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Cross Spectral and Spatial Scale Non-local
Attention-Based Unsupervised

Pansharpening Network
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Abstract—Pansharpening means fusing the low spatial resolu-
tion multispectral image (LRMSI) and the panchromatic (PAN)
image to get the high resolution multispectral image (HRMSI).
Due to the powerful feature learning ability of the deep-learning
(DL), DL-based unsupervised fusion methods have been developed
explosively. However, most of the fusion methods are difficult to
fully explore and utilize the correct spatial and spectral correlation
between the LRMSI, HRMSI, and PAN images. In addition, the
CNN-dominated fusion framework is limited by its local feature
learning without exploring the global feature dependency to further
enhance the image feature. Therefore, to fully exploit the correct
correlations between LRMSI, HRMSI, and PAN images and to
explore the global feature dependency, we designed a cross-scale
unsupervised fusion network (CSFNet). This network is composed
of two cross spectral and spatial scale’s nonlocal attention blocks
to effectively fuse the LRMSI and PAN image features. And the
fusion strategy is implemented by mapping the computed nonlocal
similarity from the low resolution scale to the high resolution scale
and outputs the reconstructed HRMSI feature. The experimental
results on two datasets show that it achieves state-of-the-art per-
formance compared to other fusion methods.

Index Terms—Cross scale, deep learning, nonlocal attention,
pansharpening, unsupervised training.

I. INTRODUCTION

MULTISPECTRAL image (MSI) generally refers to the
satellite image with the rich spectral information. It has

been widely used in many applications, including land cover
classification, change detection, and object recognition [1], [2].
However, due to the limitation of the imaging sensors, their low
spatial resolution limits their application range and accuracy.
Therefore, the coupled PAN image with the higher spatial res-
olution is always fused with LRMSI to get HRMSI with higher
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spatial resolution, which is called the pansharpening [3], [4] [5],
[6], [7].

Many approaches have been developed to fuse the LRMSI
and PAN images, which can be summarized into four cate-
gories, including component substitute (CS)-based, multires-
olution analysis (MRA)-based, variational optimization (VO),
and deep learning (DL)-based. CS-based methods substitute the
simulated intensity band from the LRMSI by the histogram-
matched PAN image to improve the spatial quality of the LRMSI,
mainly including intensity-hue-saturation (IHS) [8] and Gram–
Schmidt adaptive (GSA) [9], [10]. MRA-based methods decom-
pose the PAN image into different spatial scales and inject the
corresponding high-frequency details into the LRMSI, includ-
ing smoothing filter-based intensity modulation (SFIM) [11],
wavelet transform (Wavelet) [12], modulation transfer func-
tion with generalized Laplacian pyramid (MTF_GLP) [23], and
MTF_GLP with high-pass modulation (MTF_GLP_HPM) [23].
VO-based methods usually design the specific constrained target
function and alternatively optimize the variables to achieve the
best fusion performance. Among them, coupled nonnegative
matrix factorization (CNMF) [23] is the most representative one.
However, CS-based and MRA-based methods always introduce
the spectral and spatial distortion into the fused results, while
VO-based methods suffer from a high computational cost.

In recent years, DL-based methods have been widely explored
due to their powerful feature learning ability [16], [17], [18].
Especially the convolutional neural networks (CNN), which can
capture the complex local spatial and spectral features of the im-
age, have been widely used in the image fusion field. For exam-
ple, Masi et al. [16] first proposed a CNN-based pansharpening
network–PNN, which includes three convolutional layers. Then,
Yang et al. [17] developed a deep network structure–Pannet with
a high-pass filtering method to fuse the LRMSI and PAN image.
Kwan et al. [19] summarized 11 pansharpening algorithms to
enhance the images of the left imager in the mastcam by its right
imager. Li et al. [20] designed a detail injection network to inject
the pan details into the LR image by rectifying the incorrect data
distribution, which achieves great fusion performance.

Actually, the training stage of the above supervised methods
is on the low resolution dataset, while the testing is on the
high resolution scale. However, it is laborious and difficult
to generate the low resolution dataset that could maintain the
scale-invariant property of the image feature. As a result, this
kind of training strategy may degrade the fused image quality
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Fig. 1. Overall framework of the proposed fusion method. ‘concat’ means the
bandwise concatenation operation on the image features generated from two
cross-scale attention blocks.

Fig. 2. Different bands’ spectral response functions (SRF) of the WorldView2
satellite imaging sensor.

on the original HR scale. Therefore, the unsupervised fusion
network that performs the training process on the high res-
olution scale has been gradually developed in recent years.
For example, Ma et al. [21] designed an unsupervised fusion
network–PanGAN with spectral and spatial discriminators to
get the fused HRMSI. Zhou et al. [22] proposed an unsupervised
generative adversarial framework on the original high resolution
scale. This framework extracts the modality-specific features
from the LRMSI and PAN images with the designed generator
and then fuse them to get the HRMSI. In addition, based on the
self-attention mechanism, Qu et al. [23] propose an unsuper-
vised pansharpening method in a deep-learning framework that
achieves great performance.

