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Abstract—Synthetic aperture radar ship detection has recently
received significant attention from scholars. However, accurately
distinguishing between ships is challenging due to the significant
overlap between inshore ship labels. In addition, some labeled
boxes contain interference information, such as land areas, which
can cause false alarms and confusion in ship feature learning.
To address these challenges, this article creates an edge semantic
decoupling (ESD) module, adds semantic segmentation branches,
and introduces the edge semantic information of ships into the
training process. As a result, the model can accurately distinguish
between ship targets even when significant overlap exists between
inshore labeled boxes. In addition, considering that transformer
has the benefit of capturing global and contextual information,
this article introduces it into the detection layer to construct a
transformer detection layer (TDL) to limit the interference of land
and other regions within the labeled box. Experimental results from
the public SAR ship detection dataset show that the proposed ESD
module and TDL detection layer effectively distinguish different
ship targets in the inshore dense ship area, which is less affected by
interference areas, such as land in the labeled box. The average
precision improves to 96.72%, and both false alarms and miss
detections inshore are reduced.

Index Terms—Edge semantic decoupling (ESD), inshore ship
detection, transformer.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) has the capability to
conduct all-day and all-weather observations, allowing for

long-term monitoring of the ocean without the interference of
weather conditions like cloud cover, fog, etc., [1], [2], [3], [4],
[5], [6]. With the increase of public datasets and the develop-
ment of convolution neural networks (CNN), more and more
researchers are utilizing CNNs for SAR ship detection [7], [8],
[9], [10], [11], [12], [13].
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Fig. 1. Issue of labeled boxes for inshore ships. (a) Contain interference
information. (b) Labeled boxes overlapped.

Current methods for SAR ship detection using CNNs can be
classified into two categories as follows: 1) single-stage and 2)
two-stage detection. The two-stage detection method involves
a two-step process where the detection box is first coarsely
extracted using region proposal network (RPN) [14], followed
by regression and classification of the box. Some representa-
tive methods using this approach are faster region-CNN (R-
CNN) [14] and cascade R-CNN [15]. The single-stage detection
method has the advantage of being faster and more efficient, as
it can perform regression and classification without the need
for coarse extraction. Some representative methods using this
approach are YOLOv3 [16] and YOLOv4 [17]. In consideration
of practical application requirements, the current trend in SAR
ship detection primarily favors the single-stage detection method
due to its speed and simplicity.

The detection of ships in SAR images using CNN-based meth-
ods requires a large number of labels. However, dense inshore
ship labels often overlap, making it challenging to differentiate
between different ship targets. As a result, the dense region is
prone to miss detection, as illustrated in Fig. 1. Tian et al. [18]
attempted to solve this issue by utilizing rotating boxes for
detection. Rotating box labeling has been applied to mitigate
a significant portion of the inshore interference. However, this
approach faces a limitation in its ability to include contextual
semantic information, resulting in a higher likelihood of false
alarms in inshore scenarios. Conversely, the horizontal box
contains richer contextual information; but, its susceptibility to
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higher levels of inshore interference creates a pressing issue for
detection of inshore ships. One critical challenge lies in how to
suppress the inshore interference when working with a horizon-
tal box containing significant contextual semantic information.
Another approach was used by Ma et al. [19] who employed
key point estimation to differentiate individual targets in dense
inshore ships. However, this method could only highlight the
central area of the ship, not the edges, resulting in a biased fit
of inshore ship labels in the dense region. Su et al. [20] and Wu
et al. [21] attempted to overcome the problem of dense overlap
by merging the edge semantic information of ships and em-
ploying instance segmentation methods for detection. However,
their algorithms were complex and inefficient to implement.
Ge et al. [22] demonstrated that decoupling the detection layer
can improve the regression and classification performance of
the model. Decoupling can be utilized to construct a simple
and easy-to-implement module that introduces inshore edge
semantic information about ships, thereby addressing the miss
detection problem in dense inshore scenarios.

