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ESRTMDet: An End-to-End Super-Resolution
Enhanced Real-Time Rotated Object Detector

for Degraded Aerial Images
Fei Liu , Renwen Chen , Junyi Zhang , Shanshan Ding , Hao Liu , Shaofei Ma , and Kailing Xing

Abstract—The degradation of image resolution reduces the de-
tection performance in aerial imagery because it generates a large
number of small objects, and accurately detecting these small ob-
jects remains a challenge. Existing methods mostly use a superreso-
lution (SR) model to first obtain the SR image of the low-resolution
degraded image (ILR) and then use this image as the input of the
object detection (OD) network to solve this problem. However,
this architecture that involves executing a complex SR network
before the detector is time-consuming and makes it hard to achieve
real-time model inference. To address this challenge, we propose a
simple and effective rotated small OD method, named end-to-end
superresolution enhanced real-time rotated object detector (ES-
RTMDet). First, we design a lightweight embedded feature map
superresolution module (ESRM) embedded in the detection model
to enhance and amplify the backbone output features, making the
detection heads detect small objects more easily. Furthermore,
we train a parallel SR network branch (PSRB) simultaneously
that uses the backbone feature to restore a high-resolution image.
Through our proposed feature alignment loss and feature affinity
layer, our PSRB effectively guides the feature map enhancement
of ESRM. Finally, through end-to-end joint optimization of the de-
tector and PSRB, the detection performance on ILR is significantly
improved. Extensive experiments over DOTA and UCAS-AOD
demonstrate that our method can achieve state-of-the-art results.
In addition, we discard our PSRB and use ILR as the input during
inference, reducing the inference time-consuming of our model.
Therefore, our ESRTMDet-X not only achieves 77.11% mean of
average precision on the degraded DOTA dataset, but also achieves
an amazing inference speed of 337 FPS, thus obtaining the best
speed–accuracy tradeoff.
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I. INTRODUCTION

A ERIAL images obtained from Earth observation and re-
mote sensing technologies provide a bird’s-eye view of the

Earth’s surface, depicting complex spatial scenes and numerous
diverse objects. Image classification and object detection for
aerial images (also known as remote sensing images) are among
the most fundamental and challenging research topics in the
geoscience and remote sensing communities. In recent years,
significant progress has been achieved in these areas thanks
to the development of deep learning techniques. For aerial im-
agery classification tasks, a combination of graph convolutional
networks and convolutional neural networks (CNN) is used to
extract diverse and discriminative features [1], resulting in supe-
rior classification performance for hyperspectral remote sensing
images. Furthermore, a multimodal deep learning framework [2]
has been developed to effectively utilize information from differ-
ent modality remote sensing images, achieving state-of-the-art
(SOTA) performance in pixel-level remote sensing image clas-
sification. For object detection in aerial images (ODAI), it is a
challenging task due to the presence of a great number of small,
cluttered, large aspect ratio, and arbitrarily oriented objects [3].
In recent years, significant progress has been achieved in ODAI
with the development of deep CNN [3], [4], [5], [6], [7], [8],
[9]. However, these methods rely on high-resolution (HR) aerial
images (IHR) that have a resolution up to half a meter and good
imagery quality.

In practice, due to harsh imaging conditions, such as aerial
camera shake, short transmission bandwidth, long-range shoot-
ing, and undersampled imaging, degraded aerial images [10],
[11], [12], [13] are commonly captured. Hence, object detection
for degraded aerial images has gained more attention in recent
years. In particular, resolution degradation is a common type
of degradation, and these degraded images are also called low-
resolution (LR) degraded images (ILR), as shown in Fig. 1. Com-
pared to IHR, ILR often lack texture features, and object regions
are more blurred, leading to poor detection results [14]. To ad-
dress the problem of resolution degradation, recent works [14],
[15], [16], [17], [18], [19] have introduced superresolution (SR)
methods to restore missing texture and features in ILR before or

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2207-7837
https://orcid.org/0000-0001-9467-7335
https://orcid.org/0009-0000-2310-0053
https://orcid.org/0000-0003-2367-3518
https://orcid.org/0000-0002-5607-2180
https://orcid.org/0009-0001-2130-5482
https://orcid.org/0009-0001-4765-3573
mailto:liufei@nuaa.edu.cn
mailto:rwchen@nuaa.edu.cn
mailto:zhangjunyi@nuaa.edu.cn
mailto:shanshanding@nuaa.edu.cn
mailto:rtlhxx@nuaa.edu.cn
mailto:shaofeima@nuaa.edu.cn
mailto:xingkailing@nuaa.edu.cn
https://github.com/liufeinuaa/aisodet.git
https://github.com/liufeinuaa/aisodet.git


4984 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 1. Diagram of enlarged comparison of the details of objects in the same
region between the resolution degraded aerial image and the original HR aerial
image. (a) Detailed diagram of the detection object region under the × 2
resolution degraded image. (b) Detailed diagram of the detection object region
under the HR image.

after object detection (OD). For instance, Rabbi et al. [17] pro-
posed the edge-enhanced superresolution generative adversarial
network (EESRGAN) to obtain SR images prior to executing
the detector network. They backpropagated the detection loss
and discriminator’s loss into the generator net’s parameters,
optimizing the generative adversarial network (GAN) jointly to
produce SR images that more closely resemble HR images. Bai
et al. [20] used a two-stage OD method (FasterRCNN) to obtain
object patch images first. They then employed the superreso-
lution generative adversarial network (SRGAN) to obtain SR
patches and used the discriminator to refine the classification
and regression results. Yang et al. [14] proposed the mutual-feel
learning (MFL) architecture, which also used SRGAN to obtain
SR images prior to executing FasterRCNN. They added a feed-
back path to the SRGAN discriminator, forming a closed-loop
structure. MFL used a discriminator to distinguish the region
of interest (RoI) features extracted by the region proposed
network (RPN), the RoI features cropped on the SR image,
and the RoI feature cropped on the HR image. This approach
makes the SRGAN pay more attention to the region where
the objects may exist. However, the abovementioned methods
are time-consuming and difficult to enhance useful detection
features. The optimization of generation is not guided by object
information and uses separated iterative optimization for these
two different tasks. Moreover, these methods do not consider the
problem of rotated ODAI, as they all use horizontal bounding
boxes (HBBs) to represent objects. Furthermore, we note that
training and inferring the detector directly on the LR input image
(ILR) significantly reduces the computational burden. This ap-
proach can bring more noticeable model inference acceleration
than many model compression techniques [21], which is more
conducive to achieving real-time inference of the model.

Overall, the motivation of our article is to use a rotated object
detection (ROD) method that integrates the SR network to solve
or alleviate the problem of degraded detection performance

Fig. 2. Distribution of the small, medium, and large sizes of objects on the
DOTA datasets with different image resolutions.