However, these unsupervised fusion networks are trained by
relying on the commonly used loss functions. For the remote
sensing image, the space-invariant degradation kernels (e.g.,
“bicubic”) are always used to constrain the spectral fidelity of the
fused HRMSI [21]. And the spatial constraint is to enforce the
consistency between the PAN image and the bandwise average
of the fused HRMSI. But these two constraints in the spectral
and spatial domain may not be totally correct and lack the
robustness for different image features. For example, as shown
in Fig. 2, the spectral response function (SRF) of the MSI and
PAN image bands do not fully follow the linear relationship,

which demonstrates the irrationality of the “bandwise average”
consistency. Therefore, the fusion network that can correctly
learn and explicitly use the spatial and spectral correlations is
essential to achieve excellent fusion performance.

Furthermore, most of the fusion networks are constructed
based on the widely used CNN structure. But the limited lo-
cal feature learning of the CNN hinders the exploitation of
the long-range dependence of the image features. Recently,
the transformer structure [24] has been developed in computer
vision fields, such as super-resolution [25], [26]. Its main idea
is to use nonlocal self-attention to enhance the image feature. In
the image fusion field, several nonlocal attention-based methods
have also been proposed and achieved great performance. For
example, Zhang et al. [27] proposed a multiscale spatial-spectral
interaction transformer to complete the pansharpening task.
Wele [28] adopted the transformer structure to inject the PAN
image details into the hyperspectral image. However, these
methods compute the nonlocal attention on the pixel level and
may not sufficiently learn the local texture information of the
image feature, which may degrade the resulting image quality.

To effectively solve the above problems, we make several
contributions, which can be summarized as follows.

First, we design a cross spectral-scale nonlocal attention
module. This module could map the spectral correlation com-
puted between the LRMSI and PAN image features to the high
resolution scale and reconstruct the HRMSI feature. Without
using the “average” function to constrain the spatial fidelity of
the fused HRMSI, we explicitly learn and exploit the spectral
band correlation through the designed network structure.

Second, to sufficiently adapt to the spatial resolution dif-
ference between the LRMSI and PAN images, we propose
a cross spatial-scale nonlocal attention module. This module
first computes the patch-level nonlocal similarity between the
encoded LRMSI and PAN images. Then we map this similarity
to the original LRMSI feature to reconstruct the HRMSI feature.

Finally, compared with the other nonlocal attention-based
fusion methods, the nonlocal similarity matrix in the designed
cross spatial-scale block is computed on the patch level. The
patch-level computation could greatly reserve the local texture
and context information. And the nonlocal similarity matrix
could capture the global attention information. This combination
of local and nonlocal is much more effective and efficient in
enhancing the image feature learning and improving the fusion
performance.

The rest of this article is organized as follows. Section II intro-
duces the related work with the research issues, including unsu-
pervised pansharpening, patch recurrence property and nonlocal
attention. Section III describes the designed network modules
and loss functions. The results of the comparative experiments
are given in Section IV. Section V shows the experimental result
of the ablation study. Finally, Section VI concludes this article.

II. RELATED WORK

A. Unsupervised Pansharpening

Actually, traditional methods including CS, MRA, and VO-
based all belong to unsupervised pansharpening methods.
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However, due to the poor performance of these methods in spa-
tial and spectral fidelity or huge computational cost, DL-based
methods have been explored in recent years. The DL-based
unsupervised method takes the training process on high reso-
lution scale and could use appropriate loss functions to achieve
satisfactory fusion performance.

For example, Zhou et al. [29] proposed a novel pansharpening
framework that adopts the auto-encoder and perceptual loss to
complete the fusion process. Qu et al. [23] proposed an unsu-
pervised deep-learning framework based on the self-attention
mechanism and achieved great fusion performance. In addition,
Seo et al. [30] designed an unsupervised learning framework
with registration learning for pansharpening and designed two
novel loss functions to train the network. Diao et al. [31] de-
signed a multiscale fusion network and adopted multiple GAN
structures at different scales to improve the fusion performance.
Xu et al. [32] proposed an iterative network based on spectral
and texture loss constraints and generative adversarial network
to fuse the LRMSI and PAN images. Although the great fusion
performance they achieved, the lack of exploring and utilizing
the correct spectral and spatial correlations is still the obstacle
to achieving a better fusion performance.

B. Patch Recurrence Property and Nonlocal-Based Attention

Image patches tend to recur within and across scales of a
same image, which is called the patch recurrence property [33],
[34]. This property has been widely used in the image super-
resolution field to enhance the HR patch using similar patches in
images of different resolutions. In the pioneering study, Glasner
et al. [33] integrated the methods of multiple images SR and
example-based SR to exploit repeating patches within and across
multiscale images. Furthermore, Freedman et al. [35] effectively
extracted the patches from the localized regions of the input
image, which could reduce the computational complexity.

