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A Combined Model to Predict GNSS Precipitable
Water Vapor Based on Deep Learning

Ming Shangguan , Meng Dang, Yingchun Yue, and Rong Zou

Abstract—The precipitable water vapor (PWV) is a key pa-
rameter to reflect atmospheric water vapor, which can be derived
by the global navigation satellite system (GNSS) technique with
high accuracy and temporal resolution. PWV is an important
parameter for weather forecasts and climate research. To develop
a highly accurate PWV prediction model, we first combine the
wavelet analysis (Wa), long short-term memory (LSTM) neural
network, and autoregressive integrated moving average (ARIMA)
algorithms as WLA model for the GNSS PWV prediction. Wa,
LSTM, and ARIMA in WLA separate the random noise and predict
the nonlinear and linear trends in PWV, respectively. Afterward,
the WLA model is compared with LSTM, ARIMA, wavelet neural
networks, and the multivariable linear regression (MLR) method.
The WLA model shows the best result in the five prediction models
in terms of the root-mean-square error (RMSE, 0.19–0.82 mm) and
mean absolute error (0.01–0.07), which are 55.48% and 55.32%
lower than other models, and Nash–Sutcliffe efficiency coefficient
(NSE, 76.53%–99.7%) is 9.42% greater than other models. For
further analysis, we also study the WLA performance in different
months using one-month’s data as training length. The result shows
that WLA has good effects in predicting PWV in different months
and the average NSE of WLA is 95%. In addition, the predicted
PWV of the WLA model within 3 h is found to be accurate and
reliable (RMSE < 2 mm, relative error < 0.1, NSE > 60%). This
study demonstrates the good performance of WLA to predict GNSS
PWV.

Index Terms—Combined model, global navigation satellite
system (GNSS), neural networks, precipitable water vapor (PWV)
prediction.

I. INTRODUCTION

WATER vapor is an important component of the atmo-
sphere and plays an important role in weather forma-

tion. Although the content of water vapor in the atmosphere
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is very small, it is closely related to climate change [1], [2].
The amount of water vapor is difficult to measure due to strong
variability in space and time. Recently, with the development of
the satellite technique, GNSS becomes one of the most potent
methods for water vapor detection due to its high accuracy
and temporal resolution [3], [4]. Many previous studies use
GNSS water vapor data as one of the important parameters to
forecast short-term precipitation and the warning of extreme
weather, such as torrential rains and hurricanes [5], [6], [7],
[8], [9], [10]. Therefore, accurate prediction of GNSS water
vapor has an important impact on climate research and weather
forecast [11].

Much research in recent years has focused on predicting the
precipitable water vapor (PWV) which discovered that there is
potential for enhancing the accuracy of PWV prediction [12],
[13], [14], [15], [16]. One way to improve the accuracy is to
adopt a deep neural network that can improve the capability
of the model by providing complex nonlinear systems and a
higher level of abstraction for the model [17]. The deep neural
network has been extensively used in meteorology, hydrology,
transportation, and other fields in recent decades [18], [19], [20].
For example, Akbari Asanjan et al. [21], Khaniani et al. [22],
and Liu et al. [1] completed precipitable predictions based on
the long short-term memory (LSTM), support vector machine
(SVM), and artificial neural network, respectively. In terms of
atmospheric water vapor prediction, Pozo et al. [12] predicted
PWV at ALMA site based on the YSU-Noah configuration
in which root-mean-square error (RMSE) is 0.7 mm; Sharifi
and Souri [13] used a hybrid LS-HE and LS-SVM model to
predict PWV and the bias and standard deviations between the
observed and predicted values are about 0.37 mm and 3 mm; Ge
[23] and Ge et al. [24] used a wavelet neural network (WNN)
to predict PWV, in which the RMSE is 0.2 mm on average;
Xie et al. [25] showed that the RMSE of the genetic WNN
prediction method used PWV sampled at a frequency of 5 min
on August 12 at Wuhan station is 0.124 mm, which is smaller
than the BP neural network and WNN; Jain et al. [14] predicted
PWV using the least square estimation method, which achieves
an RMSE of 0.1 mm for the forecasting internal of 5 min in
the future; Huang et al. [26] conducted modeling and PWV
prediction based on the improved BP neural network and the
average RMSE at HKKP is about 5.142 mm. Turchi et al. [27]
applied the autoregressive (AR) technique to predict PWV and
RMSE < 1 mm for PWV ≤ 15 mm. An alternative approach
to improve the accuracy is using the combined model to pre-
dict PWV. For instance, Liu et al. [28] used empirical mode
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decomposition combined with a neural network to predict PWV
and Wang et al. [15] combined the improved adaptive Kalman
filter and radial basis neural network to predict PWV. Compared
with traditional models, the prediction accuracy of these com-
bined models is obviously improved.

