after replacing our dual attention
with the attention mechanism in STANet and DASNet, the
effect of the model is obviously reduced. The window size of
the dual-attention module in STANet is fixed, so there may
be certain errors in the recognition of changes in longer time
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Fig. 6. Qualitative comparison on the WHU-CD dataset. (a), (b), (c), and (d) respectively represent four different sets of bi-temporal images selected from the
WHU-CD test set to compare our method with other excellent methods.

scales. This can lead to poor performance in change detection
scenarios. We think that the dual-attention module proposed in
DASNet imitates the style of self-attention to learn all token
similarity features. This will inevitably introduce some noise,
which will affect the training effect. And our Tokenizer attention
can extract the most interesting target of the model for feature
representation, improving the learning efficiency of the model.
This further illustrates the effectiveness of our dual attention.

E. Parameter Analysis

In order to further enhance the effect of the model, we conduct
parameter analysis on the value of the attention head α in HiLo
attention, the layers N and M of Tokens encoder and Tokens
decoder, aiming to select the most suitable value for our model
to enhance the feature expression of the model ability. First,
we select 0.1, 0.3, 0.5, 0.7, and 0.9 for α, respectively, train
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Fig. 7. Qualitative comparison on the Google-CD dataset. (a), (b), (c), and (d) respectively represent four different sets of bi-temporal images selected from the
Google-CD test set to compare our method with other excellent methods.
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Fig. 8. Detailed demonstration of the WHU-CD test results.

Fig. 9. Detailed demonstration of the Google-CD test results.

TABLE VII
ABLATION EXPERIMENT OF DUAL-ATTENTION MODULE IN ESACD

through the WHU-CD dataset, and use F1, IoU, Recall, OA,
and Precision to compare the effects. The specific experimental
results are shown in Table VIII. By observing Table VIII, we can
find that when the value of α is 0.5, that is, the high-frequency
and low-frequency branches in HiLo adopt the same number of

TABLE VIII
ANALYSIS EXPERIMENT OF ℵ PARAMETER IN ESACD ON MODEL EFFECT ON

THE WHU-CD DATASET

attention heads, the effect modeling ability of the model is the
strongest, and the relationship between the simulated features
can be more realistic. We believe that the information carried by
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Fig. 10. Visualization of attention maps during testing. (a), (b), and (c) respectively represent three different sets of bi-temporal images selected from the WHU-CD
test set for visualizing the effect of the ablation module.

TABLE IX
EXPERIMENTAL ANALYSIS OF THE INFLUENCE OF TOKENIZER ENCODER AND

TOKENIZER DECODER LAYERS ON THE ESACD MODEL ON THE

WHU-CD DATASET

low-frequency and high-frequency in feature maps is mined and
expressed, which strengthens the model’s extraction of global
structural information and local fine features, and strengthens the
model’s expressive ability. At the same time, we choose α= 0.5
as the optimal value, and we can infer that the low-frequency
information in the image is as important as the feature content
contained in the high-frequency information.

Next, we analyze the parameters of the layers N and M of
the self-attention mechanism in the Tokenizer encoder and the
Tokenizer decoder. We choose (1, 8), (2, 6), (4, 4), (6, 2), and
(8, 1) for N and M, respectively, to analyze the model effect,
and the experimental results are shown in Table IX.

By observing Table IX, we can find that when the values
of N and M are 1 and 8, our model can achieve the best
performance. We think that our model needs more Tokenizer
decoders to project tokens into pixel-level features. Compared
with the Tokenizer encoder for context modeling, this requires
more powerful feature representation capabilities to obtain more
detailed semantic features.

F. Visualization

In order to understand the role of Tokenizer attention and HiLo
attention more intuitively, we visualize the effect diagrams of

ESACD (TB), ESACD (NOTA), ESACD (NOHiLo), and ESACD
(TA+HiLo), as shown in Fig. 10. Higher values of attention are
shown in red and lower values in blue. In the ESACD (HiLo)
column and ESACD (TA) column, we can see that the existence
of HiLo attention and Tokenizer attention makes the model pay
more attention to the main body of the building, and both of
them can extract richer semantic information for large buildings
and small buildings for efficient modeling. In the TA+HiLo
column, we can observe that the combination of HiLo attention
and Tokenizer attention makes the model’s segmentation of the
boundary of the changing building body more refined and has
a clear boundary. I think this is a proof of the effectiveness
of our dual attention. From left to right, the model’s concerns
and nonconcerns are more clearly defined. Because the model
pays less attention to nonbuilding areas, there are more areas of
blue pixels. At the same time, the change map predicted by the
ESACD (TA+HiLo) column is closer to label.

To further improve the persuasion of the high- and low-
frequency attention mechanism, we visualize the frequency
information of feature maps in the high- and low-frequency
branches. As shown in Fig. 11, the Hi-Fi group and the Lo-Fi
group clearly show the frequency information of the feature
maps obtained by the high- and low-frequency branches.

G. Discussion

Our model outperforms other state-of-the-art methods on
WHU-CD dataset and Google-CD dataset. However, in the face
of remote sensing image datasets with high aerial photography
heights, such as Onera satellite change detection, our ESACD
does not perform well. We believe that ESACD lacks the ability
to recognize different building types in the same images. In
the face of architectural diversity and relatively low image
quality, we believe that it is necessary to strengthen the ability
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Fig. 11. Visualization of high- and low-frequency attention.

to capture high-frequency feature information in HiLo attention
and strengthen the learning of detailed features. And continue to
improve the model from the direction of the model architecture.
Due to the relatively lightweight characteristics of our model, we
may choose to deploy and apply the model to the mobile platform
to optimize the running speed and achieve fast and efficient
remote sensing image change detection as much as possible. At
the same time, the model needs to enhance the feature expression
ability to deal with the situation of architectural diversity. In
addition, in this work, we process the features extracted by dual
attention in a pixel-by-pixel way, which may not be the most
effective fusion method. In future work, we will focus on the
research and analysis of the above two issues to improve the
effect of our model.

V. CONCLUSION

In this work, we propose a neural network ESACD based on
the combination of CNN and transformer and utilizing the In
this work, we propose a lightweight change detection model
for remote sensing building images. We use dynamic context
and static context to replace the ordinary convolutional layer
to model the context relationship, and the dynamic context
performs self-attention operation under the guidance of the
static context. Subsequently, in order to enhance the learning
ability of the model, we applied dual attention to simulate
the feature relationship for the low-frequency information and
high-frequency information in the images and the features of
interest to strengthen the effect of the model. In HiLo attention,
the low-frequency and high-frequency semantic features in the
images are mined while maintaining low complexity, and the
two are fused. Tokenizer attention extracts the features of interest
to the model and encodes them into pixel-level features. Dual
attention greatly enhances the modeling ability of the model,
showing excellent performance. Finally, we fuse the semantic
features of different resolutions, on the basis of enhancing the
fluidity of information, so that the detailed features can be
fully integrated. After a large number of experiments, it has
been proved that our model has a surprising effect compared
with other excellent comparison methods in the case of a small
difference in the number of parameters.
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