This patch recurrence property within and across scales rep-
resents the long-range dependence of image patches, which is
similar to the idea of the transformer network–nonlocal self-
attention [24]. Some studies have used the nonlocal attention
module to super-resolve the LR image. For example, Liu et
al. [36] propose a nonlocal recurrent network to incorporate the
nonlocal operations into a recurrent neural network for image
restoration with fewer parameters. Dai et al. [37] proposed a
channel attention module to adaptively rescale the channelwise
features and a nonlocally enhanced residual group to capture
long-distance spatial information. Different from the nonlocal
self-attention in the super-resolution field, we need to consider
the cross-attention between different resolutions’ images in the
fusion field. In addition, the nonlocal attention in some methods
is computed on the pixel level, which may not be sufficient to
learn the local texture feature of the image.

III. METHOD

A. Overall Fusion Framework

The proposed fusion framework is shown in Fig. 1. We
design two cross spectral-scale and cross spatial-scale blocks to

sufficiently learn the spectral and spatial relations of two input
images. These relations are then mapped to high resolution scale
to reconstruct the HRMSI features. Then a “Feature aggregation
module” is designed to integrate the HRMSI features from these
two cross scale blocks and output the fused HRMSI.

B. Cross Spectral-Scale Nonlocal Attention Block

Actually, in some SRF (the mapping function from MSI to
PAN image) estimation methods, they use the downsampled
images to estimate the SRF and apply it on the high resolution
scale [38], which achieves great performance. Therefore, the
spectral band correlation on the LR scale is approximately the
same as that on the HR scale. This could be expressed as

ψ(Ph×w,M
j
h×w) = ψ(PH×W ,Mj

H×W ) (1)

where Ph×w represents the low resolution PAN image, M j
h×w

represents the low resolution MSI image and Mj
H×W represents

the jth band of the high resolution MSI. Their spatial sizes are
h× w andH ×W on the LR and HR scales, respectively.ψ(·, ·)
means the function to calculate the correlation as

ψ(Ph×w,M
j
h×w) = θ(Ph×w) · δ(M j

h×w) (2)

where θ(·) and δ(·) are feature transformation functions.
And · means the dot-product operation to output the correlation
coefficient between Ph×w and M j

h×w.
However, most methods only use the estimated spectral band

correlation to constrain the spatial fidelity in the loss function
part, which may not make full use of it. Therefore, we design
a cross spectral-scale nonlocal attention block to explicitly map
the computed bandwise nonlocal similarity from the LR scale
to the HR scale and reconstruct the HRMSI feature, as shown
in Fig. 3. In this block, we first downsample both input images
by a single stride convolution from H ×W and h× w to the
same size → h′ × w′ (we set h′, w′ equal to h/(r2), w/(r2)).
This downsampling operation could get the discriminative fea-
tures and reduce the complexity of the following similarity
computation. Note that we maintain the number of original
spectral bands in this block. This unchanged spectral dimension
could greatly preserve the spectral bands’ self-correlation and
cross-correlation of the input images.

Then we compute the bandwise similarity matrix

φ(P1×h′×w′ ,MC×h′×w′) = (P1×h′w′)(MC×h′w′)T ⇒ S1×C

(3)
where h′ and w′ represent the spatial size of the downsampled
image features, as shown in the middle part of Fig. 3. “1” and “C”
are the number of bands of PAN image and MSI, respectively.
“S1×C” represents the computed nonlocal similarity matrix.
Note that ψ(., .) in (2) is different from the φ(., .) in (3). The
former is computed on the single-band image while the latter is
computed on the all-band image.

To map the similarity matrix computed on the LR scale to the
HR scale, as shown in the right part of Fig. 3, we perform the
matrix multiplication operation between the similarity matrix
and PAN ′ to obtain the reconstructed HRMSI feature. Note
that we first align the feature space of the PAN image by the



LI et al.: CROSS SPECTRAL AND SPATIAL SCALE NON-LOCAL ATTENTION-BASED UNSUPERVISED PANSHARPENING NETWORK 4861

Fig. 3. Network structure of the proposed cross spectral-scale nonlocal attention block. The “Feature downsampling block” includes a convolution layer with
kernel size 3 and a LeakyRelu activation function. The strides of convolution are set to r2 and r3 for the LRMSI and PAN images, respectively. The nonlocal
similarity is computed by the bandwise dot-product operation. (“r” is the spatial resolution ratio between the LRMSI and PAN image.)

convolution operation and get PAN ′(P ′)

(S1×C)
T × P ′

1×H×W ⇒ M′
C×H×W (4)

where M′
C×H×W is the reconstructed HRMSI feature.