Previous experiments have established that the deep neural
network and its combination models based on one or more
stations have good precision in predicting PWV. However, the
PWV variability is complex in different regions and seasons
including linear and nonlinear terms. These models do not con-
sider separating the random noise and the different components
of linear or nonlinear trends in the PWV data, which may have
an impact on the results of the forecast.

A combined model of wavelet analysis (Wa), LSTM neu-
ral network, and autoregressive integrated moving average
(ARIMA) was proposed to predict GNSS PWV, hereinafter
referred to as the WLA model. Wa in WLA is used to separate the
random noise in PWV data. LSTM and ARIMA, respectively,
predict nonlinear and linear parts of the data.

II. DATA AND METHODS

To get GNSS PWV data, observation files of ground GNSS
stations need to be processed first. Tropospheric delays are
estimated by GNSS data processing and are converted into PWV.
After highly accurate GNSS PWV time series are derived, five
models are used to predict the PWV. This part briefly introduces
PWV derivation methods from ground GNSS stations and algo-
rithms of prediction models.

A. Data Processing

We selected 22 ground GNSS stations at different latitudes
in China for experiments. The latitude and longitude of 22
experimental stations are given in Table I. Among them, seven
stations (BJFS, CHAN, JFNG, LHAZ, SHAO, URUM, WUH2)
are International GNSS Service (IGS) stations; ten stations
(AHAQ, AHBB, JSLS, JSLY, JSNT, JSYC, SCLH, SCSN,
YNTH, YNYL) are from Crustal Movement Observation Net-
work of China; and five stations in Hong Kong (HKKT, HKOH,
HKSL, HKST, HKWS) are from Continuously Operating Ref-
erence Stations (CORS).

In advance, GNSS observation files of 22 stations in 2018 are
processed into hourly GNSS PWV data by GAMIT [29], [30].
GNSS signals are affected by the atmosphere, which can result in
signal delay including ionospheric delay and tropospheric delay.
Tropospheric delay mainly refers to the zenith tropospheric de-
lay (ZTD). ZTD can be divided into zenith wet delay (ZWD) and
zenith hydrostatic delay (ZHD), and accurate ZHD is necessary
for data processing [31]. ZHD is calculated by the following
equations [32], [33]:

ZHD = (2.2768± 0.0024)× (Ps/f (θ,H)) (1)

f (θ,H) = 1− 0.0026× cos 2θ + 0.00028×H (2)

wherePs is the surface pressure of the station (unit: hPa); θ is the
latitude of the station; H is the height of the station (unit: km);
ZHD is the tropospheric zenith hydrostatic delay (unit: mm).