Fig. 3. Distribution of the small, medium, and large sizes of objects on UCAS-
AOD datasets with different image resolutions.

caused by image resolution degradation under the constraints of
easily realize model deployment in practical unmanned aerial
vehicle (UAV) systems. Through analysis of existing methods,
we have identified following four remaining challenges that need
to be addressed to achieve our goals.

1) The challenge of achieving precise detection of small
rotated objects. The degradation of resolution in aerial
imagery leads to the presence of numerous small targets,
as shown in Figs. 2 and 3. However, existing methods
continue to use HBBs to locate objects, overlooking the
important feature that objects in aerial images can be
arbitrarily oriented. As a result, the challenge of achieving
accurate detection of small rotated objects in the field of
OD remains unsolved.

2) The challenge of achieving overall model lightweight. The
majority of existing OD methods that integrate the SR
network use SOTA image SR methods (based on GAN)
to directly upsample degraded images, then perform a
two-stage detector on these SR images, which results in
complex model architecture, a large number of model
parameters, and difficulty achieving the overall model that
is lightweight.
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3) The challenge of jointly optimizing different types of
models. Because SR and OD networks are designed for
different types of tasks, hence, the features and concerns
extracted by these two networks are quite different. As a
result, the architecture for OD combined with SR is hard
to realize end-to-end joint optimization. Existing methods
typically adopt a training process where these two types of
models are separately trained and then fine-tuned through
joint training. This training pipeline is often suboptimal
and inefficient [14], [22] due to the lack of exchange
of information between different models, and it takes
significant time spent on independent model training in
advance.

4) The challenge of ensuring fast model inference. Consider-
ing the actual deployment requirements of possible UAV
systems, the detection model must have a fast inference
speed, achieving at least 60 FPS to ensure stable and reli-
able detection. But existing OD methods that combine SR
usually demand full execution of the complex SR network
during inference, intensifying computational burden and
leading to slow inference speeds (often below 60 FPS),
which fails to meet actual deployment requirements.

Therefore, to realize a real-time ROD method in aerial images,
we propose a series of simple and effective models named
ESRTMDet. Our method not only solves the drawbacks of the
abovementioned detectors combined with the SR method but
also obtains the fastest detection speed we know of. In summary,
our key contributions are as follows.

1) We propose a lightweight embedded feature map super-
resolution module (ESRM) that comes after the detection
backbone and before the neck. Our ESRM effectively
uses valuable texture enhancement features learned by
the parallel superresolution network branch (PSRB) to
enhance the detection head’s ability to extract small object
features. And our ESRM does not bring too much addi-
tional computational burden. Through ESRM, we have
alleviated the challenges caused by rotating small target
detection (challenge 1), and by embedding ESRM into the
lightweight detection model, we ensure the lightweight of
the overall model (challenge 2).

2) We use the PSRB as an auxiliary network and employ
the feature affinity layer (FAL) and feature alignment loss
(LAL) to guide the ESRM in restoring high-frequency tex-
ture information, thus enhancing the amplification quality
of feature maps. In addition, our PSRB is not involved
in model inference, ensuring real-time detection ability,
which solves challenge 4.

3) To enable the PSRB to focus more on the regions where
detection objects are present, we generate RoI weights
using the predicted output of the classification branch of
detector heads. Our RoI weights optimize PSRB, ESRM,
and FAM training, allowing for effective end-to-end joint
optimization between these two heterogenous learning
tasks, hence, challenge 3 is also solved.

4) A series of experiments on the DOTA and the UCAS-AOD
datasets demonstrate the effectiveness of our method.
Our ESRTMDet-X achieves 77.11% mAP on DOTA with

single-scale training and testing, as well as 89.5% and
95.0% on UCAS-AOD using VOC2007 and VOC2012
metrics, respectively, achieving SOTA detection perfor-
mance on aerial I IR. Furthermore, our proposed model
achieves an impressive inference speed of 337 FPS, mak-
ing it the best tradeoff between speed and accuracy for
ROD in degraded aerial images, as far as we know. There-
fore, our research provides significant practical value for
the deployment of deep learning algorithms in actual UAV
systems.

II. RELATED WORK

In this section, we review recent related works on three
aspects: rotated ODAI, SR networks, and the methods of com-
bining SR and OD (SR+OD) in aerial images, as our proposed
method integrates both SR and ROD.

A. Rotated ODAI

In the last decade, significant progress has been made in the
field of OD, with notable advancements by [23], [24], [25],
[26], [27], [28], [29]. At the same time, significant progress has
been made in ODAI. For example, Wu et al. [30] combined a
novel spatial-frequency channel feature with fast image pyramid
estimation and ensemble classifier learning in the classic VJ [31]
detection framework to achieve the most advanced detection
performance among nondeep learning methods. However, this
approach is limited by the detection framework, which only
allows for the use of HBBs to represent objects, it is difficult
to expand this approach to use more precise rotated bounding
boxes (RBBs) to represent objects. Oriented OD, also known as
ROD is a subfield of OD that utilizes more precise RBBs to rep-
resent objects. And in recent years, it has attracted considerable
attention due to its potential applications in various fields, such
as management, remote sensing, precision agriculture, national
defense, emergency rescue, and disaster relief [4], [32], it has
also become the most important research subtopic in remote
sensing image OD tasks.

To tackle the challenge of detecting rotated objects in aerial
images, one possible approach is to use rotated anchors, such as
rotated RPN [32], which places anchors with different angles,
scales, and aspect ratios on each location. However, densely
rotated anchors result in extensive computations and memory
usage. To address these issues, Ding et al. [4] proposed the
RoI transformer that learns rotated RoIs from horizontal RoIs
produced by RPN, which significantly improves the accuracy
of oriented OD. However, this method increases the network
complexity and requires fully connected layers and RoI align-
ment operations during the learning of rotated RoIs. On the other
hand, Xu et al. [5] proposed a new representation called gliding
vertices, which achieves ROD by learning four vertex gliding
offsets on the regression branch of the FasterRCNN head [23].
Although this method simplifies the computation by avoiding
RoI alignment and fully connected layers, it still uses horizontal
RoIs and is based on a two-stage detection architecture, which
is time-consuming and computationally expensive.
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To overcome these limitations, some studies [6], [33] explored
one-stage oriented OD frameworks based on the RetinaNet [24],
which outputs object classes and RBBs without region proposal
generation and RoI alignment operations. In addition, in recent
years, there has been rapid development of anchor-free detectors
in general OD tasks [26], [27], [28], [29], [34]. This mechanism
significantly reduces the number of design parameters that re-
quire heuristic tuning and tricks for good performance. This
simplifies the detector, especially during training and decoding
phases [26], [34]. Several studies have explored anchor-free
mechanisms for ROD. Pan et al. [35] developed a dynamic
refinement network based on the anchor-free CenterNet [28].
He et al. [36] utilized attention mechanisms to refine the per-
formance of remote sensing OD in a one-stage anchor-free
network framework. Gong et al. [37] proposed an anchor-free
oriented proposal generator to replace the RPN for horizontal
boxes in the FasterRCNN detector, which resulted in improved
performance. Li et al. [38] proposed an effective anchor-free
method called oriented RepPoints, which uses an adaptive point
set to capture the semantic and geometric features of an oriented
object as a fine-grained representation. Liu et al. [8] used a
Gaussian distribution to constrain the RBB and proposed a new
assignment method suitable for rotated detection tasks. They
combined this method with YOLOX to obtain stronger detection
performance. However, the use of RBB representation causes
problems, such as boundary discontinuity and square-like issues,
making rotational IoU losses indifferentiable, which hinders the
use of anchor-free methods. Therefore, Yang et al. designed
GWD [39] and KLD [40] regression loss based on Gaussian
Wasserstein distance and Kullback–Leibler divergence, respec-
tively. These methods can be used with the anchor-free method
FCOS [26] and result in performance improvements in ROD
tasks.