C. Cross Spatial-Scale Nonlocal Attention Block

The spatial resolution gap between the LRMSI and the PAN
image is another major obstacle to achieving higher fusion
performance. Some methods preupsample the LRMSI and con-
catenate it with the PAN image in the spectral dimension before
entering it into the fusion model. This may introduce undesired
spatial distortion or noise into the fused result. Therefore, to
adapt to the spatial resolution gap between the LRHMI and PAN
images and to benefit from both the local and nonlocal feature
learning, we propose a cross spatial-scale nonlocal attention
block, as shown in Fig. 4. This block could use the spatially
cross-scale nonlocal similarity between the LRMSI and PAN
images to reconstruct the HRMSI feature.

As shown in the left part of Fig. 4, we first measure the
patchwise nonlocal similarity matrix between the encoded high-
level features of LRMSI and PAN images. Then, we map this
similarity to the low-level feature of the LRMSI image to obtain
the low-level feature of the reconstructed HRMSI. Note that the
patch-level nonlocal similarity could retain more local texture
information compared to the pixelwise similarity. And it could
explore the long-range dependency of the image feature. This
combination of local and nonlocal feature learning could greatly
improve the fused image quality.

Actually, the assumption of the similarity mapping theory
is that the similarity between the images’ high-level features

is closely related to the similarity between their low-level fea-
tures. Generally, the high-level feature means the deep semantic
information and the low-level feature represents the shallow
spatial texture and spectral feature. For example, the trees in the
same category (high-level feature) always have nearly the same
spatial and spectral feature (low-level feature). Therefore, this
computed spatially nonlocal similarity matrix could be shared
between the high-level and low-level features

ψ(Mh
i,j , P

h
m,n) = ψ(M l

i,j ,M
l
m,n) (5)

whereMh
i,j means the (ith, jth) unfolded patches of the LRMSI’s

high-level feature. Ph
m,n means the (mth, nth) unfolded patches

of the PAN image’s high-level feature. And Ml
m,n means the

(mth,nth) unfolded patches of the HRMSI’s low-level feature. In
fact, the theoretical basis of the similarity mapping is (5), which
indicates that the computed spatially nonlocal similarity matrix
could be shared between the high-level and low-level features.
Equation (5) suggests that we could first extract the high-level
feature from the input LRMSI and PAN images, then map the
computed similarity between these two high-level features to
the low-level feature of LRMSI and reconstruct the low-level
feature of HRMSI.

In detail, we first obtain the high-level features of LRMSI and
PAN images through the “high-level feature encoding block,” as
shown in Fig. 4. The detailed network structure of the “high-level
feature encoding block” is shown at the bottom of Fig. 4. It
consists of two cascaded convolution blocks, which include
the convolution layer, batch normalization, and LeakyRELU
functions. Then, five “Resnet blocks” are used to extract the
high-level features of the image. Then, we unfold the encoded
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Fig. 4. Network structure of the proposed cross spatial-scale nonlocal attention block. Note that “p” is the unfolding patch size and “n1” is the number of patches
after the unfolding operation. “ch” is the number of high-level feature bands. The “softmax” function is used to normalize the similarity matrix.

high-level feature of LRMSI into patches

Mh
ch×h×w → unfold() →Mh

n1×ch×p×p (6)

where Mh
ch×h×w is the encoded high-level feature of LRMSI.

ch is its band number (it is set to 32 in this study). n1 is the
number of patches after the unfold() operation based on the
patch size p× p (n1 = hw/(p× p)). And the unfolded patches
are depicted by the “cube grid” in the middle part of Fig. 4.

To compute the cross-scale patch-level similarity with high
efficiency, we use the convolution operation from the unfolded
patches–Mh

n1×ch×p×p (acting as the convolution kernel) onto the

high-level feature of the PAN image (Ph)

fMh

n1×ch×p×p

(Ph
ch×H×W ) ⇒ Sn1×(H/p)×(W/p) (7)

where Ph
ch×H×W is the encoded high-level feature of the PAN

image. Sn1×(H/p)×(W/p) is the resulting nonlocal similarity
matrix. Note that the stride of this convolution operation is set
to the patch size-p. And the convolution operation is actually
to compute the similarity between each of two patches of size
p× p. Then, as shown in Fig. 4, to reconstruct the HRMSI, the
low-level feature of the LRMSI (M l) is unfolded

M l
C×h×w → unfold() →M l

n1×C×p×p. (8)

In the next step, as indicated by [39], we map the similarity
matrix Sn1×(H/p)×(W/p) to M l

n1×C×p×p through the transpose
convolution and get the reconstructed HRMSI feature as

fM l
n1×C×p×p

(Sn1×(H/p)×(W/p)) ⇒ ̂Ml
C×H×W (9)

where f(.) means to perform the transpose convolution operation
using the kernel M l

n1×C×p×p on the Sn1×(H/p)×(W/p) with the

stride of p. ̂Ml
C×H×W means the reconstructed low-level feature

of HRMSI. And then it is transferred to the original image space
by a single convolution layer.