TABLE I
LATITUDE AND LONGITUDE LIST OF EXPERIMENTAL STATIONS

Then ZWD can be obtained by the following equation:

ZWD = ZTD− ZHD. (3)

Finally, temperature (T ), local weighted mean temperature
(Tm), the conversion factor (Π), and other parameters are used to
obtain the PWV value [34], [35], [36], as shown in the following
equations:

PWV = Π× ZWD = 106/ρwRv [(k3/Tm) + k2] × ZWD
(4)

Tm = ∫ (e/T ) dz/ ∫ (e/T 2
)
dz (5)

where ρw represents the density of liquid water, and the
value is 1× 106kg/m3; Rv represents the vapor gas con-
stant and is 461.495 J · kg−1 · k−1; k2 and k3 represent atmo-
spheric physical constants. k2 = 22.13± 2.20 k/hPa, k3 =
(3.739± 0.012) × 105k2/hPa; Tm represents the weighted
mean temperature of the troposphere, which can be expressed
as (5), where T and e are the absolute temperature and water
vapor pressure, respectively, in the zenith direction.

B. Prediction Models

We use five prediction models in our studies.
First, LSTM is a specific implementation of recurrent neural

network (RNN) and is a powerful method for deep learning of
time series data. LSTM introduces a memory cell to solve the
problems of gradient disappearance and explosion that occur in
RNN invariably. The memory cell contains a memory block,
and each memory block has three gate structures, including the
forgetting gate, the input gate, and the output gate. These three
gate structures can read, write, and reset data [37]. Because the
output value of the Sigmoid function is between 0 and 1 and it can
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let the information flow through the door or not, the activation
functions of the three gates are all S-type functions [38].

Second, ARIMA can identify complex patterns in data and
generate predictions, which can be used to analyze and pre-
dict univariate time series data. The function of ARIMA is
represented by (p, d, q), where p represents the number of
autoregression items, d represents the number of nonseasonal
differences, and q represents the number of lag prediction errors
in the prediction equation. Three steps of establishing ARIMA
are identification, estimation, and prediction [39].

Third, a WNN is formed by the combination of wavelet and
neural network. Its structure is similar to the radial basis function
(RBF) network and retains most of the advantages of the RBF
network. Parameters of WNN such as the number of hidden
nodes and weights are easier to determine. In addition, WNN
has the advantages of fast convergence, high accuracy, and small
network scale [40]. WNN adopts a three-layer network structure,
including an input layer, hidden layer, and output layer. The
number of neurons in the hidden layer is determined by the trying
out method, and the activation function is the Morlet wavelet
function [41].

Fourth, multivariable linear regression (MLR) refers to the
method of establishing a prediction model through correlation
analysis of two or more independent variables and one dependent
variable. Assuming y is the dependent variable, x1, x2,..., xn

are the independent variables, and there is a linear relationship
between the independent variables and the dependent variable,
the MLR model is as follows:

y = b0 + b1x1 + b2x2 + · · ·+ bnxn (6)

where b0, b1,..., bn are regression coefficients of MLR model.
Fifth, we combined the WLA model with Wa, LSTM, and

ARIMA. Wa is an effective tool for studying nonstationary
time series than Fourier Transform. Its main advantage is that
it can obtain the time, position, and frequency information of
the signal at the same time [39]. In the WLA model, Wa is used
to separate, denoise, and reconstruct the original data to get the
denoised PWV. Furthermore, the change of PWV sequence is
not simply linear or nonlinear but a combination of the two. It is
found in previous studies that LSTM is beneficial in predicting
nonlinear sequences and ARIMA is good at predicting linear
sequences, hence LSTM and ARIMA models are used to predict
PWV. The nonlinear part of PWV can be largely predicted by
LSTM, and the linear part of PWV can be largely predicted by
ARIMA. Finally, the standard deviation weighting method is
used to obtain the final PWV predicted value. WLA model not
only separates the random noise existing in the original PWV
sequence but also considers the linear and nonlinear trends. The
main process of WLA is shown in Fig. 1.

The WLA prediction is divided into three steps.
Step 1: Wa is carried out to separate the random noise in

PWV. The steps of Wa include wavelet decomposition, noise
reduction, and reconstruction. “db2” is chosen as the basis
function for wavelet decomposition and the number of wavelet
decomposition layers is one. Noise reduction is applied to the
detail coefficient after wavelet decomposition. Finally, the detail
coefficient after noise reduction and the approximate coefficient

Fig. 1. Main flowchart of the WLA model (WL is the predicted PWV by
LSTM, WA is the value predicted by ARIMA).