The inshore ship labels often contain interference informa-
tion, such as land, which can lead to land false alarms and
mislead ship feature learning, as illustrated in Fig. 1. Wang
et al. [23] and Hou et al. [24] showed that introducing contextual
semantic information in combination with the scene effectively
reduces land false alarms in the inshore region. Ke et al. [25]
expanded the encoding and increased contextual information
to obtain feature maps of multiple sensory fields, which was
more effective but computationally complex and unsuitable for
practical applications. Zhu et al. [26] demonstrated that intro-
ducing transformer can capture contextual information more
comprehensively, especially for high-density occlusion objects,
with minimal computational overhead. The structure of the
transformer is composed of an encoder and decoder, which can
better obtain the contextual semantic information of the target,
improve the feature extraction ability, and better locate the edges
of the target in the target detection [27]. Therefore, transformer
can be introduced to build a plug-and-play module for learning
contextual information to reduce the land false alarms caused
by land area interference in ship labels.

In this article, an SAR ship detection method based on edge
semantic decoupling and transformer is proposed to address the
issue of inshore dense ship detection. To tackle the challenge
of miss detection caused by inshore label overlap, a semantic
segmentation layer is added by decoupling the detection layer,
thereby enhancing the model’s ability to differentiate ship edges
and reduce miss detection in dense scenes. Furthermore, to
mitigate the interference from regions, such as land in the labeled
boxes and facilitate feature learning, a transformer detection
layer is constructed that leverages the transformer’s capacity
to capture global and contextual information. This enables the
model to better distinguish between inshore false alarm targets
and ship targets, leading to a reduction in land false alarms.

In summary, it is worthwhile to note the following contribu-
tions of the proposed method.

1) The edge semantic decoupling (ESD) module is intro-
duced to address the challenge of distinguishing between
dense inshore ship targets in SAR images. By adding

semantic segmentation branches and incorporating edge
semantic information, the model is able to accurately
discriminate between ships even in regions with significant
overlap between inshore labeled boxes.

2) The transformer detection layer (TDL) is introduced to
limit interference caused by land areas and other regions
within the labeled box. By taking advantage of the trans-
former’s ability to capture global and contextual informa-
tion, the TDL helps to reduce false alarms and improve
the accuracy of ship target detection.

The rest of this article is organized as follows. Section II
presents the proposed method. In Section III, the proposed
method is validated by comparison to other methods. Section IV
presents discussions. Finally, Section V concludes this article.

II. METHODOLOGY

Fig. 2 illustrates the overall structure of the proposed method.
It consists of the feature extraction and detection layer parts, with
the solid orange line representing the improved ESD module
and the transformer-based TDL module. In Section II-A, the
ESD module designed for SAR images of dense inshore ships is
introduced first. Then the design details of the TDL module are
presented. Finally, the decoupling loss function is presented.

A. Edge Semantic Decoupling Module

Inshore ships are known to have a dense appearance with
significant labeled box overlap, which can negatively impact
the model’s ability to assess individual ship targets, resulting
in the inclusion of several ship targets within a detection box
(i.e., missed detection), as illustrated in Fig. 1(b). Conventional
single-stage detection algorithms utilize a single branch to si-
multaneously handle the tasks of classification and detection box
coordinate regression. However, the goals of classification and
localization is different, as classification is primarily concerned
with the texture information of the target, while localization is
focused on the edge information of the target. This difference in
focus can lead to conflicts between the two tasks as follows.

1) Higher-level convolutional fields have a larger receptive
field, allowing them to extract more global information,
which is useful for classification. However, the corre-
sponding areas in the original image become larger, which
can be detrimental to localization. Therefore, while the
information contained in higher level feature maps is
advantageous for classification, it is not necessarily helpful
for localization.

2) Lower-level convolution and other operations correspond
to smaller areas of the original image, making them more
accurate for localization. However, they may only contain
local information about the object and therefore are not
suitable for classification. Consequently, the information
contained in the lower-level feature map is suitable for
target localization but not for classification.

In order to overcome the limitations of performing the two
tasks in one branch, the approach proposed in this article is
inspired by [22] and [28], which separates the tasks of classifi-
cation and detection box coordinate regression into two distinct
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Fig. 2. Overall structure of the method proposed in this article.

Fig. 3. (a) Single-branch structure. (b) Edge semantic decoupling (ESD)
structure.

branches. Specifically, an additional ship semantic segmentation
branch is incorporated to capture edge information of ships,
enhancing the model’s ability to differentiate between different
ship targets in dense scenes and reducing the occurrence of
missed detections.

