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TCCL-DenseFuse: Infrared and Water Vapor Satellite
Image Fusion Model Using Deep Learning

Chang-Jiang Zhang , Jia-Xu Guo , Lei-Ming Ma , Xiao-Qin Lu, and Wen-Cai Liu

Abstract—This article proposes an infrared and water vapor
channel satellite image fusion model (TCCL-DenseFuse) based on
DenseNet. The infrared channel satellite image reflects the ground
and cloud top infrared radiation or the distribution of temperature,
and the water vapor channel satellite image reflects the spatial
distribution of water vapor in the upper atmosphere. Studies have
shown that infrared brightness temperature gradient and water va-
por transport are closely related to tropical cyclone (TC) generation
and evolution. In order to facilitate the fusion image obtained by the
proposed fusion model to have a positive effect on TC monitoring
and warning, the brightness temperature gradient and multiscale
structural similarity in the satellite image are used to construct
loss function of the proposed TCCL-DenseFuse model. The quality
of the fused images is evaluated by seven objective quantitative
indicators. In order to further verify the real application value
of the proposed TCCL-DenseFuse model, fused images are also
used to TC center location. Experimental results show that the
proposed TCCL-DenseFuse fused satellite image not only contains
rich information from both infrared and water vapor channels but
also improves the accuracy of TC center positioning. The com-
prehensive performance of the proposed fusion model has certain
advantages compared with similar fusion methods and can provide
a reference for typhoon prevention and disaster mitigation.

Index Terms—Deep learning, infrared image, satellite image
fusion, tropical cyclone (TC) center positioning, water vapor image.

I. INTRODUCTION

SATELLITE image data commonly used in meteorological
services are mainly derived from polar-orbiting and geosta-

tionary satellites. Because of their good temporal resolution and
wide coverage, geostationary satellites are widely used in me-
teorological disaster monitoring and forecasting. Geostationary
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meteorological satellites include infrared, water vapor, visible
light, and other channels, and the characteristics of tropical
cyclone (TC) clouds are reflected in the images of different
channels. The infrared channel image is obtained from the
infrared radiation intensity of the target, whose temperature is
transformed into shades of color in the image. The lower the
temperature, the brighter the cloud is on the image. The water
vapor channel image is the radiation intensity image obtained
in the water vapor band of the nonatmospheric window region,
and it is expressed similar to the infrared channel image, where
white and black represent parts with high and low humidity,
respectively [1]. The visible light channel image detects the
scattering and reflection of sunlight by the surface and clouds.
The albedo of the surface of the object and the altitude angle
of the sun determine the brightness value of the visible light
image. Because the imaging principles of satellite images differ
by channel, as do the weather characteristics reflected by them,
the monitoring and early warning of meteorological disasters
based on satellite image data of a single channel may not be
satisfactory. Using image fusion technology to fuse satellite
images from different channels, satellite images containing the
different weather characteristics of each channel can be ob-
tained, and the rich weather information in the fusion images can
be used to realize the automatic analysis of meteorological tasks.
The infrared channel satellite image reflects the distribution of
infrared radiation or temperature on the ground and cloud tops,
and the water vapor channel satellite image reflects the spatial
distribution of water vapor in the upper atmosphere. The two
reflect atmospheric characteristics from different angles and
have a large amount of TC cloud information. Studies have
shown that identification of severe convective weather, cloud
classification, and TC positioning and intensity determination
are all related to the infrared brightness temperature gradient
and the spatial distribution of water vapor [2], [3], [4]. Therefore,
this article attempts to fuse the satellite images of infrared and
water vapor channels and discusses the influence of the fusion
images on the accuracy of TC center positioning.

The main purpose of this article is to propose a model for
fusion of infrared and water vapor channel satellite images,
aiming to generate a fusion image containing rich dual-channel
information. This is consistent with the goal of traditional image
fusion methods. Traditional image fusion methods generally
focus on obtaining a fusion image with rich information but
seldom pay attention to the practical application value of the
fusion image in some fields after using subjective evaluation and
some quantitative indicators to objectively evaluate the quality
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of the fusion image. The development of fusion methods should
also focus on their applications, such as highlighting valuable
information in a specific application [5]. Therefore, this article
discusses the application value of fusion image in some specific
fields on the basis of producing rich information fusion image.
In this article, based on the objective evaluation of the quality
of fused images by using common quantitative indicators in the
field of image fusion, the influence of fused images on the posi-
tioning accuracy of TC center is further discussed. As a kind of
severe weather, a TC’s central positioning is an important part of
disaster analysis and forecasting. At present, most of the research
on tropical cyclone center location (TCCL) methods based on
satellite images is basically based on single infrared satellite
image combined with image processing, machine learning and
other technologies to study the corresponding model. The fusion
image obtained by using the fusion model proposed in this article
can provide source image, which contains rich information of
infrared and water vapor channels, for the existing TC center
positioning algorithms based on satellite images. Therefore, it
has nothing to do with whether the TC center positioning method
used is novel or not. The reason why the fusion image is used for
TC center positioning experiment in this article is just to show
that the fusion image obtained by our fusion method not only
contains rich information of dual channel satellite images but
can also be valuable in practical application.

Satellite image fusion methods are mainly based on multiscale
analysis [6], [7], [8], compressed sensing (CS) [9], [10], [11],
intensity-hue-saturation (IHS) transform [12], [13], [14], and
neural networks [15], [16], [17], [18], [19], [20], as described
follows.

Multiscale analysis methods include wavelet, shearlet,
curvelet, contourlet, and Tetrolet transforms. The image is
decomposed by multiscale analysis to obtain high- and low-
frequency information, which is fused according to specific
rules to obtain multiscale coefficients, which are used for in-
verse transformation to obtain the final fusion image. This type
of fusion method requires the selection of multiscale analysis
methods and determination of fusion rules.