Note that the proposed cross spatxial-scale attention block is
inspired by [39], but there are two main differences between that
study and our proposed network.

On the one hand, the cross-scale attention computed in [39] is
between the original image and its downsampled version, while
ours is computed between the LRMSI and PAN images on their
original spatial resolutions. The downsampling operation in [39]
may introduce errors and degrade the accuracy of the computed
similarity matrix.

On the other hand, the nonlocal similarity in [39] is computed
on low resolution scale and used on high resolution scale. While
in our proposed model, the computation and use of the similarity
matrix are on the same resolution scales. The resolution gap
in [39] may degrade the resulting image quality.

D. Feature Aggregation Module

After getting the reconstructed HRMSI feature from the cross
spatial-scale attention block, we concatenate it with the feature
from the cross spectral-scale block. Then, as shown in Fig. 1, the
“Feature aggregation module” including the “Dwconv”- with
kernel sizes 11 and 1 is used to integrate the image features
and output the fused HRMSI. Note that we add the residual
connection [40] from the upsampled LRMSI (by the “bicubic”—
interpolation method) to the final result to accelerate the training
process.

E. Loss Function

In this part, different from the supervised methods, we design
several loss functions to complete the training stage of the
proposed unsupervised fusion network. The supervised methods
could directly use the difference between the label and the fused



LI et al.: CROSS SPECTRAL AND SPATIAL SCALE NON-LOCAL ATTENTION-BASED UNSUPERVISED PANSHARPENING NETWORK 4863

image to update the network parameters. While the unsupervised
methods need to use the input images to constrain and improve
the quality of the fused image.

1) Bicubic Loss: To guide the fused HRMSI to preserve the
main spectral structure of the LRMSI, we adopt the “bicubic”
upsampling consistency loss function

Lbic_up = ‖M ↑ − ̂M‖1 (10)

where M ↑ is the upsampled LRMSI by the “bicubic” interpo-
lation method. And ̂M is the fused HRMSI.

2) Detail Consistency Loss: In fact, the spatial details in-
volved in the HRMSI and PAN images are very similar. There-
fore, we impose the detail consistency loss between the fused ̂M
and PAN image (P ) by their high-frequency features

Ldc = r( ̂M−M ↑, P − Pb) (11)

wherePb is the blurred PAN image through the Gaussian kernel.
And r(x, y) means the calculation of the correlation coefficient
between x and y

r(x, y) =
E((x− E(x))(y − E(y)))

std(x)std(y)
(12)

whereE()means the calculation of the expected value and std()
is the standard deviation calculation function.

3) Local Spectral and Spatial Consistency Loss: The local
texture similarity losses in both spectral and spatial domains are
added by the SSIM index [41]

LSSIM_spe = 1− SSIM(Downspa( ̂M),M) (13)

LSSIM_spa = 1− SSIM(Downspe( ̂M), P ) (14)

LSSIM = LSSIM_spe + LSSIM_spa (15)

where Downspa means the spatial downsampling operation
through the Gaussian kernel. And Downspe is the spectral
downsampling operation by the average function.

4) Total Loss Function: The total loss function is the combi-
nation of the above three loss functions as

Ltotal = α1Lbic_up + α2Ldc + α3LSSIM (16)

where α1, α2, and α3 are the weights of the corresponding loss
term and they are set to 10, 10, and 50, respectively.

IV. EXPERIMENTAL RESULTS

In this section, we take the fusion experiments and show the
fused results. First, we describe the two datasets used in this
study and the training details. Then, we list the comparison
methods and quality measure metrics. Finally, we show the
qualitative and quantitative fusion results of different methods
on two datasets on reduced and full resolution scales.

A. Datasets

We select two datasets including WorldView2 (WV2) and
GaoFen2 (GF2) satellite images to verify the superiority of the
proposed fusion method. The spatial resolutions of these two
datasets are 0.5 and 0.8 m for PAN image, 2.0 and 3.2 m for

LRMSI, respectively. And their number of bands are 8 and 4 in
fusion experiments. The spatial sizes of these two datasets are
5059 × 2145 and 6907 × 7300 for the LRMSI, 20236 × 8580
and 27628 × 29200 for the PAN image.

The fusion experiments are conducted on reduced and full
resolution datasets. The reduced resolution dataset is generated
according to the Wald protocol [42] by downsampling the orig-
inal LRMSI and PAN image with the Gaussian kernel. The
original LRMSI is then regarded as the reference image. The
patch size is set to 64 and 256 for the LRMSI and PAN im-
ages, respectively. And we randomly select 90% of the cropped
patches in the training stage and the last is for the performance
test. Note that the reduced resolution experiments are actually to
compare the different methods on the simulated dataset, which
lacks practicality. And the full resolution experiments on the
original dataset are more practical in real-world applications.