The ESD module and the conventional single branch are
compared in the middle of Fig. 3. It can be observed that the
decoupled detection head performs multiple tasks, obtaining
the results of both ship detection and semantic segmentation
simultaneously, compared to the conventional single branch. All
three branches, regression, classification, and segmentation, are
used separately after the backbone network to further specialize
in learning features using more convolutional layers, decoupling
while making the learned features richer and helping to further
define the ship’s position and edges. This not only introduces
semantic information about the ship’s edge but also significantly
improves the model’s scalability and ability to carry out multiple
tasks. An example of conventional single-branch decoding is
provided as follows for reference:

Infersingle = Conv (ch, clsdet + numreg) (1)

where Infersingle represents the prediction result of the con-
ventional single-branch structure, and Conv represents the 2-D
convolution. ch represents the number of the channels of the
feature map extracted by the detection layer, which is set to
255 in this article. clsdet represents the number of detected target
categories, which is set to 1 as there is only one ship category in
the detection task of this article. numreg represents the coordinate
values of the regression. It is set to 4, which corresponds to the
upper left and lower right horizontal and vertical coordinates of
the detection box. The edge semantic decoupling is as follows:

Inferdecouple = Conv (ch, clsdet) + Conv (ch, numreg)

+ Conv (ch, clsseg) (2)

where Inferdecouple is the prediction result of the edge semantic
decoupling structure and clsseg is the number of split categories.
Since there is only one ship category in the detection task of this
article, the value is set to 1.

B. Transformer Detection Layer Module

Due to the proximity of inshore ships to land, their labeled
boxes often include land, as illustrated in Fig. 1(a). This can lead
to the model mistakenly identifying certain features of the land
as features of the ship in the absence of contextual information,
resulting in false alarms.

Compared to CNN, the transformer architecture can effi-
ciently extract contextual information of the target by uniformly
cropping the input into multiple patches and utilizing a multi-
headed attention mechanism [29]. To mitigate the impact of land
areas in the detection labels, this article introduces transformer
to construct the TDL module, which incorporates contextual
information and enhances the model’s ability to distinguish land
targets, thus reducing false alarms.

The input of transformer is a 1-D sequence of token embed-
dings. To handle 2-D feature maps, feature maps x ∈ Rh×w×c

are reshaped into a sequence of flattened 2-D patches xp ∈
Rn×(p2·c), where (h,w) is the resolution of the feature map, c is
the number of channels, (p, p) is the resolution of each feature
patch, and n = hw/p2 is the resulting number of patches. The
process of patch embedding can be described as

Outputembedding = Flatten(Conv(Part(x))), (3)
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Fig. 4. TDL module structure.

where Outputembedding means embedded patches, Part repre-
sents the chunking operation, which divides the input feature
map into patches of a specific size. Conv is used to reduce
dimensions, and Flatten is used to construct a 1-D vector by
pulling flat.

The design of the transformer detection layer is illustrated in
Fig. 4, which mainly consists of a multihead attention module
and a feedforward neural network multilayer perceptron (MLP)
module.

The multihead attention module aliquots the input x ∈
RN×din in the feature dimension to obtain several copies of
xi ∈ RN×di , i = 1, 2, . . . n, where N is the sequence length,
d denotes the feature dimension and

∑n
i=1 di = din. Each xi is

processed with an attention to obtain n copies of the output,
which are then stitched together in the feature dimension to
obtain the final result. The calculation of a single attention is
as follows:

Attention(Q,K, V ) = Softmax

(
QKT

√
d

+B

)
V (4)

where Q, K, and V are obtained from the input xi through the
fully connected layer and B is the position information. The
components of MLP are shown as follows:

MLP = drop (fc(drop(act(fc(x))))) (5)

where drop means dropout operation, fc means fully connected
layer, x is the input, act represents Gaussian error linear unit
(GELU) activation function as follows:

GELU(x) = xP (X ≤ x) = xΦ(x)

≈ 0.5x
(
1 + tanh

[√
2/π

(
x+ 0.044715x3

)])
.

(6)

The input of transformer encoder are embedded patches, and
the added LayerNorm and Dropout layers are used to prevent
overfitting. The TDL module mainly replaces one convolutional
layer of the detection layer, which enhances the ability to capture
diverse contextual information with only a minor increase in
computational cost. It also leverages the self-attention mecha-
nism to explore the potential of feature representation.