Fig. 2. Original PWV and the sequences decomposed by Wa at CHAN. The
horizontal coordinate is the time series of PWV (unit: hour). (a) Sequence of
original PWV. (b) First approximation coefficient of wavelet decomposition of
original PWV, represented by ca1. (c) Detail coefficients of wavelet decom-
position of original PWV represented by cd1. (d) PWV processed by wavelet
denoising. (e) Approximation coefficient, represented by ca1’, which is the same
as ca1. (f) Coefficients after wavelet denoising represented by cd1’.

are reconstructed to obtain the denoised PWV. It showed original
PWV and the sequences decomposed by Wa at CHAN in Fig. 2
as an example.

Step 2: The denoised PWV is input into the LSTM and
ARIMA model to predict PWV. Enter the training and prediction
set of the same time into both models, WL and WA are the
predicted data of LSTM and ARIMA, respectively.

Step 3: The standard deviation weighting method, a method
to determine the weight coefficient according to the standard
deviation of data, is used to assign weights to LSTM and
ARIMA. It is obtained by applying the following equations:

wL = σ2
A/(σ

2
L + σ2

A) (7)

wA = 1− wL (8)

where σ2
L and σ2

A are the variances of the predicted results of
LSTM and ARIMA, wL and wA are the weights assigned to
LSTM and ARIMA, respectively.

The final predicted value (Ỹ ) is obtained by the following
equation:

Ỹ = wL × WL + wA × WA. (9)
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C. Evaluation Indicators

Evaluation indexes used in this experiment are RMSE, relative
error (RE), and Nash–Sutcliffe efficiency (NSE) coefficient.

RMSE is the square root of the ratio of the sum of squares
of the deviation between the predicted value and the true value
(unit: mm). RE is the ratio of absolute error to the true value (no
unit). The calculation formulas of RMSE and RE are shown as
follows:

RMSE =

√
(1/N)

∑N

i=1
(Yi − f (xi))

2 (10)

RE = (1/N)
N∑
i=1

|Yi − f (xi) /Yi| (11)

where N is the total number, Y is the original value, and f(xi)
is the predicted value.

NSE is generally used to verify the quality of hydrological
model simulation results and here is used to verify the quality
of PWV prediction models (−∞, 1). The closer NSE is to 1, the
better the quality and reliability of the model. If NSE is much
less than 0, the model is not trusted [42]. NSE (expressed as a
percentage) is obtained by the following equation:

NSE =

(
1−

N∑
i = 1

(Yi − f (xi))
2/

N∑
i = 1

(
Yi − Ȳ

)2)
(12)

where N is the total number, Y is the original value, f(xi) is the
predicted value, and Ȳ is the total average value of the original
values.

III. EXPERIMENTS AND RESULTS

In this section, we compare the results of WLA with those
of the other four models and further analyze the results of the
five models in different months. In addition, experiments with
different training lengths and different prediction steps based on
the WLA model are carried out and the results are analyzed.

A. Model Evaluation

Five models are used to predict PWV in this part, includ-
ing LSTM, ARIMA, WNN, MLR, and WLA. The prediction
results of each model will be compared. These models are
trained and evaluated based on one-month’s data of PWV. The
experiment uses 28 days’ data as training data and 3 days’
data (72 h) as testing data, and the previous 12 h of PWV are
used to predict the next 1-h PWV. Fig. 3 shows the comparison
of evaluation indicators at 22 stations of experimental results
in January, and Fig. 4 shows the differences in evaluation
indicators between WLA and other models. As can be seen
from Fig. 3, the error of the WLA model is the smallest at
all stations. Conclusions can be drawn from Figs. 3 and 4
that the RMSE of the WLA prediction at each station ranged
from 0.19 to 0.48 mm, which was reduced by 6.1%–62.46%
compared with LSTM (0.35–1.05 mm), 6.67%–65.86% com-
pared with ARIMA (0.35–1.09 mm), 9.87%–66.63% compared
with WNN (0.25–1.05 mm), and 6.45%–62.64% compared
with MLR (0.26–1.09 mm). The RE of the WLA prediction

Fig. 3. Evaluation indicators of experimental results at 22 stations of January
data. (a), (b), and (c) RMSE, RE, and NSE of different models, where blue
represents LSTM, green represents ARIMA, yellow represents WNN, purple
represents MLR, and red represents the WLA model.