B. SR Network

SR is a technique that generates an HR image using an
LR image, with the aim of recovering high-frequency texture
information [41], [42]. Superresolution CNN (SRCNN) [43] was
the first to successfully use CNN in the SR problem. SRCNN’s
structure is straightforward, consisting of only three CNN layers,
and it processes preupsampled images obtained by bicubic in-
terpolation. Residual learning, which uses skipping connections
to avoid gradient vanishing, makes the design of deep networks
possible compared with the original stacked CNN [44]. Inspired
by the ResNet architecture, the enhanced deep superresolution
(EDSR) network [45] has been proposed, which removes batch
normalization layers (BN) in each residual block (ResBlock) of
ResNet since BNs get rid of range flexibility from the network
and achieves performance improvement. With the development
of deep learning, GAN has shown a remarkable ability for
SR problems. Superresolution GAN (SRGAN) [46] focuses
the generator on recovering high-frequency texture information
using perceptual loss. Enhanced SRGAN [47] is developed by
removing the BN in the generator and designing a residual-in-
residual dense block to replace the normal ResBlock, achieving
more significant performance improvement. However, most SR

methods pursue better results in SR by using models with a large
number of parameters, leading to higher computational burden
and lower network inference speed.

C. Methods of Combining SR and OD (SR+OD) in Aerial
Images

The use of SR as a preprocessing step in OD has proven to
be effective in various OD tasks [48]. Shermeyer et al. [49]
also demonstrated the usefulness of SR for OD performance
on satellite imagery. Courtrai et al. [50] used an SR network
based on GAN to generate SR images, which are then fed into
the detector to improve detection performance. Rabbi et al. [17]
used a Laplacian operator to extract edges from input images
to enhance the ability to reconstruct HR images, resulting in
improved performance in object localization and classification.
Small-object detection (SOD)-multitask GAN (MTGAN) [20]
proposed using an OD network to adaptively generate RoI object
patches for subsequent restoration and detection. Wang et al. [19]
introduced the effectiveness of SR for OD in the remote sensing
field, as well as an SR model based on multifeature fusion
and CycleGAN structure, to enhance images. Bashir et al. [18]
improved the SR framework by incorporating a cyclic GAN and
residual feature aggregation (RFA) and used YOLO as the de-
tection network to detect objects on SR images. Yang et al. [14]
added a feedback path to take FasterRCNN’s RPN results to
the SRGAN discriminator, forming a closed-loop structure and
making the SRGAN pay more attention to the region where the
object may exist. In these works, the SR structure has effec-
tively addressed the challenges of small objects and LR inputs.
However, compared with single detection models, additional
computation is introduced due to the enlarged scale of the input
image to HR size, and the cost of the SR network cannot be
ignored. Unlike the aforementioned work, where SR is applied
at the start stage, using the SR network only as an auxiliary
method to enhance SOD performance without participating
in model inference is a more promising architecture. Zhang
et al. [22] adopted this architecture, using EDSR as an auxiliary
network and YOLO v5 backbone fusion features as input to
EDSR to restore the HR image. However, this method still lacks
information communication between these two different tasks.

Moreover, Wu et al. [51] addressed SOD problems by con-
verting them into semantic segmentation problems and proposed
UIU-Net for infrared SOD by utilizing an interactive cross atten-
tion mechanism and the ReSidual U-blocks module to improve
the classical UNet framework, resulting in the most advanced
segmentation performance. However, while the minimum exter-
nal rectangle postprocessing method can be used to obtain the
rotation detection box from the mask, it still cannot be directly
applied to the rotating small target detection problem of optical
remote sensing images because the commonly used aerial image
target detection data lacks fine semantic segmentation masks of
the objects.

III. METHOD

In this section, we introduce our proposed method. First, we
provide a brief overview of the baseline model, which is the
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basic rotated detection method we adopt. Second, we introduce
the specific network used in our PSRB, which is a paralleled
SR network branch. Next, we describe our proposed ESRM in
detail. This module is embedded after the detector backbone
and before the neck, and it aims to enhance the feature maps
to improve the detection performance. Finally, we present the
overall architecture of our proposed method and provide the
optimization details.

A. Basic Rotated Detection Method as Baseline

In previous works [14], [17], [22], the object orientation in
ILR was not taken into account, and these methods still used
HBBs to indicate objects. However, the number of small objects
in resolution-degraded aerial images increases greatly, as shown
in Figs. 2 and 3. Conventional HBB representation introduces
background information that is not conducive to accurately lo-
cating objects. Therefore, research is necessary to detect objects
in resolution-degraded aerial images using a more accurate RBB
representation. The RBB is usually represented as follows:

(x, y, w, h, θ) (1)

where, θ ∈ [−π
2 ,

π
2

]
denotes the clockwise rotated angle from

the image coordinate system position direction of x to the
bounding box relatively coordinate system position direction of
x. We use the long edge definition format [39] where the width
w must be larger than the height h. Recently, the success of the
transformer architecture [52], [53], [54] in the image compre-
hension field has drawn attention to improving classic CNNs.
Among them, ConvNetXt [55] uses large kernel convolutions to
increase the feature receptive field and capture global context,
which overcomes the shortcomings of classic 3× 3 kernel con-
volutions and achieves significant performance improvements.
The real-time models for object detection (RTMDet) series
model [9], based on the YOLOX series model, uses large-kernel
depthwise convolutions to replace classic 3× 3 convolutions to
build basic CSP layers [56]. This balances the performance and
inference overhead of convolution well. The RTMDet model
not only uses large-kernel depthwise convolutions but also has
compatible capacities in the backbone and neck. It introduces
soft labels when calculating matching costs in the dynamic label
assignment and uses better training techniques, all of which
efficiently improve detection performance. Furthermore, this
model can be easily modified for ROD tasks by modifying the
output number of the regression branch (from 4 to 5, increasing
the prediction of a rotation angle) and using the simplest rotation
IoU loss, which we named rRTMDet in this article. In this article,
we chose the one-stage anchor-free rotated detector rRTMDet
as our basic rotated detection model and baseline. We trained
rRTMDet directly on the DOTA ILR and OD results shown in
Table I.