The premise of the CS-based method is that the signal has
sparseness but satellite images do not, and sparse transformation
must be used. The idea is to exploit the ability of CS to recon-
struct the original signal from a small number of sampled values,
a process similar to multiscale analysis. The satellite image is
sparsely represented, the measurement matrix is used to reduce
the dimension of the signal observation, the observations are
fused according to certain rules, and the signal is reconstructed
to obtain a fused image. This method has four problems: sparse
representation of the signal, design of the measurement matrix,
determination of fusion rules, and choice of the reconstruction
algorithm.

Traditional image fusion based on an IHS transform can
improve the spatial resolution of the image and better preserve
spatial details, but it will bring about a large spectral distortion.
The idea is to transform the image from the RGB band to IHS
space to obtain I, H, and S components; fuse the I component
through a specific fusion rule to obtain the I’ component; reverse
the I’, H, and S components; and transform to the RGB band to

get a fused image. The key problem of this method is the rule
design when fusing I components.

Shallow [15], [16], [17] and deep [18], [19], [20] neural
networks have been applied to satellite image fusion. Most
methods based on shallow neural networks use a pulse-coupled
neural network (PCNN) [21], which usually incorporates mul-
tiscale transformation. PCNN is a simplified neural network
model based on cat vision principle. PCNN does not need to
learn or train, can extract effective information from complex
background, and has features such as synchronous pulse release
and global coupling. Methods based on deep neural networks
include convolutional neural networks [18], [19] and generative
adversarial networks [20], where the idea is to design an image
fusion network framework, including a feature extraction net-
work, feature reconstruction network, and loss function; feed
the images into the network to start training, where network
parameters are continuously adjusted according to the fusion
results; and generate a fusion image that meets the requirements
through much learning and training. The difficulty of these meth-
ods lies in the design and parameter adjustment of the network
framework and loss function. They have advantages in extracting
image features while avoiding the manual design of fusion rules,
and the subjective and objective evaluation indicators of fusion
images perform well. Hence, they are of interest for satellite
image fusion.

The proposed satellite image fusion method TCCL-
DenseFuse is more pertinent and purposeful than existing meth-
ods, and factors affecting the TC monitoring and warning are
used to guide the training process of the neural network. In
particular, the purpose of this article is not to design a TC
center location method based on deep learning but to propose
an effective dual channel satellite image fusion method based
on deep learning.

To solve the above situation, we propose a satellite image
fusion model based on DenseNet, TCCL-DenseFuse. Our main
contributions are as follows.

1) The proposed TCCL-DenseFuse network consists of only
seven convolutional layers and is basically a lightweight
model, and the training is fast.

2) The image fusion model proposed in this article not only
can obtain the fusion image containing rich information
of infrared and water vapor channels but can also focus
on the application value of the fusion image in some
specific fields, such as improving the accuracy of TC
center positioning.

3) Loss function is constructed by combining the brightness
temperature gradient information and multiscale structural
similarity in the satellite image. It is beneficial to the
application in the field of TC monitoring and warning.

II. METHODS

In this section, we discuss the network structure for the fusion
of infrared and water vapor channel satellite images and the
design of the loss function in the training process.
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Fig. 1. TCCL-DenseFuse network structure.

A. Network Structure

Fig. 1 shows the TCCL-DenseFuse satellite image fusion
model, whose framework includes an encoder and decoder. It has
a simpler network structure than deep learning-based methods,
enabling the completion of image fusion with only seven con-
volutional layers. DenseNet can ensure maximum information
transmission between layers, strengthen feature transfer, and use
features more effectively to retain a large amount of valuable
information in the fusion image. DenseNet saves parameters and
computing, the trained model is relatively small, and training is
relatively fast.

The fusion process of TCCL-DenseFuse is as follows. The
infrared and water vapor images are added in the channel dimen-
sion and input to the encoder, which outputs the extracted image
features to the decoder, which reconstructs the fused image with
the same size as the input image. The fusion image and source
images are sent to the loss function. The smaller the loss, the
closer the TC cloud structure of the fusion image is to the source
images, and the more TC cloud structure information there is in
the fusion image. The TCCL-DenseFuse network generates a
fusion image that meets our goal.

1) Encoder: The encoder consists of four convolutional lay-
ers in the form of DenseNet, where the output of each layer
is retained as the input to each of the following layers. Each
convolutional layer has a 3 × 3 convolution kernel and a ReLU
activation function. DenseNet is used to extract satellite image
features, which can maximize the use of image information,
ensure a high-quality fused image, and avoid gradient disap-
pearance or explosion.

2) Decoder: The decoder consists of three convolutional
layers, each composed of a convolutional layer with a 3 × 3
convolution kernel and a ReLU activation function, mainly
for feature reconstruction and image fusion. The input of the
decoder is the splicing of the infrared and water vapor image
features output by the encoder on the channel, and the output is
the fusion image. It is worth noting that there is no downsampling
in the TCCL-DenseFuse network, and hence, no unnecessary
loss of information.

It is worth noting that the convolution layers in this article
are all composed of a 3 × 3 convolution kernel and a ReLU
activation function. As we all know, TC is a complex nonlinear
system. Multiple 3 × 3 convolution kernels have more layers of
nonlinear functions than one larger convolution kernel, which
can increase the nonlinear representation of the model. Common
activation functions usually use ReLU, sigmoid, and tanh. Sig-
moid and tanh are floating-point operations, while ReLU uses if–
else operations, so ReLU requires little computation. Moreover,
the saturation interval of ReLU is relatively small, so gradient
dispersion problem is not easy to occur. At the same time, ReLU
activation function has very strong nonlinear characteristics.
Therefore, the small convolution kernel and ReLU activation
function are beneficial to extract the structural characteristics
of TC spiral rain bands and the variation characteristics of
brightness temperature in infrared and water vapor channels.
Therefore, the proposed TCCL-DenseFuse model is proper to
extract rich nonlinear features from infrared and water vapor
images.