Fig. 4. Variation of evaluation indicators between WLA and other models at
22 stations of January data. (a), (b), and (c) Variation of RMSE, RE, and NSE,
where blue is the change between WLA and LSTM, green is the change between
WLA and ARIMA, yellow is the change between WLA and WNN, and purple
is the change between WLA and MLR.

at each station ranged from 0.01 to 0.04, which was reduced
by 1.42%–58.89% compared with LSTM (0.03–0.09), 22.17%–
63.08% compared with ARIMA (0.03–0.09), 23.19%–67.74%
compared with WNN (0.02–0.09), and 2.41%–59.24% com-
pared with MLR (0.03–0.09). The NSE of the WLA ranged
from 87.3% to 99.11%, which was increased by 1.12%–37.24%,
4.06%–37.72%, 3.63%–36.49%, and 3.84%–38.85% compared
with LSTM, ARIMA, WNN, and MLR, respectively.

Take BJFS station as an example, Fig. 5 shows the predicted
value and error of the PWV prediction by five models at BJFS
in January. It is found that the predicted value of PWV from
the WLA model is closest to the original value and the error
is relatively small compared with other models. Moreover, the
peak of PWV value predicted by LSTM, ARIMA, WNN, and
MLR in Fig. 5 has a time offset from the original one, while the
value predicted by the WLA model has better agreement with
the original time series by optimizing lag problems. Therefore,
WLA has the best result of the PWV prediction among the five
models.
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Fig. 5. Value and error of PWV predicted by five models at BJFS in January.
The horizontal coordinate is the prediction time series (unit: Hour). (a) Predicted
PWV in 72 h by different models. (b) Difference between the predicted PWV
and the original PWV. Black line is the original PWV in (a) and the zero line in
(b). Predicted PWV of LSTM, ARIMA, WNN, MLR, and WLA are represented
by purple, green, yellow, blue, and red lines, respectively.

Fig. 6. Variation of evaluation indicators between WLA and LA at 22 stations
of one-year’s data in 2018. (a), (b), and (c) Variation of RMSE, RE, and NSE,
where blue represents the LA and green represents the WLA model.

In addition, we conducted experiments on WLA and LA
without adding Wa. This experiment used the previous 12 h
of PWV to predict the next 1-h PWV in a year. Fig. 6 shows the
variation of evaluation indicators between WLA and LA at 22
stations of one-year’s data in 2018. It indicates that the RMSE
and RE of WLA are smaller than LA and NSE of WLA is higher
than that of LA. It can be concluded that Wa can reduce the error
in predicting PWV. Fig. 7 is the predicted value and error of the
PWV predicted by the WLA and LA at JFNG as an example.

PWV has a significant seasonal change, which is higher in
summer and lower in winter. To further check the performance
of prediction models in different months, WLA model with the
same training lengths is used to predict PWV in each month in
2018. For one month, the first few days are the training period
and the last three days (72 h) are the forecast period. Table II lists
the range of the evaluation indicators of the different models in
different months, from which we can see that the RMSE and
RE of WLA are both smaller than those of other models, and
NSE is larger than those of other models. Therefore, it can be
concluded that the high prediction accuracy of WLA makes it
more suitable for PWV prediction.

Fig. 7. Value and error of PWV predicted by WLA and LA in 2018 at JFNG.
(a) Predicted PWV. (b) Difference between the predicted PWV and the original
PWV. Black line is the original PWV in (a) and the zero line in (b). Predicted
PWV of LA and WLA are represented by green and red lines, respectively.