B. Training Details

Due to the different number of training image pairs on the
reduced and full resolution scales, we set the training epochs
to 500 and 50 for these two scales’ datasets, respectively. The
batch size is set to 10. And the learning rate is initialized to 1e-4,
and decays with a rate of 0.1 in half of the training epochs. The
ADAM optimizer is selected to update the model parameters
with the β1 of 0.9 and β2 of 0.999. The feature bands are all set
to 32 except the one specified. All the experiments are run under
the paddle 2.4.0 framework on a single V100 GPU with 32 GB
memory.

C. Comparison Methods and Quality Measures Metrics

We compare the proposed CSFNet with several SOTA
pansharpening methods, including IHS [8], SFIM [11],
Wavelet [12], MTF_GLP [23], and MTF_GLP_HPM [23],
which belong to the traditional methods. As for the DL-based
methods, we select several unsupervised and supervised meth-
ods. The first class includes LDPnet [43] and PanGAN [21]. Like
the proposed CSFNet, these two methods are trained on reduced
and full resolution datasets, respectively. For the supervised
methods, Pannet [17], TFNet [44], and PanFormer [45] are
selected to compare the fusion performance. For these three
methods, due to the requirement of the reference image to
supervise the training process, we only train them on the reduced
resolution dataset. And the full resolution’s performance test is
done by the trained parameters on the reduced dataset.

The quality indices used to measure and compare the perfor-
mance of different methods on the reduced resolution datasets
include Spectral Angle Mapper (SAM) [46], relative dimension-
less global error in synthesis (ERGAS) [47], universal image
quality index (UIQI) [48], and root-mean-squared error (rmse).
SAM measures spectral distortion in fused images. ERGAS,
UIQI, and rmse evaluate the spectral and spatial quality of the
fused results comprehensively. For the full resolution experi-
ments, due to the lack of reference image, we choose the spectral
index Dλ [49], spatial distortion index D_s [49] and QNR [49]
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Fig. 5. Fused results (odd row) and error maps (even row) of different methods on the reduced resolution WV2 dataset. (a) IHS. (b) SFIM. (c) Wavelet.
(d) MTF_GLP. (e) MTF_GLP_HPM. (f) LDPnet. (g) PanGAN. (h) Pannet. (i) TFNet. (j) PanFormer (k) Ours. (l) Ground truth.

to compare the spectral and spatial fidelity of different meth-
ods’ results. The generalized QNR [50] (GQNR) has also been
proposed to compare the different methods. But considering the
similarity between the GQNR and QNR indices, we only use
the QNR index to compare the different methods. Note that
the supervised methods are highlighted with dashed lines in the
quantitative results. And the red font in the quantitative results
means the best result among all unsupervised methods except
the supervised methods, while the bold font means the best
result among all methods, and the underlined results represent
the second rank among all methods.

D. Fusion Results on Reduced Resolution Dataset

We first conduct experiments on the reduced WV2 and GF2
datasets to compare the results of different methods visually
and quantitatively. Note that these experiments are conducted
on the simulated datasets, which reduces their significance in
real-world applications and lack of practicality.

The fused results of these two simulated datasets are shown
in Figs. 5 and 6, respectively. We show both the fused results
and the error maps to clearly compare the different methods.
Note that the error map represents the average of all bands’
absolute difference between the reference and fused result. For
the WV2 dataset, as shown in Fig. 5(k), our results show the best
detail restoration and spectral fidelity among the unsupervised
methods. Compared to the supervised methods, the unsuper-
vised methods have no reference image to guide the training

process. So they perform slightly worse than the supervised
methods on the simulated datasets. The fusion results of SFIM
and Wavelet all suffer from the blurring effect, especially at the
edge of buildings and roads, as shown in the Fig. 5(b) and (c).
And severe spectral distortion occurs on the fused result of the
LDPnet method. The quantitative results in Table I also show
that our method achieves the best rank in three indices except
for the supervised methods, as indicated by the red font in this
table. And LDPnet gets the worst rank in four indices, which
is consistent with the visual result in Fig. 5(f). Note that the
best result in each column is highlighted in the bold style and
underlined for the inferior result. And the red font indicates the
best rank among the unsupervised methods.

We also perform experiments on the GF2 dataset with differ-
ent land covers to demonstrate the robustness of our method.
The qualitative results in Fig. 6 show that our method achieves
the best spatial and spectral fidelity compared to others (except
the supervised method). Note that the PanGAN method suffers
from the spatial artifact, as shown in Figs. 5(g) and 6(g). The
reason may be that the spectral and spatial constraints used in
the loss functions of this method are not appropriate totally.

E. Fusion Results on Full Resolution Datasets

In this part, we conduct the fusion experiments on the original
full resolution dataset, which is more practical in real applica-
tions than the experiments on the reduced resolution dataset.
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Fig. 6. Fused results (odd row) and error maps (even row) of different methods on the reduced resolution GF2 dataset. (a) IHS. (b) SFIM. (c) Wavelet.
(d) MTF_GLP. (e) MTF_GLP_HPM. (f) LDPnet. (g) PanGAN. (h) Pannet. (i) TFNet. (j) PanFormer (k) Ours. (l) Ground truth.