B. Loss Functions

The loss function plays a crucial role in neural network train-
ing, and its composition directly affects the focus and quality of
image fusion. The loss function in this article takes into account
factors related to the TC center positioning. The loss function
[see (1)] can be used to obtain high-quality fused images while
improving the accuracy of TC center positioning

L = LMS_SSIM + ω · Lgrad (1)

where MS_SSIM [22] denotes the multiscale structure similarity
index measurement operation, and grad denotes gradient. Be-
cause the TC center positioning method in this article is related
to the brightness temperature gradient, which is closely related
to the structural information of the TC, LMS_SSIM is introduced
into the loss function and is defined as

LMS_SSIM = LIR1
ms_ssim + LIR3

ms_ssim (2)
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LIR1
ms_ssim = 1− MS_SSIM (Iir1, If ) (3)

LIR3
ms_ssim = 1− MS_SSIM (Iir3, If ) . (4)

Here, LIR1
ms_ssim and LIR3

ms_ssim represent the losses of structural
similarity between the infrared and water vapor channel satellite
image and the fusion image, respectively. Here, Iir1, Iir3, and If
represent infrared, water vapor, and fused images, respectively.

This article pays great attention to preserving the gradient
information of the source images, which will have a significant
impact on the subsequent application of the fused image. Lgrad

is defined as

Lgrad =
1

HW

H∑
i = 1

W∑
j = 1

(max (|∇Iir1| , |∇Iir3|)− |∇If |) .

(5)

III. EXPERIMENTAL DETAILS

We introduce the experimental setup, including datasets, eval-
uation metrics, and training. To confirm the value of α, we
perform ablation experiments, then compare the performance
of our fusion model with other existing fusion models, and set
the parameters according to the parameters used in these studies.

A. Experimental Setup

1) Dataset: The infrared and water vapor channel satellite
images studied in this article are from China’s Fengyun-2 (FY-2)
and Fengyun-4 (FY-4) geostationary satellites, where the wave-
lengths of the infrared and water vapor satellite images are 10.2–
11.5 μm and 6.3–7.6 μm, respectively. The training set consists
of 3396 FY-2 satellite images from 07/11/2010 to 12/30/2014
and 3382 FY-4 satellite images from 04/22/2017 to 11/04/2017
and 12/30/2017 to 11/27/2018; and the test set consists of 340
FY-2 satellite images from 07/31/2005 to 03/25/2010 and 377
FY-4 satellite images from 11/08/2017 to 12/24/2017.

2) Software, Hardware Environments, and Model Parameter:
All experiments are performed on an Nvidia GeForce RTX 2080
Ti GPU and a 2.67-GHz Intel Xeon X5650 CPU. The model is
trained in a PyTorch framework; the source image is normalized
to the range of 0–1; we trained the models for 50 epochs; the
batch size is 16; the initial learning rate is 0.001 and adjusted
exponentially; gamma is set to 0.95; and the Adam optimizer
guides the model training. To make the fused image contain
more gradient information, ω is set to 13.

3) Evaluation Indicators: The performance of the fusion
image is evaluated both subjectively and objectively. Subjective
evaluation involves the perception of the human eye, and quality
will be affected by subjective factors. Objective evaluation sim-
ulates the human visual system through relevant indicators. This
article adopts the fusion image positioning error (PE, km) and
seven popular evaluation indicators: peak signal-to-noise ratio
(PSNR, dB), correlation coefficient (CC), and feature mutual
information (FMI) [23], standard deviation (SD) [24], noise in
images (NAB/F) [25], edge information retention (QAB/F) [26],
and image structural similarity (SSIM) [27]. This article uses
the method presented in [2] to locate the TC center. Note that

the larger the other indicators except for NAB/F and PE, the better
the quality of the fused image. The smaller the NAB/F, the less
noise interference there is in the fused image, and the better
the fused image. The smaller the PE, the more accurate the TC
center positioning using the fused image.

PE is the TC center positioning error value, and it is defined
as

PE =

√
(xf − xr)

2 + (yf − yr)
2 · SR (6)

wherexf and yf denote estimated TC center coordinates,xr and
yr denote ground truth TC center coordinates, and SR denotes
the spatial resolution of geostationary satellite. Spatial resolution
of FY-2 and FY-4 is 5 km and 4 km, respectively. A lower PE
indicates that TC center positioning using fusion image is more
accurate. In this article, ground truth TC center coordinates are
derived from the best track data, which is published by China
Meteorological Administration (CMA).

PSNR is the ratio of peak value power to noise power in the
fused image and, thus, reflects the distortion during the fusion
process. It is defined as

PSNR = 10log10
r2

MSE
(7)

MSE = (MSEAF + MSEBF ) /2 (8)

MSEXF =
1

MN

M−1∑
i = 0

N−1∑
j = 0

(X (i, j)−F (i, j))2 (9)

where r is the peak value of the fused image and is set as 256
in this article. MSE is the mean square error, which measures
the dissimilarity between the fused image and source images.
A larger PSNR indicates that more source image information is
contained in the fused image.

CC is the degree of correlation between the fused and source
images

CC =
rAF + rBF

2
(10)

rXF =

∑M
i=1

∑N
j=1

(
X (i, j)− X̄

)
(F (i, j)− μ)√∑M

i=1

∑N
j=1

(
X (i, j)− X̄

)2 (∑M
i=1

∑N
j=1 (F (i, j)−μ)2

)
(11)

where X̄ is the average brightness value of the source image X,
and μ is the average brightness value of the fused image F. A
larger CC indicates that the fused image is more similar to the
source image and has a better fusion effect.