Fig. 8. Evaluation indicators of prediction results of 22 stations in four
different months. (a), (b), and (c) RMSE, RE, and NSE, respectively, where blue
represents January, green represents April, orange represents July, and purple
represents October.

Fig. 8 shows the evaluation indicators of prediction results
of 22 stations based on four different months’ PWV. As can be
seen from Fig. 8(a), the RMSE in January is relatively small,
which is between 0.19 and 0.48 mm; the RMSE in April and
October are between 0.24 and 1.06 mm and 0.20 and 0.88 mm,
respectively; the RMSE in July is between 0.42 and 1.22 mm,
which is relatively large. Fig. 8(b) shows that the RE in four
different months is all small. The RE in January, April, July, and
October are between 0.01 and 0.04, 0.01 and 0.07, 0.01 and 0.03,
and 0.01 and 0.06. And RE of most stations in July is smaller
than that of January, April, and October. In Fig. 8(c), we can see
that the NSE of each station in four different months is around
95%. It is indicated that WLA has good effects in predicting
PWV in different months.

Fig. 8 shows that the RMSE of July is higher than that of
other months. It also shows the situation of slightly large RE
and low NSE at some stations, such as CHAN and LHAZ.
For further analysis, we take CHAN and LHAZ as examples.
Compared with other stations, the RMSE in July and RE in
April of CHAN is significantly larger and the NSE of LHAZ in
January is especially low. PWV predictions at different months
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TABLE II
RANGE OF THE EVALUATION INDICATORS OF DIFFERENT MODELS IN

DIFFERENT MONTHS

TABLE II
(CONTINUED.)
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TABLE II
(CONTINUED.)

Fig. 9. Original and predicted PWV at CHAN in different months. (a), (b),
(c), and (d) PWV of January, April, July, and October, respectively, where the
black line represents the original PWV and the red lines represent the predicted
PWV.

of CHAN and LHAZ are shown in Figs. 9 and 10. As can be seen
from Fig. 9, the large value of PWV in July and the small value
of PWV in April at CHAN make the RMSE and RE larger than
in other months. What is more, PWV data at CHAN in April
fluctuate less than in January, July, and October, which results
in the NSE in April being the best. In Fig. 10, we can see that the
PWV value of the four different months does not differ much,
and therefore, the RMSE and RE do not differ much at LHAZ.
The PWV of July is relatively larger and the PWV of January
is smaller than other months, so the RMSE in July and RE in
January are larger than those of others. On the other hand, the
PWV fluctuates greatly in January, so the NSE is smaller than

Fig. 10. Original and predicted PWV at LHAZ in different months. (a), (b),
(c), and (d) PWV of January, April, July, and October, respectively, where the
black line represents the original PWV and the red lines represent the predicted
PWV.

Fig. 11. Evaluation indicators with different training lengths in December.
(a), (b), and (c) RMSE, RE, and NSE, respectively, where green represents
one-month, red represents half-year, and purple represents one year.

in other months; the fluctuation is small in April, so the NSE is
larger than in other months.

In general, the RMSE of PWV prediction in different months
are all less than 1.22 mm, the RE in different months are all less
than 0.1 and NSE are greater than 75.86%. It indicated that WLA
can be applied to the PWV prediction of the different months
with different PWV values.

B. WLA Based on Different Training Lengths

WLA model is used to predict PWV with different training
lengths in this section. It predicts the last 3 days (72 h) PWV in
December with the data of one month, half-year, and one year.
Fig. 11 shows the evaluation indicators with different training
lengths in December. For predicting the last 3 days (72 h) PWV
by one-month’s data, the range of RMSE, RE, and NSE is
0.28–1.01 mm, 0.02–0.1, and 83.98%–98.59%, respectively. For
predicting the PWV by half-year’s data, the range of RMSE,
RE, and NSE is 0.26–1.02 mm, 0.01–0.1, 83.98%–98.59%,
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Fig. 12. Predicted PWV of different training lengths in December at AHAQ,
where black represents the original PWV, blue represents the predicted PWV by
one-month’s data, green represents the predicted PWV by half-year’s data, and
red represents the predicted PWV by one-year’s data.