TABLE I
QUANTITATIVE RESULT ON WV2 DATASET

The qualitative fusion results on WV2 and GF2 datasets are
shown in the Figs. 7 and 8, respectively. It can be seen that our re-
sults show better spectral and spatial fidelity than other methods.
For the WV2 dataset, as shown in Fig. 7, some methods’ fusion
results suffer from the spatial blurring effect, such as SFIM,
Wavelet and LDPnet. And several methods suffer from spectral
artifacts and distortion, such as LDPnet and PanGAN, as shown
in Figs. 7(g) and 8(g), (h). Note that the supervised methods
are trained on the simulated reduced resolution dataset, so they
perform poorly on the full resolution images in restoring the

spatial details. This could be obviously seen from their visual
results, especially the Pannet method.

The quantitative results of the nonreference quality indices
also show the superiority of our methods over others, as shown in
the last three columns of Tables I and II. Our method achieves the
best results on all indices except theDs index on the GF2 dataset,
as shown in Table II. And even theMTF_GLP achieves the best
rank on the Ds index, which advances our method by 0.003, it
is hard to achieve a satisfactory spectral fidelity, as indicated by
its Dλ index’s result. All in all, our method achieves the best
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Fig. 7. Fused results of different methods on the full resolution WV2 dataset. (a) Upsampled LRMSI. (b) IHS. (c) SFIM. (d) Wavelet. (e) MTF_GLP.
(f) MTF_GLP_HPM. (g) LDPnet. (h) PanGAN. (i) Pannet. (j) TFNet. (k) PanFormer. (l) Ours.

Fig. 8. Fused results of different methods on the full resolution GF2 dataset. (a) Upsampled LRMSI. (b) IHS. (c) SFIM. (d) Wavelet. (e) MTF_GLP.
(f) MTF_GLP_HPM. (g) LDPnet. (h) PanGAN. (i) Pannet. (j) TFNet. (k) PanFormer. (l) Ours.
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TABLE II
QUANTITATIVE RESULT ON GF2 DATASET

TABLE III
AVERAGE QUANTITATIVE RESULTS ON FULL GF2 DATASET WITH DIFFERENT

STRUCTURES; “W/O CROSS SPECTRAL-SCALE” MEANS WITHOUT CROSS

SPECTRAL-SCALE BLOCK; “BASE LINE” MEANS THAT WITH BOTH BLOCKS

balance between spatial and spectral fidelity on two datasets,
which demonstrates the superiority of our method.

V. DISCUSSION

This section conducts the ablation study to demonstrate the
effectiveness of the designed network structures and loss func-
tions. Then, we test the different unfolding kernel sizes to
achieve the best balance between local and nonlocal feature
learning. Finally, we compare the computational complexity of
all the methods.

A. Network Structures

To demonstrate the effectiveness of the proposed network
modules, we gradually remove the cross spectral-scale and
cross spatial-scale nonlocal attention blocks to measure their
contributions, respectively. As shown in Table III, which are
experimental results on the full resolution GF2 dataset, it could
be inferred that two designed cross-scale blocks all improve
the fused image quality from the first three rows of this table.
And the cross spectral-scale block contributes more compared
to the cross spatial-scale block. For example, the D_s and QNR
indices improve from 0.188 and 0.752 to 0.154 and 0.772. The
increments of percentage are 18.09% and 2.66%, respectively.
Finally, the combination of these two blocks further improves
the fusion performance, as shown in the last row of Table III.

The quantitative results on the reduced GF2 dataset also
demonstrate the effectiveness of two cross-scale blocks. As
shown in Table IV, the quality indices have all improved after

TABLE IV
AVERAGE QUANTITATIVE RESULTS ON REDUCED GF2 DATASET WITH

DIFFERENT STRUCTURES

TABLE V
DIFFERENT LOSS FUNCTION SETTINGS (“UPSAMPLE” OR “DOWNSAMPLE”

CONSISTANCY) AND THEIR QUANTITATIVE RESULTS ON FULL GF2 DATASET

the addition of each cross-scale block. All in all, the above ex-
perimental results verify the effectiveness of these two designed
network modules.

B. Loss Functions

We conduct experiments on loss functions to demonstrate the
necessity of each of them. First, we test the “bicubic” upsampling
consistency loss function. This loss function could preserve
the original spectral structure of the LRMSI well. And we
compare this loss function with the “bicubic” downsampling
loss function, which means that the fused HRMSI is down-
sampled and should be consistent with the input LRMSI as
much as possible. As shown in Tables V and VI, the fusion
results on both high and low resolution GF2 datasets demonstrate
the effectiveness of the ‘bicubic’ upsampling consistency loss
function.