B. Parallel Superresolution Network Branch

In this section, we present the structure of the PSRB, which is
depicted in Fig. 5. The PSRB comprises three key components:
the feature encode module (FEM), the feature decode module
(FDM), and the feature up-sample module (FUM).

TABLE I
DETECTION PERFORMANCE OF THE RRTMDET SERIES MODEL ON THE DOTA

ILR AND IHR WITH SINGLE-SCALE TRAINING AND TESTING

We propose a feature encode module (FEM) based on the
stem network architecture of the rRTMDet detection network,
as detailed in Fig. 4. The classic SR net [45], [47] directly uses
ILR as input and retains low-level image structured information
in its extracted features, which also exists in the stem part
of the detector’s backbone network. To better leverage these
features and promote the learning of high-level features of the SR
network, we incorporate the FEM before the classic SR network.
This allows us to make the lowest input features between the two
tasks as similar as possible, which facilitates end-to-end joint
training and optimization. The FDM and FUM are part of the
EDSR model [45], as illustrated in Fig. 5. Specifically, we adjust
the number of channel dimensions in the first layer convolution
of EDSR to match the output feature channel dimension of
FEM. In addition, based on our experiments in Section IV-C,
we propose using only four stacked layers of ResBlocks in our
FDM instead of the original sixteen, since deeper PSRB did
not improve performance but significantly prolonged training
time. The FUM is subpixel convolution layers [57], the same as
EDSR’s FUM. Since the model feature maps are downsampled
by a factor of 2 after FEM, we use the FUM to upsample four
times, and then reduce the channel dimension to 3 through the
final convolution, to obtain the final SR image. Therefore, our
proposed PSRB performs ×2 image SR task.

C. Embedded Feature Map Superresolution Module

Previous studies [22] and [58], have demonstrated that incor-
porating PSRB into the original architecture can enhance the
performance of general OD tasks and semantic segmentation
tasks when using ILR as input. However, in our experiments (see
Section IV-C), we found that adding PSRB to the architecture for
ROD tasks in aerial images resulted in only minor performance
improvements.

The limited performance gains from adding a pixel-shuffle
residual block (PSRB) to the original architecture can be at-
tributed to the need for effective information interaction between
the two different task models to avoid interference of background
information due to more accurate RBB annotation required for
ROD. Furthermore, the reduced feature size of the neck due
to ILR input size halves that of IHR, making it harder for the
model to pay attention to small objects, thus greatly reducing
the rotated detection model’s performance. Hence, we propose
the use of a lightweight ESRM to improve the performance of
ROD tasks in aerial images when using ILR as the input image.
We embed our ESRM after the C2, C3, and C4 output of the
detector’s backbone, using lightweight large-kernel depthwise
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Fig. 4. Overall architecture of our proposed ESRTMDet, and the specific composition details of our proposed modules.

Fig. 5. Architecture of our proposed PSRB.

convolution and 3× 3 convolution to build the basic ResBlocks,
following the approach used in [9]. Our ESRM increases the
output feature map size of the backbone by 2 times, equivalent
to the IHR as the model input. See Fig. 6 for our ESRM structure
and Fig. 4 for the detailed composition of the ResBlock.

D. Feature Alignment Loss and FAL

We design an additional FAL, as shown in Fig. 4, to enhance
the information interaction between the two different task mod-
els. First, we downsample the output feature map of PSRB’s
FDM four times and process it through the FAL. Next, we
calculate our proposed feature alignment loss (LAL) between the

Fig. 6. Architecture of our proposed ESRM.

output feature of our ESRM on the C2 backbone and the FAL
to minimize the similarity difference between these two output
features. This enables us to jointly optimize the two types of tasks
so that effective information can be exchanged between these
two types of models, thus optimizing the overall architecture.

Our proposed feature alignment loss uses the normalized
Gram matrix to calculate the internal structure similarity of
the feature map, as shown in (5). Specifically, for any fea-
ture map F ∈ R

C×H×W , we can compress its spatial dimen-
sions to obtain a feature map F ′ ∈ R

C×HW . The F ′ can be
represented by its row vector fi ∈ R

1×HW , i = 1, . . ., C as
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F
′T = [ f1 f2 . . . fC ]. We use the Gram matrix (2) to

calculate the similarity between the row vectors. However, there
may be numerical issues when using the Gram matrix directly.
Therefore, we first regularize fi as norm_fi = ||fi||2 before
calculating the Gram matrix. We actually use the normalized
Gram matrix, as shown in (4), to address the numerical problems.
We represent the matrix composed of the normalized norm_fi as
norm_F = [ norm_f1 norm_f2 . . . norm_fC ]. A more
direct calculation method of the normalized Gram matrix is
shown in (5).

Gij = fi · fT
j (2)

G(F ) = F ′ · F ′T (3)

G′ij =
(

fi
||fi||2

)
·
(

fj
||fj ||2

)T

(4)

G′(F ) =
F ′ · F ′T

norm_FT · norm_F
. (5)

We use the normalized Gram matrix to calculate the sim-
ilarity between different feature maps. Specifically, we mea-
sure the structural relation difference between different input
feature maps using the weighted Euclidean distance, which we
define as our proposed feature alignment lossLAL. This is shown
in the following:

LAL(F1, F2)=
1

C2

C∑
i

C∑
j

(G′(F1�Wroi)ij−(G′(F2�Wroi)ij)
2

(6)
where,� represents elementwise multiplication, and Wroi is our
proposed RoI weights. F1 and F2 represent two input feature
maps that need to be aligned with each other.

Because we want to improve the attention of the PSRB to the
image RoI while enhancing the low-level structural features in
the corresponding region of the detection feature. To achieve
this, we generate RoI weights using the classification branch
of the detection model. The detailed calculation method for
generating RoI weights is provided in Algorithm 1. Among
them, the variable cls_scores corresponds to the output of the
detector’s classification branch. The hyperparameter α serves
as the weight ratio between the object-containing region and
the background area. We set the default value of α to 5. Our
experiments, depicted in Fig. 8, indicate that our proposed model
is not highly sensitive to this hyperparameter. Our proposed
weights Wroi are utilized as the weighted coefficients for LSR

[see (8)] and LAL [see (6)] in our model. This way, the results
of the detection model can influence the SR model, and through
Wroi they form a closed loop in our overall architecture.