Fig. 13. Evaluation indicators of PWV prediction with different prediction
steps in June. (a), (b), and (c) RMSE, RE, and NSE, respectively, where blue
represents step 1 h, green represents 2 h, yellow represents 3 h, purple represents
6 h, and red represents 12 h.

respectively. For predicting the PWV by one-year’s data, the
range of RMSE, RE, and NSE is 0.24–0.95 mm, 0.02–0.11, and
85.35%–98.25%, respectively.

We found that the differences in evaluation indicators among
one month, half-year, and one year are very small, which indi-
cates that increasing the training length has little effect on the
accuracy of PWV prediction. It is observed that the predicted
PWV by the data of one month, half-year, and one-year fit the
original PWV almost as well in Fig. 12. All results show that
PWV predictions of the WLA model can be made by using
one month as the length of the training data.

C. WLA Based on Different Prediction Steps

PWV is of vital importance to the study of precipitation
in meteorology and space geodesy. Precipitation forecast in
meteorology is not simply predicting the next time but time
series in the future invariably. Accordingly, this part increases
the prediction step from 1 to 2, 3, 6, and 12 h. Two months’
data (June and December) of 22 stations are used to predict
PWV in this experiment. Evaluation indicators of the results at
22 stations with different prediction steps are shown in Figs. 13
and 14; the average RMSE, RE, and NSE of June and December
with different prediction steps are given in Tables III and IV.

It can be observed in Figs. 13 and 14 and Tables III and
IV that the RMSE and RE of these 22 stations increase as the
prediction step increases gradually. Appreciably, RMSE in June
of all stations are less than 3 mm at 1 h (average 1.24 mm),

Fig. 14. Evaluation indicators of PWV prediction with different prediction
steps in December. (a), (b), and (c) RMSE, RE, and NSE, respectively, where
blue represents step 1 h, green represents 2 h, yellow represents 3 h, purple
represents 6 h, and red represents 12 h.

TABLE III
AVERAGE VALUES OF THREE INDICATORS WITH DIFFERENT PREDICTION STEPS

IN JUNE

TABLE IV
AVERAGE VALUES OF THREE INDICATORS WITH DIFFERENT PREDICTION STEPS

IN DECEMBER

2 h (average 2.01 mm), 3 h (average 2.69 mm), and increase to
3–5 mm at 6 h (average 3.89 mm) and 12 h (average 5.44 mm);
RE of most stations are less than 0.1 at 1 h (average 0.03), 2 h
(average 0.04), 3 h (average 0.06), and increase to 0.1–0.2 at 6 h
(average 0.09) and 12 h (average 0.12). In December, the RMSE
of all stations are less than 2 mm at 1 h (average 0.51 mm),
2 h (average 0.84 mm), 3 h (average 1.17 mm), and increase to
3–5 mm at 6 h (average 1.96 mm) and 12 h (average 2.86 mm);
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Fig. 15. Results of the HKOH station with different prediction steps in
December. (a) Original and predicted PWV. (b) Difference between the predicted
and the original PWV of different prediction steps. Red, green, yellow, purple,
and blue represent the predicted PWV at the prediction step of 1 h, 2 h, 3 h, 6 h,
and 12 h, respectively; black line is the original PWV in (a) and the zero line
in (b).

RE of all stations are less than 0.1 at 1 h (average 0.03), 2 h
(average 0.05), 3 h (average 0.07), and increase to 0.1–0.2 at 6 h
(average 0.1) and 12 h (average 0.15).