FMI measures the amount of feature information transferred
from the source image to the fused image and is defined as

FMI = MIA,F +MIB,F (12)

MIX,F =
∑
x,f

pX,F (x, f) log
pX,F (x, f)

pX (x) pF (f)
(13)

where pX,F (x, f) denotes the joint histogram of the source
image X and the fused image F. pX(x) and pF (f) denote the
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marginal histograms of X and F, respectively. A larger FMI
indicates that there is abundant information transferred from
source images to the fused image.

SD reflects the intensity distribution and contrast of the fused
image. It is defined as

SD =

√
1

MN

∑M

i=1

∑N

j =1
(xi,j − μ)2 (14)

where μ is the average brightness value of the image x. Human
attention is more likely to be drawn to areas with high contrast.
A larger SD indicates that the visual effect of the fused image is
good.

A fusion artifact introduced by a fusion process into the fused
image can lead to a benign object being classified as a threat or a
valid target [25]. To quantify the fusion artifacts, we present the
fusion artifact measurement indicator NAB/F, which is defined as

NAB/F =

∑
∀i
∑

∀j AMi,j

[(
1−QAF

i,j

)
wA

i,j+
(
1−QBF

i,j

)
wB

i,j

]
∑

∀i
∑

∀j
(
wA

i,j+wB
i,j

)
(15)

where AMi,j =

{
1, gFi,j > gAi,j , and gFi,j > gBi,j

0, otherwise
indicates the

locations of fusion artifacts where fused gradients are stronger
than input. gAi,j , gBi,j , and gFi,j are the edge strength of source
image A, B, and fused images F, respectively. QAF

i,j and QBF
i,j

are the gradient information preservation estimates of source
images A and B, respectively. wA

i,j and wB
i,j are the perceptual

weights of source images A and B, respectively. A lower NAB/F

indicates that the fused image contains less noise.
QAB/F measures the amount of edge information that is trans-

ferred from source images to the fused image and is defined as

QAB/F

=

∑M
i=1

∑N
j=1 Q

AF (i, j)wA (i, j) +QBF (i, j)wB (i, j)∑M
i=1

∑N
j=1 (w

A (i, j) + wB (i, j))

(16)

QXF (i, j) = QXF
g (i, j)QXF

a (i, j) (17)

where wX denotes the weight, which expresses the importance
of each source image to the fused image. QXF

g and QXF
a denote

the edge strength and orientation values, respectively. A large
QAB/F indicates that considerable edge information is transferred
to the fused image.

SSIM denotes the structural similarity between source images
and fused image and is defined as

SSIM = SSIMA,F + SSIMB,F (18)

SSIMX,F =
∑
x, f

2μxμf + C1

μ2
x + μ2

f + C1
· 2σxσf + C2

σ2
x + σ2

f + C2
· σxf+C3

σxσf+C3

(19)

where μx and μf denote the mean values of the source and fused
images, respectively. σx and σf denote the SD. σxf denotes
the covariance of the source and fused images. C1, C2, and C3

are the parameters used to make the algorithm stable. A larger

SSIM indicates that the fused image is more similar to the source
images.

B. Ablation Experiments

To determine the value of θ in the loss function, we conduct
the following experiments: θ = 1, 6, 12, 18, and 24. According
to the TC standard (GB/T19201-2006) issued by the National
Meteorological Center of China, TC is divided into tropical
depressions (TD: 10.8–17.1 m/s), tropical storms (TS: 17.2–
24.4 m/s), severe tropical storms (STS: 24.5–32.6 m/s), typhoons
(TY: 32.7–41.4 m/s), severe typhoons (STY: 41.5–50.9 m/s), and
super typhoons (SuperTY: ≥51.0 m/s), so we randomly select
a group of infrared and water vapor satellite images in each
intensity level for image fusion using our model. The fusion
results are shown in Fig. 2.

From Fig. 2, it can be seen that the fused image when θ = 1
is similar to the water vapor image; when θ = 6, the contrast
of the fused image is significantly improved. When θ = 12, 18,
and 24, the fused image is closer to θ = 6, and the images are
relatively similar overall. Visually, when θ = 1, the contrast of
the image is low, and the fusion effect is poor. When α takes
other values, the contrast is better, and the fusion effect seems
to be better. We also quantitatively analyze 1113 fused images
(test set) with different θ values, and the measurement results of
the evaluation indicators and PE are given in Table I.

The best metric is highlighted in red, the second-best metric
is indicated in blue italics, and third-best metric is underlined.
All subsequent tables use the same representation for the best,
second-best, and third-best metrics. It can be seen from Table I
that on the seven common indexes, each θ value has one or
two best value. Among the PE measurement results, θ = 12
is the best, and θ = 6 is the second best. This article focuses
on generating the fusion image containing rich information can
be expected to improve the positioning accuracy of TC center.
The results show that θ = 12 is more consistent with these
requirements; it has the best PE value, and other indicators are
not much different from the best indicators, which are close, so
we choose θ = 12 as the final parameter of loss function in our
model (TCCL-DenseFuse).

C. Comparative Experiments

The fusion results of our TCCL-DenseFuse model are com-
pared with those of SDNet [28], RFN-Nest [29], SEDRFuse
[30], DIF-Net [31], and IFCNN [32]. To verify the effectiveness
of the TCCL-DenseFuse model, we first analyze the entire test
set, and then classify the test set according to the categories
of TC and draw conclusions through in-depth discussion of
each category. Finally, to further verify the performance of the
proposed TCCL-DenseFuse model, two TC cases from the test
set are analyzed and discussed.

1) Discussion of the Entire Test Set: We randomly select
a group of infrared and water vapor satellite images in each
TC intensity level for fusion. The fusion results are shown in
Figs. 3–8.