E. Overall Architecture and Optimization

The overall architecture of our proposed method is shown
in Fig. 4, and the end-to-end training pipeline,as Algorithm 2
shows in the following.

Using this end-to-end training pipeline, the PSRB and rRT-
MDet models can be trained jointly. Our method does not require
training the generator and discriminator separately, such as in

Fig. 7. Detection performance curve of rRTMDet-tiny + PSRB using different
numbers of stacked layers of EDSR-ResBlock on the DOTA ILR with single-
scale training and testing.

Fig. 8. Detection performance curve of ESRTMDet-tiny using different values
of α in Algorithm 1 on the DOTA ILR with single-scale training and testing.

GAN models found in the literature [14], [17], [18], nor does
it require training different task networks independently. As a
result, our method is simpler and easier to deploy. The detection
loss LDet, SR loss LSR, and total loss LTotal of our method is
calculated as follows, respectively:

LDet =
1

N

(
λ1

∑
i

Lcls(pi, li) + λ2

∑
i

Lreg(bi, gi)

)
(7)

LSR = λ3L2(I
SR − IHR,War) (8)

LTotal = LDet + LSR

+ λ4

(
LAL(A

SR′ , C2RF) + LAL(E
SR, C0)

)
(9)

where, N indicates the number of positive samples in the rRT-
MDet head, i is the index of a positive sample in a batch, pi
and bi are the predicted object category and decode bounding
box in the head. li represents the ground-truth category of ith
object and gi is the ground-truth bounding box. And we follow
the RTMDet default setting employing quality focal loss [59] as
theLcls, use rotated IoU loss [60] as theLreg. And we also follow
the common practice in the general SR task using L2 loss in our
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Algorithm 1: Calculation Method of RoI Weights.
Input:

cls_scores, α
Output:

Wroi represent RoI weights
masks = [ ]
for cls_scores in cls_scores do :

max_score← max(cls_scores, dim = 1)
mean← mean(max_score)
std← std(max_score)
mask← float(max_score ≥ mean + std)
mask← interpolate(mask, scaler_factor = 2i+1)
masks← append(mask)

masks← logical_or(masks)
attention_region← interpolate(masks, scaler_factor = 1

4 )
Wroi = attention_region× (α− 1) + 1
return Wroi

LSR and use our proposed Wroi as the loss weights. In addition,
λ1, λ2, λ3, λ4 are loss balance parameter, which we set to {1, 2,
1, 10} by default.

IV. EXPERIMENTS

Our method was evaluated on two challenging aerial ROD
datasets, i.e., DOTA and UCAS-AOD.

A. Datasets

DOTA: [3] is a large-scale aerial OD dataset consisting of 2806
aerial images ranging from 800×800 to 4000×4000, containing
a total of 188 282 instances of 15 common object categories, such
as planes (PL), baseball diamonds (BD), bridges (BR), ground
track fields (GTF), small vehicles (SV), large vehicles (LV),
ships (SH), tennis courts (TC), basketball courts (BC), storage
tanks (ST), soccer-ball fields (SBF), roundabouts (RA), harbors
(HA), swimming pools (SP), and helicopters (HC). Both the
training and validation sets are used for training, while the test
set is used for testing. In accordance with [6], we extract a series
of 1024×1024 patches with a 200-pixel overlap from the original
images to create our HR (IHR) datasets for experimentation. We
then use the bicubic method to downsample IHR by 2 times,
getting in 512×512 resolution-degraded images (ILR). After the
image degradation process, we observe the distribution of small,
medium, and large objects on the DOTA dataset in Fig. 2. Fig. 2
shows that the number of small objects increased by 45.2% after
×2 image resolution degradation, while the number of large
objects decreased by 80.9%. This change in object distribution
significantly affects the performance of the baseline model, as
demonstrated in Table I.

UCAS-AOD: [61] is an aerial image dataset designed for
rotated SOD, which contains 1510 images including 510 car
images and 1000 plane images, with a total of 14 596 instances.
As is customary, we randomly divided it into the training set,
validation set, and test set with a ratio of 5:2:3. To experiment
with the UCAS-AOD dataset, we resized all images to 836×836

Algorithm 2: End-to-end Training Pipeline.
Input:

ILR represent LR images
Output:

ISR represent SR images
ODet represent detection results

for epoch in max_training_epoches do :
Step 1: Detector forward:

Input ILR into Backbone and obtain C0, C1, C2, C3,
and C4 backbone feature maps;

Input C2, C3, C4 into ESRM to obtain C2′, C3′, C4′

and C2’s ESRM output residual feature map C2RF;
Input C2′, C3′, C4′ into Neck and obtain P2, P3, and

P4 feature maps;
Input P2, P3, P4 into Head to obtain ODet and each

classification branch output cls_scores;
Step 2: PSRB forward:

Input ILR into FEM and obtain SR encoder feature
map ESR;

Input ESR into FDM and obtain SR decoder residual
feature map RSR;

Input RSR into FUM and obtain ISR;
Step 3: Joint optimize:

Input RSR into FAL and obtain SR affinity residual
feature map ASR;

Downsample ASR to C2RF’s feature map size, named
ASR′ ;

Input cls_scores into Algorithm 1 to obtain attention
region weights Wroi;

Use Wroi as the weights in Alignment loss LAL and SR
loss LSR;

Calculate LAL between ASR′ and C2RF, and LAL

between ESR and C0;
Calculate LSR and detection loss LDet;
Through LTotal use arbitrary optimizer to joint

optimize our model

to obtain HR (IHR) images and used the same method as in
DOTA experiments to obtain corresponding resolution-degraded
images (ILR) with a size of 416×416. Fig. 3 shows the change
in the number of objects of different sizes on the UCAS-AOD
dataset after downsampling. The analysis reveals that the number
of small objects increased by 62.4% after the typical×2 resolu-
tion degradation processing. However, detecting small objects
accurately is more challenging than detecting medium and large
objects, and as a result, the detection accuracy of the baseline
model directly detecting on ILR decreased significantly.