C. Decoupling Loss Function

The decoupling loss function in this article is designed to
optimize both the detection and segmentation tasks in a single
network structure. Instead of training and optimizing the two
tasks individually, the decoupling loss allows for the inclusion
of edge semantic information in the ship detection optimization
process by back-propagating the loss after both ship segmenta-
tion and detection have been performed.

The designed decoupling loss function has two components,
namely, 1) ship detection loss function and 2) ship semantic
segmentation loss function.

1) Ship Detection Loss Function: The loss function of the
ship detection component is as follows:

lossdet = lossCIoU + losscls . (7)

lossCIoU is the detection box regression loss. In order to more
effectively filter out the high quality detection results that are
closer to the labeled box, this article uses CIoU [30] as the
regression loss for ship detection. The CIoU is calculated as

lossCIoU = 1− IoU +
ρ2 (Bp, Bg)

c2
+ α (8)

where ρ2(Bp, Bg) represents the Euclidean distance between
the center point of the detection box and the labeled box, Bp is
the detection box, Bg is the labeled box, c represents the length
of the diagonal between the upper left and lower right corners of
the smallest outer rectangle of the detection box and the labeled
box. α is a parameter to measure the consistency of the aspect
ratio and v is a tradeoff parameter

α =
v

1− IoU + v
(9)

v =
4

π2

(
arctan

wgt

hgt
− arctan

w

h

)2

(10)

where w and h represent the width and height of the prediction
box, respectively; wgt and hgt represent the width and height of
the labeled box, respectively. The IoU is defined as

IoU(Bp, Bg) =
|Bp ∩Bg|
|Bp ∪Bg| . (11)

losscls is the category classification loss for ship detection. In
the dataset used in this study, there is only one category, so the
foreground and background of the ships need to be separated.
The binary cross-entropy function used is shown as follows:

losscls = − 1

n

n∑
i=1

[Iobj log d+ (1− Iobj) log(1− d)] (12)
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Fig. 5. SSDD dataset labels.

where Iobj is the value of the detection label: 0 for the background
and 1 for the ship. d is the output of the detection layer by the
Sigmoid function, and n is the number of detected samples.

2) Ship Semantic Segmentation Loss Function: Since the
ship semantic segmentation also needs to distinguish between
just two types of pixels, i.e., ship and background, the same
binary cross-entropy function is used as (12)

lossseg = − 1

n

n∑
i=1

[Iobj log s+ (1− Iobj) log(1− s)] (13)

where Iobj is the true value of the semantic segmentation of the
ship edges. The value 0 indicates that the pixel belongs to the
background, whereas 1 indicates that it belongs to the ship. s
is the output of the segmentation layer by the Sigmoid function
and n is the number of segmented samples.

The joint loss for detection and segmentation in this article
is shown in (14), and the values of the optimization process are
involved in the final parameter update.

losstotal = lossdet + lossseg . (14)

III. EXPERIMENTAL RESULTS AND DISCUSSION

The effectiveness of the proposed method is evaluated using
the publicly accessible dataset SSDD labeled by Zhang et al. [7].
This section first introduces the dataset and the hyperparameter
settings of the experiments, followed by presenting the ablation
experiment results of each module. Finally, the proposed method
is compared with the current mainstream detection algorithms.

A. Dataset and Experimental Parameter Setting

The SSDD dataset used in this study contains SAR im-
ages with resolutions ranging from 1–15 m, sourced from
RADARSAT-2, TerraSAR-X, and Sentinel-1. The dataset in-
cludes ship detection box labels as well as ship semantic seg-
mentation labels. An example of a labeled dataset can be seen
in Fig. 5.

The SSDD dataset was labeled with 1160 images containing
2456 ship targets. Among the 2456 ship targets in the dataset,
928 were used for training and 232 were used for testing. In
addition, 46 of the test images were taken from the coast and
186 were taken from the ocean.

Algorithm 1: Update Parameters During Training.