From Figs. 3 to 8, it can be seen that the TC main body of the
fusion results of RFN-Nest, DIF-Net, and IFCNN are bright and
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Fig. 2. Fusion results of each TC intensity level. (a) Infrared image. (b) Water vapor image. (c) Fusion image (θ = 1). (d) Fusion image (θ = 6). (e) Fusion
image (θ = 12). (f) Fusion image (θ = 18). (g) Fusion image (θ = 24).
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TABLE I
EVALUATION INDEX MEASUREMENT RESULTS OF ABLATION EXPERIMENTS

Fig. 3. Fusion results of FY-4 satellite TD images at 21:00 on November 12, 2017. (a) Infrared image. (b) Water vapor image. (c) SDNet. (d) RFN-Nest. (e)
SEDRFuse. (f) DIF-Net. (g) IFCNN. (h) TCCL-DenseFuse.

tend toward 255, while those of SDNet and SEDRFuse are sim-
ilar. Compared with other five image fusion models, the global
contrast of the fused image using our TCCL-DenseFuse model
is not very good. From the background, gray-level values of
fused images using RFN-Nest, DIF-Net, and IFCNN tend to be
0, followed by other models, and the fused image using TCCL-
DenseFuse tends to be an infrared image. On the whole, the fused
images of RFN-Nest, DIF-Net, and IFCNN have better contrast
but a little too much contrast to enhance the spiral rainband part
of TC, which has some lost details or gradient information of
brightness temperature. TCCL-DenseFuse performs similarly
to several other models, but on individual fused images, it is
inferior. This is because the human eye is good at capturing

the situation where the difference between the foreground and
background is large. To avoid this interference and evaluate the
image quality more objectively, we quantitatively evaluate the
fusion results using different fusion models by eight evaluation
indicators. The eight metrics curves of the 1113 fused images
(TC test images) obtained by the existing five similar image
fusion models and our TCCL-DenseFuse model are shown in
Fig. 9.

In the upper left or upper right boxes of Fig. 9(a)–(h), the
decimal after each model name represents the average value
of each model under different evaluation metrics on TC test
images. In Fig. 9, the abscissa of each graph adopts the interval
of the numbers in parentheses below the respective graph, and
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Fig. 4. Fusion results of FY-4 satellite TS images at 23:00 on November 11, 2017. (a) Infrared image. (b) Water vapor image. (c) SDNet. (d) RFN-Nest. (e)
SEDRFuse. (f) DIF-Net. (g) IFCNN. (h) TCCL-DenseFuse.

Fig. 5. Fusion results of FY-2 satellite STS images at 9:00 on July 25, 2006. (a) Infrared image. (b) Water vapor image. (c) SDNet. (d) RFN-Nest. (e) SEDRFuse.
(f) DIF-Net. (g) IFCNN. (h) TCCL-DenseFuse.

the ordinate is the number of TC images corresponding to each
interval range. This means that the higher the right side and the
lower the left side of PSNR, CC, FMI, SD, QAB/F, and SSIM
curves are, the better the model effect is. The higher the left side

of the NAB/F and PE curves, the lower the right side, the better
the model effect is.

From Fig. 9, it can be seen that our TCCL-DenseFuse model is
significantly ahead of other models on PSNR, NAB/F, SSIM, and
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Fig. 6. Fusion results of FY-2 satellite TY images at 12:00 on May 4, 2009. (a) Infrared image. (b) Water vapor image. (c) SDNet. (d) RFN-Nest. (e) SEDRFuse.
(f) DIF-Net. (g) IFCNN. (h) TCCL-DenseFuse.

Fig. 7. Fusion results of FY-2 satellite STY images at 12:00 on May 16, 2006. (a) Infrared image. (b) Water vapor image. (c) SDNet. (d) RFN-Nest. (e) SEDRFuse.
(f) DIF-Net. (g) IFCNN. (h) TCCL-DenseFuse.

PE, slightly ahead on QAB/F, slightly inferior to SDNet on FMI
and CC, and the worst on SD. The fluctuations of each model
can be seen well from Fig. 9. Fig. 9(a)–(g) are commonly used
indicators for objective evaluation of image fusion at present.
In addition, in order to further verify the value of the proposed

fusion model in practical application, the obtained fusion image
is used to locate the TC center to test its influence on the posi-
tioning accuracy of the TC center [see Fig. 9(h)]. From Fig. 9(h),
the higher the left side of the PE curve and the lower the right
side, the better the TC center localization effect of the model.
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Fig. 8. Fusion results of FY-2 satellite superTY images at 0:00 on September 27, 2008. (a) Infrared image. (b) Water vapor image. (c) SDNet. (d) RFN-Nest. (e)
SEDRFuse. (f) DIF-Net. (g) IFCNN. (h) TCCL-DenseFuse.

TABLE II
AVERAGE EVALUATION METRICS OF 1113 TC FUSED IMAGES

When the PE is less than 200 km, TCCL-DenseFuse occupies the
biggest number in several PE ranges. When the PE is greater than
200 km, TCCL-DenseFuse occupies the least number in most PE
ranges. This fully demonstrates the superior performance of our
TCCL-DenseFuse model on PE. To compare the various models
more intuitively, we show the average evaluation indicators of
each model in Table II.