In the same way, as the prediction step increases, the NSE of
the WLA is getting worse. In June, 14 of 22 stations have NSE at
the prediction step in 3 h greater than 60%. NSE in December at
the prediction step in 3 h is greater than 60% except for BJFS and
JSLY, which illustrated that the WLA model has high reliability
of PWV prediction within 3 h. When the prediction step is 6 h, the
average NSE in June is 33.56%, and 12 of 22 stations have NSE
greater than 40%, and 3 of 22 stations have negative NSE. And
the average NSE in December is 40.66%, and 14 of 22 stations
have NSE greater than 40%, and 2 of 22 stations have negative
NSE. It means that the prediction results for the 6 h prediction
step of the WLA model are close to the average level of original
PWV. It also means that the overall results for the 6 h prediction
step can be used as a reference when the accuracy requirement
is not high. When the prediction step is 12 h, negative NSE is
present at 16 of 22 stations in June and 17 of 22 stations in
December. It has a large error and the results are not accurate,
which means WLA model cannot predict PWV with 12 h of
prediction steps accurately.

Fig. 15 shows the results of the HKOH station using WLA to
predict PWV under different prediction steps and the differences
between prediction PWV and original PWV. It shows that the
predicted PWV with the prediction step of 1, 2, and 3 h is verging
on the original PWV while the error of 6 and 12 h is larger. In
conclusion, the WLA model is reliable and accurate in predicting
PWV within 3 h and is feasible to predict PWV in 6 h while the
accuracy is not high.

IV. CONCLUSION

WLA model that combined Wa, LSTM, and ARIMA was
constructed to predict GNSS PWV. In total, 22 stations in
different regions of high, low, and middle latitude in China are
used to compare the WLA and other models, including LSTM,

ARIMA, WNN, and MLR, and it is observed that WLA has
the highest accuracy. The RMSE and RE ranges of the WLA
model are 0.19–0.82 mm and 0.01–0.09, which is about 43.2%
and 46.58% lower than other models. The NSE, in the range
of 87.3%–99.3%, is about 17.62% greater than other models,
which means that the WLA model is more stable and credible.

In addition, we analyzed the characteristics of WLA for dif-
ferent months, different training lengths, and different prediction
steps. When comparing the results of different months, the
average NSE of WLA is around 95%. And we concluded that
the RMSE in January, April, and October are less than that in
July, while the RE in July is smaller than that of January, April,
and October. The results show that the RMSE and RE are closely
related to the value of the PWV, and the WLA model has equally
good prediction accuracy in different months. For experiments
of different training lengths, there is little difference between the
result of one month and that of half-year and one year, which can
be concluded that one-month training data are enough to predict
hourly PWV accurately. Furthermore, we found that the WLA
model has high accuracy in predicting PWV with the prediction
step of 1–3 h, and the average RMSE is less than 2 mm, RE is
less than 0.1, and NSE is around 79.27%. The average RMSE
and RE are 2.92 mm and 0.1 when the prediction step is 6 h.
And 13 of 22 stations on average have NSE greater than 40%,
indicating that the result of 6 h is credible, although the model
is not stable enough.

Compared with the predicted results of other models, we
found that WLA model has better accuracy in PWV prediction.
The Wa in WLA can improve the prediction accuracy by decom-
posing the random noise from PWV time series. The LSTM and
ARIMA models are combined with the help of the standard
deviation weighting method. We conducted PWV prediction
experiments for different months, different training lengths, and
different prediction steps. The results of the PWV prediction
experiment in each month show that WLA can be applied to
PWV prediction in different months. What is more, we identified
that the error of the PWV predicted by WLA model increased
with the increase of the prediction step. And WLA can accurately
predict the PWV in 3 h.

Overall, we demonstrate that the WLA model has high ac-
curacy in the prediction of PWV and is feasible to predict
PWV in the regions we selected and similar regions. It can
also predict PWV in different months and different prediction
steps, which will be an important promotion for the research
meteorology. In future work, we can study how to improve the
prediction accuracy and conduct experiments in a larger range
by adding data (more stations and a longer period) to confirm
the applicability of the model, which can provide powerful data
support for further meteorological research.
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