The network is implemented using the Pytorch deep learning
framework. The optimizer utilized is stochastic gradient descent
(SGD) with momentum. A Geforce RTX 2070 GPU is used to
train 100 epochs, starting with an initial learning rate of 1e-3,
momentum of 0.9, and weight decay of 5e-4. Joint training is
necessary to incorporate ship edge semantic information into the
optimization of the ship detection model throughout the training
phase. Given that semantic segmentation and target detection
have different labels, the losses are calculated separately during
training. First, the segmentation and detection losses are added
together for back-propagation. Then, the gradient is accumulated
to a preset value and a parameter update is performed. The
training process is shown in Algorithm 1.

Gradient accumulation training offers the advantage of
achieving large batches even on machines with limited video
memory, thereby mitigating the oscillations lost during training
and allowing for faster acquisition of the best model.

B. Evaluation Metric

In this article, the average precision (AP) metric is used to
assess the performance of the ship detection model, which is
calculated as follows:

AP =

∫ 1

0

P(R)dR× 100% (15)

where

P =
TP

TP + FP
(16)

R =
TP

TP + FN
(17)

where TP, FP, and FN refer to the number of correctly predicted
ship targets, the number of incorrectly predicted ship targets,
and the number of ship targets judged to be nonship targets,
respectively. P represents the accuracy rate, which is the pro-
portion of the number of correct predictions to the total number
of predictions among all predictions.R represents the recall rate,
which is the proportion of the number of correctly predicted ship
targets to the total number of annotations among all annotated
ship targets. AP describes the area under the Precision–Recall
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TABLE I
COMPARISON OF THE ESD MODULE WITH CONVENTIONAL SINGLE-BRANCH

STRUCTURE

Fig. 6. Feature map visualization.

(P-R) curve. It is a compromise between the two metrics and
also shows the overall performance of different methods.

C. Effectiveness of ESD

The aim of the ESD module is to reduce the ship’s missed
detection in inshore dense scenarios. To assess the module’s
effectiveness, comparative experiments were performed on the
publicly available SSDD dataset, and the experimental results
are shown in Table I.

In Table I, P, R and AP represent the precision, recall,
and average precision in the inshore region, respectively. AP50

represents the AP of inshore ship detection calculated with 0.5
as the threshold value. AP50−95 means that the threshold value
of IOUs is taken from 0.5 to 0.95 in steps of 0.05, and then the
average value of APs under these IOUs is calculated. Compared
with AP50, the calculation of AP50−95 is more rigorous and
better reflects the advantages and disadvantages of the model.

As can be seen from Table I, compared to the conventional
single-branch detection structure, the P, R, AP50, and AP50−95

of the inshore ships are improved after adding the ESD module.
TheR has increased by 2.31%, indicating that the miss detection
of the inshore ships is alleviated. To further analyze the impact
of the ESD module, feature visualization is performed in this
article. The PLT image processing package is used in the model
inference process to save the feature matrices at different scales
by channel and colorize them, which makes the visualized
feature maps visually better compared with grayscale maps. The
feature visualization results in Fig. 6 also demonstrate that the
inclusion of the ESD module results in sharper edges of ships

TABLE II
ABLATION EXPERIMENTS OF ESD AND TDL

Fig. 7. P-R curve of the ablation experiment of ESD and TDL.

in dense areas and clearer distinction between individual ships.
The interference in the land area is also effectively suppressed,
which helps to decrease the rate of miss detection in the dense
inshore scenario.

D. Ablation Experiments of ESD and TDL Module

The proposed transformer-based TDL module is capable of
effectively extracting contextual information about the target,
which enables it to accurately differentiate between the ship
target and land-based false alarms. Compared with the baseline,
the TDL module is added, and the number of model parame-
ters only increases by 0.0064%, which is a small increase in
computational burden. Ablation experiments were conducted
to confirm the effectiveness of this module. According to the
experimental results in Table II, the addition of the TDL detec-
tion layer improves the P, R, AP50, and AP50−95. Compared to
the baseline algorithm, the P improves by 5.96%, and adding
TDL to ESD, the P improves by 0.73%, indicating that TDL
can effectively combine contextual information to reduce false
alarms in the inshore region. The AP50−95 is improved by
5.16%, indicating that the model’s overall performance has been
optimized. The P-R curves in Fig. 7 with the enclosed region of
the coordinate axes are the values of AP50. From which, the
improvement in accuracy of the proposed method in this article
can be seen more intuitively.