B. Implement Details

We followed the experimental configuration of RTMDet,
using CSPNetXt [9] as the backbone and CSPNetXt-PAFPN
as the neck for our ESRTMDet. For fair comparisons with other
methods, we used CSPNetXt-L and CSPNetXt-X as backbones,
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TABLE II
RESULTS OF ABLATION EXPERIMENTS FOR RRTMDET-TINY + PSRB ON THE

DOTA ILR WITH SINGLE-SCALE TRAINING AND TESTING. RRTMDET-TINY +
PSRB MEANS ADDING A PSRB ON THE DETECTION NETWORK. INPUT

FEATURE MAPS REPRESENT USING DIFFERENT SIZES OF FEATURE MAPS AS

THE SR NETWORK INPUTS

and CSPNetXt-tiny for other ablation experiments if not speci-
fied. During the model training phase, we used random flipping
and rotation as augmentation techniques to avoid overfitting,
following the original RTMDet series model training configura-
tion. No augmentations were used during the testing phase. All
experiments were conducted on an NVIDIA RTX 3090 GPU
with a batch size of 4, using the AdamW optimizer with a
base learning rate of 2.5× 10−4, a momentum of 0.9, and a
weight decay of 0.05. We trained all models for 36 epochs for
DOTA and 108 epochs for UCAS-AOD, using the same training
schedules as RTMDet. Our models were implemented using the
MMDetection and MMRotate open-source libraries, which are
two OD toolboxes based on the PyTorch framework.

C. Ablation Studies

In this section, we conduct a series of experiments on the
DOTA dataset to verify the effectiveness of our proposed
method. All ablation experiments are performed using single-
scale training and testing.

Evaluation of baseline performance on ILR: To demonstrate
the impact of resolution degradation, we conducted experiments
on the DOTA dataset using rRTMDet series models trained and
tested directly on ILR. The detection performance of each model
size is presented in Table I. We observe that the detection perfor-
mance decreases as the model size decreases. The small-sized
model rRTMDet-tiny shows the greatest decrease in detection
performance with up to 6.43% mAP reduction, while the large-
sized model rRTMDet-X only shows a 1.53% mAP reduction.
We analyze that this is due to large-sized models having more
channels and model parameters, which facilitate the identifi-
cation of small object features compared to compact models.
Overall, the performance of all models decreases significantly
on ILR compared to the performance on IHR. We believe that
the decrease in detection performance is primarily attributed to
the abundance of small objects in the resolution-degraded image,
as demonstrated in Fig. 2. In addition, we note that compared
with performing detection on IHR, direct detection on ILR has
less computational complexity, and the inference speed has been
significantly improved, as shown in Table X. According to our
analysis, this significant inference acceleration is brought about
by a smaller input image, because the parameter of the model has

TABLE III
ABLATION EXPERIMENT FOR THE INSERTION POSITION OF THE FEATURE

UPSAMPLING METHOD. OUR RRTMDET-TINY + BICUBIC MEANS USE THE

CLASSICAL BICUBIC METHOD AS THE FEATURE UPSAMPLING METHOD. AFTER

BACKBONE MEANS THE UPSAMPLING METHOD EMBEDDED IN THE POSITION

BEHIND THE BACKBONE AND BEFORE THE NECK. AFTER NECK INDICATES THE

UPSAMPLING METHOD INSERTED IN THE POSITION AFTER THE NECK BEFORE

THE HEAD

TABLE IV
RESULTS OF EXPERIMENTS FOR RRTMDET-TINY + UP-SAMPLING ON THE

DOTA ILR WITH SINGLE-SCALE TRAINING AND TESTING. RRTMDET-TINY +
UPSAMPLING MEANS EMBEDDING A FEATURE MAP UPSAMPLING METHOD

BEFORE THE NECK. THE UPSAMPLING METHOD REPRESENTS USING

DIFFERENT UPSAMPLING METHODS TO EXECUTE FEATURE MAP UPSAMPLING.
ESRM IS OUR PROPOSED METHOD

TABLE V
RESULT OF ABLATION EXPERIMENTS FOR ESRTMDET-TINY ON THE DOTA

ILR WITH SINGLE-SCALE TRAINING AND TESTING. � MEANS THE MODULE IS

USED. WE CHOOSE THE RRTMDET-TINY AS THE BASELINE. PSRB MEANS

PARALLEL SR NETWORK BRANCH. ESRM MEANS EMBEDDED SR MODULE.
LAL MEANS USING FEATURE ALIGNMENT LOSS IN OPTIMIZATION. W/FEM

INDICATES USING THE FEM IN PSRB. W/FAL INDICATES USING THE FAL TO

PROCESS THE PSRB OUTPUT FEATURE BEFORE CALCULATING LAL

not been reduced. Thus, it is important to investigate methods
to improve the detection performance on ILR. We choose these
models as our baselines and use the rRTMDet-tiny model for
subsequent ablation experiments.

Evaluation on PSRB: We attempted to enhance the original
rRTMDet by adding a PSRB directly, utilizing EDSR as our SR
network. Rather than using our proposed FEM, we incorporated
the method from [22] to merge C2 and C4 feature maps as
the input of the PSRB, while also conducting experiments with
various backbone output feature maps as input. The outcomes
are demonstrated in Table II. We discovered that using high-level
feature maps or combining multiple feature maps occasionally
reduced performance, which we believe is due to the absence of
low-level information in high-level feature maps and the need for
excessive SR multiples ratios for the EDSR. For example, C2’s
size corresponds to an ×8 downsampling of the input image,
and our EDSR requires completing an ×2 SR compared with
the input image size, which necessitates an ×16 upsampling
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TABLE VI
COMPARISONS WITH OTHER SOTA SR+OD METHODS ON THE DOTA ILR. APS , APM , AND APL ARE EVALUATED ON THE DOTA’S VAL DATASET BASED ON

COCO METRICS. MAP METRIC IS EVALUATED ON THE DOTA ONLINE EVALUATION SERVER. AND ALL RESULTS ARE REPORTED ON SINGLE-SCALE TRAINING

AND TESTING. THE BEST RESULTS IN EACH METRIC ARE HIGHLIGHTED IN BOLD

TABLE VII
DETAIL COMPARISONS WITH BASELINES ON THE DOTA ILR. MAP METRIC IS EVALUATED ON THE DOTA ONLINE EVALUATION SERVER. AND ALL RESULTS ARE

REPORTED ON SINGLE-SCALE TRAINING AND TESTING. THE BEST RESULTS IN EACH CATEGORY ARE HIGHLIGHTED IN BOLD

TABLE VIII
COMPARISONS WITH OTHER SOTA SR+OD METHODS ON THE UCAS-AOD ILR. APS , APM , AND APL ARE EVALUATED ON THE UCAS-AOD’S TEST DATASET

BASED ON COCO METRICS. MAP-07 REPRESENT VOC2007 METRIC. MAP-12 REPRESENT VOC2012 METRIC. AND ALL RESULTS ARE REPORTED ON

SINGLE-SCALE TRAINING AND TESTING. THE BEST RESULTS IN EACH METRIC ARE HIGHLIGHTED IN BOLD

in FUM. As a result, higher level feature maps correspond to
larger SR multiples ratios. Therefore, in later experiments, we
only utilized C0 feature map data in the PSRB. This not only
guarantees that comparable performance improvements can be
achieved but also prevents the execution of excessively high SR
multiples ratios of the EDSR.