As can be seen from Table II, the proposed TCCL-DenseFuse
model has five best quantitative values (PSNR, NAB/F, QAB/F,
SSIM, PE), one second-best value (FMI), one third value (CC),
and a worst value (SD). The best PSNR and NAB/F mean that

there is less noise interference in the fused images, and the
overall fusion performance of our TCCL-DenseFuse model
is good. Owing to the loss function designed in this article,
our TCCL-DenseFuse model has the best QAB/F and SSIM,
which means that the fused image contains a large amount
of gradient information and rich structural information, which
directly affects the TC center location accuracy. The FMI and
CC values of TCCL-DenseFuse are second and third but only
0.0054 and 0.0059 away from the best metric value, respectively.
This means that TCCL-DenseFuse largely preserves the infor-
mation in the two-channel source images, which facilitates the
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Fig. 9. Eight curves using different image fusion models on TC test images. (a) PSNR. (b) CC.
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Fig. 9. (Continued..) Eight curves using different image fusion models on TC test images. (c) FMI. (d) SD.
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Fig. 9. (Continued..) Eight curves using different image fusion models on TC test images. (e) NAB/F. (f) QAB/F.
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Fig. 9. (Continued..) Eight curves using different image fusion models on TC test images. (g) SSIM. (h) PE.
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TABLE III
PE OF EACH MODEL IN EACH TC CATEGORY ON TEST IMAGES

subsequent application of fused images. In terms of SD indica-
tors, as previously analyzed qualitatively, RFN-Nest, DIF-Net,
and IFCNN rank in the top three and are significantly ahead
of other models. The worst SD means that the fused image
of TCCL-DenseFuse does not have high contrast, and the gray
value difference between the foreground and background is not
large.

2) Category Discussion: To further explore the influence of
different TC categories on PE index, we divide the test set into
six categories according to the TC intensity grade classification
criteria. There are 314 TD images, 409 TS images, 121 STS
images, 160 TY images, 59 STY images, and 50 SuperTY
images on the test set of this article, and PE of each model
is given in Table III.

As can be seen from Table III, TCCL-DenseFuse has the
minimum PE on TS, STS, TY, STY, and SuperTY, second-
minimum PE on TD. Because TD is weak TC, their TC clouds
are incomplete, and the structure of the spiral rain band is not
clear, resulting in TCCL-DenseFuse ranking second on PE. Our
model does not perform well in the localization for TD, and
although the PE is smaller than that of single-channel satellite
images, it is not the best. On TS, only the PE of our model
is significantly ahead of that of the water vapor channel, and
SDNet, RFN-Nest, and SEDRFuse are very close to that of the
water vapor channel. On STS, only our model is better than that
of the water vapor channel. This may be because STS belongs
to relatively weak TCs, whose TC clouds are generally small,
and the spiral rain bands are not clear or complete. TY, STY, and
SuperTY are strong TCs. Their TC cloud structures are relatively
complete, the overall outline is clearly visible, and some of them
even have clear eyes. The STS is at the boundary between strong
and weak TCs, and its TC clouds vary in size, so it is difficult to
find the region to be detected close to the center of the TC. TY
presents the similar situation as TS, that is, the PE of our model
and RFN-Nest is smaller than that of the water vapor channel.
TCCL-DenseFuse is significantly better than other models in

the PE of the STY and SuperTY categories. This is because the
spiral rain band or eye of a strong TC is clear. The fusion TC
image obtained by our TCCL-DenseFuse model can be used to
find the region closest to the TC center, so the PE is small.

To see the PE of each model in each category, we ranked PE
obtained by different methods in each TC category, and then
drew the ranking results into a line graph, as shown in Fig. 10.

In Fig. 10, the decimal after each model’s name is its average
ranking in each of the six TC categories, with the order of the
average ranking in parentheses. This means that the smaller the
decimal after a model, the higher the order in brackets, and
the better the effect of TC center positioning. From Fig. 10,
it can be seen that TCCL-DenseFuse has the minimum PE on
TS, STS, TY, STY, and SuperTY, and the second-minimum
PE on TD. The TC center positioning performance of all TC
categories using the fusion image of our TCCL-DenseFuse
model is the most stable, and other models fluctuate in a wide
range. TCCL-DenseFuse has the smallest fluctuation and ranks
first on average, which shows the stability of our model and its
good positioning performance for various categories of TCs.

In practical applications, we need to consider the spatial
resolution of the satellite imagery. This article adopts the spatial
resolution of FY-2 (5 km) and FY-4 (4 km), which means that if
the PE using two models is within 4 or 5 km, it can be considered
that they are ranked in the same place. To make a fair comparison,
the spatial resolution of FY-4 (4 km) is used to determine whether
the two models rank in the same place in terms of the PE. We
reranked PE obtained by different models in each TC category,
and then drew the reranking results into a line graph, as shown
in Fig. 11.

After the spatial resolution of satellite images is taken into
account, the average ranking of all models is higher. From
Fig. 11, it can be clearly seen that the TC center positioning
performance of all TC categories using the fusion image of
our TCCL-DenseFuse model is the first best. The advantage
of our TCCL-DenseFuse model is obvious, and the overall
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Fig. 10. Ranking curve for each TC category using different models. The name of each model is followed by its corresponding average ranking in parentheses.

Fig. 11. Reranking curve for each TC category using different models. The name of each model is followed by its corresponding average ranking in parentheses.
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Fig. 12. Quantitative comparison results of case 1 (superTY Chanchu).

performance of our model is fully verified. Using the fusion
image obtained by our model to locate the TC center can achieve
a good positioning effect for all categories of TCs.

3) TC Case Discussion: Two TC cases from the TC test set
are explored to further verify the performance of our TCCL-
DenseFuse model. Case 1 comes from FY-2 geostationary satel-
lite and case 2 comes from FY-4 geostationary satellite.

a) Case 1: Super Typhoon (SuperTY) Chanchu (No.0601): Case
1 is a super typhoon Chanchu (No.0601) from 12:00 on May
9, 2006 to 12:00 on May 18, 2006. Super typhoon Chanchu
includes a total of 46 satellite images, including TS, STS, TY,
STY, and the SuperTY category. Eight objective evaluation
indicator curves are shown in Fig. 12.