To demonstrate the superiority of the proposed method in
this article, comparative experiments were conducted with typ-
ical two-stage detection algorithms (Faster R-CNN [14], Cas-
cade R-CNN [15]), rotating box algorithm (OSCD-Net [31])
and typical single-stage detection algorithms (YOLOv3 [16],
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Fig. 8. Comparison with some detection results of relevant benchmark methods.

TABLE III
COMPARISON WITH OTHER WELL-KNOWN METHODS

YOLOv4 [17]). Among the above methods, the backbone net-
work of faster R-CNN, cascade R-CNN, and OSCD-Net is
ResNet. YOLOv3, YOLOv4, and the backbone network of the
method proposed in this article use DarkNet. The ship detection
results are shown in Table III, where the experimental results of
OSCD-Net is derived from [31].

The proposed method in this article has been shown to be more
effective than several commonly used conventional single-stage,
two-stage, and rotate box detection algorithms in detecting SAR
inshore ships. The detection results of different comparison
methods are shown in Fig. 8. The ground truth images are
colorized for different ship targets to facilitate better differen-
tiation of dense adjacent ship targets. The red ellipse in the
result comparison graph indicates the miss detection and the
yellow ellipse indicates the false alarm. These visualizations

provide an intuitive demonstration of the effectiveness of the
proposed method in suppressing false alarms and miss detection
in the inshore scenario when compared to conventional detection
algorithms.

IV. DISCUSSION

The detection of inshore ships presents a greater challenge
than that of ships located solely at sea due to the higher rates of
false alarms and missed detections.

The higher rates of false alarms are due to that SAR images
of inshore ship targets are prone to interference from non-
ship targets. Therefore, context information is needed to better
differentiate between ships and false alarms. In this article, a
transformer-based TDL detection layer is introduced to capture
global and context information, and comparative experiments
have shown that adding TDL can effectively reduce false alarms.

The higher rates of missed detections are due to that inshore
ships are densely arranged, making it difficult to distinguish
between adjacent targets. To alleviate this issue, ship edge se-
mantic information needs to be introduced to better distinguish
adjacent targets. In this article, by decoupling the detection layer
and adding a semantic segmentation branch to introduce ship
edge information, the ship recall rate was improved and missed
detections were reduced. Compared to methods that increase
computational complexity, such as dilated convolution or fusion
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of high-resolution feature layers to add context information, the
proposed TDL layer only adds a small number of parameters
while achieving high accuracy. Compared to using instance seg-
mentation to introduce ship edge information, the proposed ESD
method is simple to implement and does not require complex
instance labels, making it an effective and easily implementable
module.

However, training the proposed method requires ship se-
mantic segmentation labels, which undoubtedly increases the
annotation workload for large datasets. How to reduce the de-
pendence of the decoupled semantic segmentation layer on ship
semantic labels is a direction for future algorithm improvements.
Compared to SAR images of purely sea scenes, inshore scenes
are more complex and ship detection is more difficult. Therefore,
how to improve the detection of inshore ships while increasing
a minimal or even no computational burden is an important and
meaningful research direction.

V. CONCLUSION

This article presents a novel method for detecting dense
inshore ships in SAR images using an ESD module and a
transformer-based TDL layer. The ESD module incorporates
edge semantic information of inshore ship targets during train-
ing, improving the model’s ability to distinguish between neigh-
boring ships and reducing miss detections. Meanwhile, the
TDL layer utilizes transformer to extract contextual information
and reduce false alarms caused by interference from land and
other regions in the labeled boxes. The results of comparison
experiments with some two-stage and single-stage detection
algorithms on the SSDD dataset showed the proposed method
achieved the highest AP50 of 96.72%, demonstrating its effec-
tiveness in detecting inshore ships. The simple structure of the
single-stage detector makes it easier to perform improvements
and experiments, so this article performs experimental valida-
tion on a single-stage detector. However, the TDL and ESD
proposed in this article are both plug-and-play improvement
modules, which are less dependent on the overall structure of
the detection algorithm. Theoretically, they can be fully ported
to two-stage detectors, and whether the porting is effective
requires extensive experimental verification. The future work is
to explore the potential of combining this method with other
two-stage detection frameworks for further optimization and
improvement.
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