In our experiments, we first used the architecture of stacked
16-layer ResBlocks (EDSR-ResBlock) as the original EDSR

but found that it significantly increased the training time by
approximately three times. To overcome this challenge, we
attempted to reduce the number of stacked EDSR-ResBlock.
Our experimental results are presented in Fig. 7. We discovered
that reducing the number of stacked EDSR-ResBlock did not
negatively affect detection performance, in fact, it even improved
it. We believe that the excessive stacking of EDSR-ResBlock
led to an increase in the number of EDSR parameters, which
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TABLE IX
EACH CATEGORY COMPARES WITH BASELINES ON THE UCAS-AOD ILR. AND

ALL RESULTS ARE REPORTED ON SINGLE-SCALE TRAINING AND TESTING. THE

BEST RESULTS IN EACH CATEGORY ARE HIGHLIGHTED IN BOLD

resulted in longer training times required to achieve conver-
gence. In addition, the size of the feature maps was much
larger than the typical 64 × 64 sizes used in general SR tasks.
Therefore, the model needed to learn more features to complete
SR, which in turn required longer training iterations. Hence,
when using the same number of training epochs as the detection
model, the SR network with fewer stacked EDSR-ResBlock may
achieve better performance. As a result, we employed a structure
with only four layers of EDSR-ResBlock in our subsequent
experiments.

Evaluation on ESRM: The abovementioned Table II experi-
ments show that adding only a PSRB to the baseline has limited
impact on detection performance. We believe that simply adding
a parallel SR network and using backpropagation algorithms to
teach the backbone network to enhance features is insufficient
to improve SOD. In our analysis, we note that when using ILR

inputs, the feature map size is halved compared to using IHR

inputs. In the previous method [17], [18], [19], [50], ILR images
were enlarged to the size of IHR and then processed by the de-
tection network to ensure that the ILR and IHR are the same size
as the feature map in the network. However, this requires the SR
network to participate in the inference stage of the model, mak-
ing it challenging to achieve real-time inference. Therefore, we
adopt a more intuitive scheme, which is to directly upsampling
the feature map of the model instead of enlarging the image. Our
experiments demonstrate that enlarging the feature maps output
by the backbone network results in more significant performance
improvements than enlarging the feature maps output by the
neck, as shown in Table III. We attribute this to the fact that
the feature map output by the backbone network retains more
low-level features, and the neck+head network is better suited to
learning small object features after upsampling the feature map.
But it is more challenging to extract small object features when
just using only the head part of the model. Therefore, in our
subsequent experiments, we incorporate an embedded feature

map upsampling method in the position behind the backbone
and before the neck.

The abovementioned experiment demonstrates that the
scheme of directly enlarging the feature map can effectively
amplify the characteristics of small objects and allow the model
to focus more on them. So, then we tested several upsampling
methods, as shown in Table IV, including the bicubic interpola-
tion method, the deconvolution [62] method commonly used
in semantic segmentation, and the subpixel convolution [57]
method mainly applied to SR tasks, as well as our proposed
method (see Section III-C). Our proposed ESRM demonstrated
the best performance, indicating our ESRM has the strongest
feature maps upsampling effect. We analyze that the perfor-
mance improvement is mainly due to our ESRM method is adds
a lightweight residual structure on top of the subpixel convo-
lution method. This modification enables the module to have
a consistent architecture with the EDSR while maintaining our
lightweight design. As a result, the ESRM module can be easily
inserted into detection models without significantly increasing
computational burden, as Table X shows, and the ESRM module
demonstrates powerful SR performance, making it become an
effective feature map upsampling method for improving SOD.
Accordingly, in subsequent experiments, we used ESRM as the
feature maps upsampling method.

Evaluation on FAL and feature alignment loss: Table V shows
that directly combining PSRB and ESRM results in a detection
performance of 71.69% mAP. In addition, we propose a feature
alignment loss LAL in Section III-D to allow for more effec-
tive information interaction and joint optimization of the two
networks. However, we found that directly using the backbone
C0 feature map as input for PSRB limits the flexibility of SR
task learning. We analyzed that the reason for this phenomenon
is that the features extracted from the lightweight backbone are
more inclined to high-level features for detection. Consequently,
the ability to extract low-level features for SR tasks is limited.
To address this, we added FEM to PSRB and combined it with
LAL, resulting in improved performance, as shown in Table V.
To further reduce the training instability caused by the discrep-
ancy of feature distribution between rRTMDet and PSRB, we
appended a FAL in the output feature map of PSRB before
applying our proposed feature alignment loss. This FAL is a
1x1 convolution layer, as shown in Fig. 4. Combining all of these
improvements resulted in a 3.75% mAP improvement over the
baseline.

In addition, we conducted ablation experiments on the hyper-
parameter α, which is used in Algorithm 1 to calculate Wroi for
LAL, as shown in Fig. 8. The experimental results demonstrate
that the impact of different values of α is negligible as long
as it is greater than 1. When α is set to 1, Wroi becomes a
unit matrix, indicating that the weight is evenly distributed
between the foreground and background regions, rendering it
ineffective.

Visualization and qualitative analysis: From the perspective
of qualitative analysis, we visualize the feature map learned
by ESRTMDet-X in Figs. 9 and 10. Fig. 9 illustrates that our
proposed LAL and FAL can effectively restore more low-level
high-frequency information to the upsampling feature map C2’
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TABLE X
ESRTMDET SERIES MODEL AND RRTMDET SERIES MODEL PARAMETERS, MACS, FLOPS, FPS, AND MAP COMPARISON. THE MAP IS THE RESULT OF DOTA
WITH SINGLE-SCALE TRAINING AND TESTING. MACS, FLOPS, AND FPS ARE THE RESULTS OF INFERENCE WITH 512×512 IMAGE SIZE UNDER A SINGLE 3090

CONDITION

Fig. 9. Visual feature heat-maps of our ESRTMDet-X. ESRTMDet-X uses single-scale training and testing on the DOTA ILR. (a) Visual heat-map of the C2
feature map. (b) Visual heat-map of the C2’ feature map which is after our ESRM upsampling process. (c) Visual heat-map of the PSRB output residual feature
map.