From Fig. 12, it can be seen that TCCL-DenseFuse performs
well on PSNR, NAB/F, and SSIM, with obvious advantages.
TCCL-DenseFuse is equivalent to SDNet, SEDRFuse on CC,
FMI, and QAB/F. The SD is still the worst. On PE, most of the
TCCL-DenseFuse results are below 200 km, and there are
only five images above 400 km. We average the evaluation
indicators of the case 1 (SuperTY Chanchu), and the results
are given in Table IV.

From Table IV, it can be seen that our model has six best
quantitative values on PSNR, CC, NAB/F, QAB/F, SSIM, and
PE; one second-best value on FMI and a worst value on SD.
TCCL-DenseFuse’s PE leads SEDRFuse by 15 km, which is
also a big lead.

b) Case 2: Tropical Storm (TS) Nuri (No.2002): Case 2 is tropical
storm Nuri (No. 2002) from 00:00 on June 10, 2020 to 12:00
on June 14, 2020. Tropical storm Nuri includes a total of
24 satellite images, including TD and TS categories. Eight
objective evaluation indicator curves are given in Fig. 13.

From Fig. 13, it can be seen that TCCL-DenseFuse performs
well on PSNR, NAB/F, and SSIM with obvious advantages.
TCCL-DenseFuse is equivalent to SDNet, SEDRFuse on CC
and FMI, and TCCL-DenseFuse is equivalent to DIF-Net on
QAB/F. The SD is still the worst. In terms of PE, most of the
TCCL-DenseFuse results are below 300 km. We average the
evaluation indicators of case 2 (TS Nuri), and the results are
given in Table V.

From Table V, it can be seen that our TCCL-DenseFuse model
has five best quantitative values on PSNR, NAB/F, QAB/F, SSIM,
and PE; one third best value on CC; one fourth best value on FMI;
and a worst value on SD. Only our model is better than that of the
water vapor channel, which shows that its TC center positioning
performs well in case 2. In sum, our TCCL-DenseFuse model is
largely ahead of other models in both cases (the ranking is the
first), showing its good robustness to different TC categories.

Note that TCCL-DenseFuse with low contrast achieves the
best performance in the evaluation index of PE. However, DIF-
Net with better contrast ranks second on PE, which shows that
the accuracy of TC center positioning does not relate much
to the image contrast. To further explore the reasons for the
improvement of the TC center positioning accuracy in this
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TABLE IV
AVERAGE METRICS OF CASE 1 (SUPERTY CHANCHU)

Fig. 13. Quantitative comparison results of case 2 (TS Nuri).

article, we perform pseudocolor processing on Figs. 3–8. To
extrude difference in fusion images using different models, only
nine colors are used to produce the pseudocolor fusion images.
The results are shown in Figs. 14 –19.

It can be seen from Figs. 14(a) and (b) to 19(a) and (b)
that the contours of the spiral rain band and TC inner core
are mainly concentrated in the yellow and orange regions. The

spiral rain band structure in the fusion TC image obtained by
our TCCL-DenseFuse model is relatively clear and complete,
and the brightness temperature gradient levels of TC inner core
are preserved well [see Figs. 14(h)–19(h)]. However, the fusion
TC image obtained by other models is too finely segmented
and disorderly owing to the excessively enhanced contrast, as
shown in Figs. 14(c)–(g) and 19(c)–(g). From Figs. 14 to 19, it
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TABLE V
AVERAGE METRICS OF CASE 2 (TS NURI)

Fig. 14. TD. (a) Infrared image (PE = 206.5527 km). (b) Water vapor image (PE = 178.3704 km). (c) SDNet (PE = 195.2434 km). (d) RFN-Nest
(PE = 212.2074 km). (e) SEDRFuse (PE = 195.2434 km). (f) DIF-Net (PE = 215.1279 km). (g) IFCNN (PE = 185.9247 km). (h) TCCL-DenseFuse
(PE = 105.1095 km).

Fig. 15. TS. (a) Infrared image (PE = 149.9066 km). (b) Water vapor image (PE = 234.3502 km). (c) SDNet (PE = 149.9066 km). (d) RFN-Nest
(PE = 149.9066 km). (e) SEDRFuse (PE = 149.9066 km). (f) DIF-Net (PE = 271.4259 km). (g) IFCNN (PE = 271.4259 km). (h) TCCL-DenseFuse
(PE = 48.0833 km).
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Fig. 16. STS. (a) Infrared image (PE = 161.9027 km). (b) Water vapor image (PE = 390.4645 km). (c) SDNet (PE = 161.9027 km). (d) RFN-Nest
(PE = 283.0415 km). (e) SEDRFuse (PE = 633.3344 km). (f) DIF-Net (PE = 283.0415 km). (g) IFCNN (PE = 262.7975 km). (h) TCCL-DenseFuse
(PE = 70.7990 km).

Fig. 17. TY. (a) Infrared image (PE = 204.6033 km). (b) Water vapor image (PE = 316.8793 km). (c) SDNet (PE = 208.7163 km). (d) RFN-Nest
(PE = 187.3833 km). (e) SEDRFuse (PE = 196.3734 km). (f) DIF-Net (PE = 266.7630 km). (g) IFCNN(PE = 445.0421 km). (h) TCCL-DenseFuse
(PE = 90.8983 km).