Then, as shown in Tables VII and VIII, we, respectively, re-
move three proposed loss functions to verify their effectiveness.
It could be inferred that these loss functions all contribute to
the final excellent fusion performance, especially the Lbic_up
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TABLE VI
DIFFERENT LOSS FUNCTION SETTINGS (“UPSAMPLE” OR “DOWNSAMPLE”

CONSISTANCY) AND THEIR QUANTITATIVE RESULTS ON REDUCED GF2
DATASET

TABLE VII
DIFFERENT LOSS FUNCTION COMBINATIONS AND ITS QUANTITATIVE RESULTS

ON FULL GF2 DATASET

TABLE VIII
DIFFERENT LOSS FUNCTION COMBINATIONS AND ITS QUANTITATIVE RESULTS

ON REDUCED GF2 DATASET

TABLE IX
AVERAGE QUANTITATIVE RESULT ON FULL GF2 DATASET WITH DIFFERENT

UNFOLDING PATCH SIZE IN THE CROSS-SPATIAL SCALE BLOCK

TABLE X
AVERAGE QUANTITATIVE RESULT ON REDUCED GF2 DATASET WITH

DIFFERENT UNFOLDING PATCH SIZE IN THE CROSS-SPATIAL SCALE BLOCK

and LSSIM which make significant contributions. Note that the
LSSIM mainly improves the spectral index-Dλ from 0.202 to
0.081 (improved by 59.90%), as shown in the last two rows of
Table VII.

C. Unfolding Kernel Size

To take a balance between the local and nonlocal feature learn-
ing ability in computing the spatially nonlocal similarity matrix,
we take the experiment on different unfolding patch sizes-p in
cross spatial-scale attention block. As shown in Tables IX and X,
kernel size 3 achieves the best fusion performance, which means
it could extract the global and similar local features effectively.

TABLE XI
AVERAGE TESTING TIME AND MODEL PARAMETERS ON REDUCED WV2

DATASET

And it could achieve the best balance between learning the local
texture feature and nonlocal feature similarity.

D. Effect of the Cross Scale Blocks

To verify the effect of the designed two cross scale blocks,
we visualize the learned feature by the cross spectral-scale and
cross spatial-scale blocks, as shown in Fig. 9. It could be clearly
seen that the cross spectral-scale block mainly reconstructs
the spectral feature, while the cross spatial-scale block mainly
reconstructs the spatial feature. Therefore, these visualization re-
sults verify the effectiveness of the proposed cross scale blocks.

E. Comparison of Computational Complexity

In this part, we list the inference time and the number of
parameters of all methods to compare their fusion efficiency.
This calculation is performed on the WV2 dataset with the patch
size of 8 × 64 × 64 (LRMSI) and 1 × 256 × 256 (PAN image).

As shown in Table XI, the traditional methods all suffer
from the large inference time consumption, especially the IHS,
MTF_GLP and MTF_GLP_HPM. In comparison, DL-based
methods all have an immediate inference time. This is because
the DL-based methods could benefit from GPU acceleration,
which is the unique characteristic of DL-based methods. And the
traditional methods are mostly designed to compute in the nor-
mal device. Even though the supervised methods could achieve
great fusion performance on reduced simulation datasets, their
fusion performance on full resolution dataset is worse than
others. Furthermore, among the unsupervised methods, although
the PanGAN method costs less inference time, its fusion perfor-
mance is inferior to ours, as shown in section IV-D and IV-E. And
the increment of the inference time of our method compared with
the PanGAN is 0.024 s, which is negligible. Therefore, it can be
concluded that our method achieves the best balance between
the fusion performance and model complexity.
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Fig. 9. Visualization of the learned feature by two cross scale blocks on the full resolution GF2 dataset. (a) Upsampled LRMSI. (b) PAN image. (c) Learned
feature by cross spectral-scale block. (d) Learned feature by cross spatial-scale block. (e) Fusion results.

VI. CONCLUSION

In this article, in order to correctly learn and utilize the
spectral and spatial correlation between LRMSI, HRMSI and
PAN images to reconstruct the fusion result, we design two cross
spectral-scale and cross spatial-scale nonlocal attention blocks.
The designed cross spectral-scale block computes the bandwise
nonlocal similarity on low-resolution images and maps this
similarity to the high-resolution scale to reconstruct the HRMSI
feature. The designed cross spatial-scale block computes the
patch-level nonlocal similarity on the high-level feature of the
input images. Then, it maps this similarity to the original LRMSI
image feature to reconstruct the HRMSI feature. So the proposed
cross spatial-scale block could effectively combine the advan-
tages of nonlocal and local feature learning. Finally, a “Feature
aggregation module” integrates the HRMSI features constructed
by these two blocks and outputs the fused HRMSI. Experimental
results on two reduced and full resolution datasets demonstrate
the effectiveness and superiority of the proposed fusion network.
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