Fig. 10. Comparison between different model’s visual heat-map of the P2
feature map. (a) Visual heat-map of the rRTMDet-X’s P2 feature map. (b) Visual
heat-map of our ESRTMDet-X’s P2 feature map.

by comparing the visual heat-map of the C2 feature map [see
Fig. 9(a)] with the visual heat-map of the C2’ feature map [see
Fig. 9(b)] after ESRM. These low-level high-frequency features
exist in the PSRB’s FDM features map [see Fig. 9(c)]. Similarly,
Fig. 10 compares the visual heat-map of the baseline model

neck P2 feature map [see Fig. 10(a)] with the heat-map of the
ESRTMDet neck P2 feature map [see Fig. 10(b)] and shows
that our model can more effectively focus on small objects.
Thus, compared to the baseline model, our model’s detection
accuracy of small objects has significantly improved, as shown
in Tables VI and VIII.

D. Comparision With SOTA

In this section, we compare our proposed ESRMDet with
other SOTA methods on two challenging aerial detection
datasets, i.e., DOTA, and UCAS-AOD.

Results on DOTA: In Table VI, we compare the performance
of our ESRTMDet series method with other SOTA SR+OD
methods on DOTA task 1 (i.e., rotated detection task). As the test
set annotations for DOTA are not available, we use the evaluation
metrics of the COCO dataset to assess the detection accuracy of
small (APS), medium (APM ), and large (APL) objects on the
DOTA validation dataset. Our ESRTMDet-X model achieves the
highest accuracy in detecting small objects, and the APS of our
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Fig. 11. Some detection results of our proposed ESRTMDet-X by the single-scale training and testing on the DOTA ILR dataset. The confidence threshold is set
to 0.05 when visualizing these results, and one color stands for one object class.

ESRTMDet series models surpasses that of their corresponding
baseline models. These results confirm the effectiveness of our
proposed method.

In addition, we achieved the new SOTA performance of
77.11% mAP through our ESRTMDet-X model. This perfor-
mance is comparable to that of many famous anchor-based
two-stage and one-stage methods on the original DOTA. As
shown in Table VII, our method significantly improves the
detection accuracy of small objects, especially in the SV, LV, SH,
and HC categories. Qualitative detection results of our proposed
ESRTMDet are shown in Fig. 11.

Results on UCAS-AOD: The UCAS-AOD dataset contains a
large number of small objects, which are often overwhelmed
by complex surrounding scenes in aerial images. To compre-
hensively compare our method with other SOTA SR+OD meth-
ods, we use the VOC2007 and VOC2012 metrics to evaluate
detection performance. In addition, we followed the same eval-
uation metrics as in the DOTA experiments and used the COCO
evaluation metrics on the UCAS-AOD test dataset to obtain the
detection accuracy of small (APS), medium (APM ), and large
(APL) objects. As shown in Table VIII, our ESRTMDet-X model
outperforms other methods with mAP values of 95.0% and
89.5% for VOC2012 and VOC2007 metrics, respectively. These

results demonstrate the superiority of our proposed method, par-
ticularly on the APS and APM metrics. The detection accuracy
of each category on UCAS-AOD is presented in Table IX. We
also visualize the results of vehicle and airplane detection in
Fig. 12.

V. DISCUSSION

We chose the most advanced ROD model rRTMDet as our
baseline, which can achieve satisfactory results on degraded
images without using any SR enhancement. The baseline outper-
forms several SR+OD methods based on FasterRCNN, as Tables
VI and VIII show. Combining the rRTMDet baseline with our
proposed SR enhancement method resulted in a performance
close to directly using the IHR as input. According to Tables
VII and IX, all models achieved a performance improvement
of about 2% mAP compared to their corresponding baseline
models. The performance improvement for small objects was
more significant, confirming the efficacy of our proposed SR
enhancement method.

Using the ILR as the input image allowed our ESRTMDet to
achieve faster inference speeds (using FPS for quantification),
smaller computational burdens (using FLOPs quantification),
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Fig. 12. Examples of detection results on the UCAS-AOD dataset using our proposed ESRTMDet-X.

and lower computational complexity (using MACs quantifica-
tion) compared to the baseline that used IHR as input, as shown
in Table X. Our models add only a small number of additional
parameters (using Params for quantification) but achieve better
detection performance (achieving 77.11% mAP) and retain im-
pressive inference speed (achieving 330+ FPS). Our method’s
inference speed has significantly exceeded many model crop-
ping and compression methods that are directly executed on
IHR. Thanks to our design of a lightweight ESRM and the
PSRB not participating in model inference, our method adds
minimal parameters and computational burden, as shown in
Table X. These results confirm the efficiency of our methods. Our
proposed method achieves real-time inference on our device,
making it suitable for deployment on actual drone platforms in
the future. From the perspective of macromodel architecture, our
method can be regarded as a form of knowledge distillation (KD)
between heterogeneous tasks, which differs from the traditional
distillation approach. The traditional KD method [63] aims to
train a compact model using a large model’s knowledge and
ensure that the detection performance of the small model is
comparable to that of the large model. In contrast, our objective
is to leverage an SR model’s knowledge to enhance the OD
model’s performances, which are two distinct tasks. We employ
an end-to-end joint optimization training pipeline and do not
require a pretrained SR model. Instead, we allow the SR model
to learn useful information flexibly through our training process
(Algorithm 2) and optimize it in conjunction with the detection
model.

In this study, we only investigate the most representative ×2
resolution degradation issues. However, more severe resolution
degradation can be addressed by increasing the upsampling
multiple in our ESRM and the SR multiples ratios in our PSRB.
Nonetheless, we have yet to explore the impact of more severe
blur and irregular noise, which we intend to study in future
work.

In future research, we plan to explore the combination of
traditional KD methods, which jointly utilize the large-size
model of the detection task and the SR model to enhance
the detection ability of a compact model. In addition, we will
consider multitask optimization and adopt a more appropriate

method to optimize these heterogeneous tasks simultaneously.
Furthermore, inspired by the UIU-Net [51], we can convert the
problem of rotated SOD into one of semantic segmentation.
Through this problem conversion enables us to utilize the most
advanced foundation models for computer vision, such as the
segment anything model [64], to effectively solve the rotated
SOD problem. This technique is also a promising direction for
our future research.

VI. CONCLUSION

In this article, we propose ESRTMDet, an end-to-end real-
time object detector for degraded aerial images that incorporates
SR techniques. We enhance the baseline using the PSRB and
ESRM models and employ feature alignment loss and FAL to
enable interaction between the different tasks. We extensively
evaluate our method on two challenging aerial OD benchmarks.
Our ESRTMDet-X model achieves a remarkable 77.11% mAP
and an impressive 337 FPS, which not only outperforms other
SR+OD methods in terms of detection accuracy but also achieves
the best inference speed.

In future work, we plan to enhance the detection performance
of compact models, such as ESRTMDet-tiny or ESRTMDet-S by
combining traditional KD methods, with the goal of deploying
these models in actual UAV systems. In addition, we will also
investigate the impact of more severe aerial image degradation
to further improve the robustness of our model.
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