Fig. 18. STY. (a) Infrared image (PE = 292.5107 km). (b) Water vapor image (PE = 611.2385 km). (c) SDNet (PE = 97.7880 km). (d) RFN-Nest
(PE = 97.7880 km). (e) SEDRFuse (PE = 97.7880 km). (f) DIF-Net (PE = 97.7880 km). (g) IFCNN (PE = 97.7880 km). (h) TCCL-DenseFuse
(PE = 74.2462 km).
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Fig. 19. SuperTY. (a) Infrared image (PE = 80.7001 km). (b) Water vapor image (PE = 526.6047 km). (c) SDNet (PE = 80.7001 km). (d) RFN-Nest
(PE = 419.1807 km). (e) SEDRFuse (PE = 50.4743 km). (f) DIF-Net (PE = 419.6576 km). (g) IFCNN (PE = 339.0612 km). (h) TCCL-DenseFuse
(PE = 12.7476 km).

can be seen that the gray value of the TC main body in the fusion
image obtained using RFN-Nest, DIF-Net, and IFCNN models
has little change, and the color is mainly gray, which is because of
the excessive enhancement of the cloud structure and the loss of
some details of the rain band and inner core gradient. Therefore,
when other spiral-like clouds except for TC clouds appear in
the fused image, the excessive enhancement leads to the wrong
location being detected, and the PE is relatively large. When the
fusion image is used to locate the TC center, the wrong region to
be detected is found, leading to a large TC PE. This indicates that
the brightness temperature gradient level near the TC inner core
affects the determination of the region to be detected, thus affect-
ing the TC center location result. This fully illustrates the impor-
tance of finding a region to be detected close to the center of the
TC.

As can be seen from Figs. 14 to 19, there are some modes
that are only a few tens of kilometers apart from the PE of our
model. This may be because the area to be detected, including
the TC center, is found, but the gradient levels near the TC center
are not as rich as those of TCCL-DenseFuse. The PE of other
models is too large, while the PE of our model is relatively small.
For the fusion image with no-eye region and only one TC, the
clear and complete spiral rain band indicates that the brightness
temperature gradient of the fusion TC image changes greatly,
which is conducive to finding the region to be detected closer
to the TC center. For the no-eye TC, the richer the brightness
temperature gradient level in the TC inner core region containing
the TC center, the better the TC center positioning. However,
for the fusion image with an obvious eye and only one TC,
whether the TC inner core brightness temperature gradient level
is rich does not have a significant impact on the final TC center
location result owing to the great variation in the gradient around
the TC eye. This is why for the PE using SEDRFuse, the water
vapor images in Figs. 18 and 19 are small and close to the PE
values of our model. Generally, eye TC images mostly corre-
spond to the TC with high intensity, while there are relatively
few moments with high intensity in the whole TC life cycle.
Therefore, no-eye TC images are more common in practical
applications. As mentioned above, the change in the gradient

level near the no-eye TC center has a great impact on the
accuracy of TC center positioning.

In conclusion, the fusion image used to improve the position-
ing accuracy of the TC center should have relatively complete
main structures, such as spiral rain bands and rich brightness
temperature gradient levels in the TC inner core region. If the
fusion image obtained by a model has rich brightness tempera-
ture gradient levels near the TC center, but the detection region,
including the TC center, is not accurate, a large PE is obtained.
If the region to be detected near the TC center can be found in
the fusion image obtained using a certain model, a small PE can
also be obtained even if there are fewer brightness temperature
gradient levels near the TC center. However, when two models
can find the region containing the TC center to be detected, the
richness of the brightness temperature gradient level near TC
center plays an important role in the positioning accuracy of the
TC center. Therefore, according to the TC center positioning
method, to obtain a small PE, it is important to find the region
to be detected containing the TC center in the fusion image.
Second, the brightness temperature gradient level of the region
to be detected also has a great influence on the final TC center
positioning, especially for no-eye TCs.

In the entire test set, category and case discussions, in view of
the common evaluation indicators and PEs, the comprehensive
performance of the proposed TCCL-DenseFuse model is the
best, which shows that it not only generates information-rich
fusion images but also improves the accuracy of TC center
positioning. This also means that the proposed neural network
structure is effective for the fusion of the infrared image and
water vapor image.

IV. CONCLUSION

The proposed TCCL-DenseFuse satellite image fusion model
can generate information-rich images while improving TC cen-
ter positioning accuracy. To retain the information of both the
infrared and water vapor channels, we add them in the channel
dimension and use DenseNet to extract image features, which
can avoid neural network overfitting and reduce the number
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of network parameters. When deep learning is used for image
fusion, the loss function plays an important role. In order to try
to contain as much information as possible in the fusion image,
to ensure that the fusion image contains as much information of
the source images as possible, we introduce multiscale structural
similarity into the loss function, and to better preserve the
gradient information of the source image, we also introduce
gradient loss.

In particular, the focus of this article is to propose an effective
fusion model of infrared and water vapor channel satellite im-
ages, rather than using deep learning technology combined with
satellite images to solve the problem of TC center positioning.
The proposed TCCL-DenseFuse model can obtain the fusion
image containing rich source image information just like most of
the current image fusion methods. At present, most image fusion
methods often evaluate the quality of image fusion based on
subjective evaluation combined with some objective indicators,
and rarely discuss the practical application of image fusion.
Originally, the purpose of image fusion is to obtain better results
in some fields of practical application, rather than just to obtain
a so-called fusion image containing rich information. Different
from most current image fusion methods, experimental results
show that the fusion image obtained by our TCCL-DenseFuse
model is valuable in some practical applications, such as im-
proving the accuracy of TC center positioning, providing a
reference for typhoon prevention and disaster mitigation. In the
future, perhaps this purpose-specific fusion method will be more
promising in some practical applications.

Of course, our TCCL-DenseFuse model also has some dis-
advantages. For example, the fusion image obtained by our
model cannot improve the center positioning accuracy of TC
with weak intensity (such as TD) very well. In the future, we
will modified our image fusion model to improve the center
positioning accuracy of weak TC. In fact, both the TC center
location and intensity estimation are important in making TC
forecasts. Therefore, improving the TC intensity estimation
accuracy using fused images is our next goal.
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