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GPR Data Reconstruction Using Residual Feature
Distillation Block U-Net
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Abstract—Due to the unevenness of ground surface, mismatch
between trig interval and sampling speed, or other electromagnetic
interferences, traces missing is a quite typical occurrence during
the on-ground ground penetrating radar (GPR) testing. Effective
reconstruction of GPR missing traces has been regarded a crucial
link to improve both the signal-to-noise ratio of raw data and the
resolution of GPR imaging. In this article, we propose a novel
deep-learning framework based on the residual feature distilla-
tion block U-Net (RFDB-U-Net) to mitigate the transmission loss
problem of the conventional U-Net. To be specific, by employing
the information distillation network based on the multiple feature
extraction connections, RFDB is capable of utilizing the adequate
residual information of each layer for feature learning. Moreover, a
skip connection is additional patched on the residual units to prop-
erly compensate the missing features in the convolution process. In
particular, the merging of lightweight U-Net ensures the lightness
of RFDB. The outperformance of the proposed framework is ver-
ified in detail through the reconstruction accuracy and evaluation
metrics in the test of synthetic data, laboratorial data, and in-site
field data.

Index Terms—Deep learning, ground penetrating radar (GPR),
missing traces, reconstruction, residual feature distillation block
U-Net (RFDB-U-net).

I. INTRODUCTION

GROUND penetrating radar (GPR) is a geophysical method
for shallow surface detection exploiting the electromag-

netic signals. By virtue of its unique features, such as nondestruc-
tive testing, rapid data acquisition, and excellent resolution, it has
gained great promises for various subsurface sensing applica-
tions [1], [2]. However, the completeness of GPR data under the
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common on-ground acquisition mode is somewhat susceptible to
the unevenness of ground surface, the decay of electromagnetic
wave energy, and especially the mismatch between trigging
interval against sampling speed. These inevitabilities could lead
to a random or regular data loss and reducing the signal-to-noise
ratio (SNR) of the raw GPR data. To mitigate this, developing an
effective signal-loss reconstruction approach has become a hot
spot in the literatures. The projection onto convex set (POCS)
method was widely used in seismic surveys to properly address
the issue of false frequencies due to an insufficient spatial sam-
pling rate or missing traces [3]. With the fundamental similarity
regarding acquisition mode and wave equations between GPR
testing and seismic reflection survey, the progressive techniques
of seismic exploration are then employed into the GPR data
processing. Focusing on the sparse sample issue, Yi et al. [4]
introduced an iterative reconstruction method combining POCS
with frequency-wavenumber (F-K) zone-pass filtering for GPR
missing traces and prove its advantages in reducing the data
acquisition density. Missing traces in the GPR data may have a
significant impact on the performance of clutter removal, making
GPR detection and target imaging practically impossible. To
resolve this issue, some studies have been carried out by using
the matrix completion property of the randomized low rank
and sparse decomposition. For example, the well-known Go
Decomposition (GoDec) for clutter removal in the missing data.
It reported the GoDec method was superior to the principle
component analysis method in the case of missing data [5].
Although several other solutions have been also proposed for
different cases of missing-traces problem, there is still a high
priority for effectively reconstructing the sparsely sampled data
[6]. As known to us since the significant correlation between
sparse sample reconstruction and compress sensing (CS) that the
sparse GPR data can be reconstructed from very few nonadaptive
linear measurement data by using the sparsity features of data in
a certain specific domain [7], [8]. For instance, the representative
iterative shrinkage-threshold algorithm (ISTA) and the fast iter-
ative shrinkage-threshold algorithm (FISTA) [9] are effective
schemes that combine sparse sample reconstruction and CS
problem, and ISTA has been successfully applied to the GPR
data reconstruction in the general circumstances of incomplete
data and phase distortion [10], [11], [12].

However, these methods need to satisfy certain linearity as-
sumptions [13], sparsity feature constraints [6], [10], or even
stricter sampling conditions [11] to bear the potential to exhibit
better reconstruction performance. For example, exploiting data
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Fig. 1. Network architecture of (a) U-Net and (b) RFDB-U-Net.

sparse or compressible feature, the sparsity-promoting interpo-
lation method can efficiently reconstruct missing data [14]. In
contrast, machine-learning (ML) techniques do not rely on the
certain constraints [15], [16], and can be trained by utilizing the
features at all levels of the network to achieve a desired result. In
such a context, ML technique has drawn tremendous attention
for geophysical data reconstruction applications [17], [18], [19],
[20]. For example, the methods based on the pyramid context
encoder network have been used to reconstruct the missing GPR
data [21]. Deep networks and generative adversarial networks
have also been used for GPR data recovery in the case of
extreme column deletions [22], [23], [24]. And recursive neural
network was proposed by model training using the same data
for missing-traces reconstruction [18]. Recently, U-Net has been
introduced to perform the end-to-end reconstruction rely on its
unique encoder–decoder architecture [25]. For consecutively
missing traces cases, the training process of U-Net is further
improved into the multistage U-Net [26].

Under certain circumstances, comprehensively characteriz-
ing the data with only a single network is somewhat a tough
issue since its training process often suffers from the gradient
vanishing problems. To overcome this, a deep residual learning
framework was further introduced [27] by adding a residual
module in the U-Net, which shows more significant performance
in sparsely sampled data reconstruction [28]. Whereas dramat-
ically increasing the network depth for accuracy improvement,
in turn, leads to a redundancy issue of cumbersome network
structure. In this event, a lighter U-Net is more preferable with
respect to its reconstruction efficiency [29].

Yet, in terms of the feature continuity and reconstruction accu-
racy of the local feature information, there are still deficiencies
with the conventional U-Net since the residual information of
each layer cannot be fully utilized inherently. In fact, due to
the sensitivity difference of U-Net framework to the feature

information, the transmission loss problem inevitably occurs
in the training process. For improving the feature continuity
and local details of the data, this article attempts to exploit
both the high sensitivity of deep residual distillation network
to feature information and the lightness virtue of U-Net, we
propose a novel deep-learning framework based on the residual
feature distillation block U-Net (RFDB-U-Net). In addition, for
the first time, we are striving to consider both the efficiency and
accuracy of reconstruction to facilitate subsequent processing of
GPR data, and in particular to ensure trace integrity with respect
to possible small-scale abnormalities in full waveform inversion
or migration imaging.

II. METHODOLOGY

A. U-Net

U-Net was initially applied in the segmentation of medical
images [30], inspired by U-Net notion and aimed at minimizing
the U-Net model size, scholars in other fields, and then made
improvements and tentatively proposed a widely applicable
lightweight U-Net [29], as shown in Fig. 1(a). The network is
composed of encoding and decoding paths. Each module in the
encoding path consists of a convolutional layer, a maximum
pooling layer, and the rectified linear unit (ReLU) activation
function.

B. RFDB-U-Net

The limitation of conventional U-Net mainly stems from
its inherent inability of fully utilization of the fundamental
residual information at each layer, which is rich in feature
continuity and local details of information. To mitigate this and
for the first attempt, we focus on the architecture deficiency
of U-Net and perform a series of improvements to propose a
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novel deep-learning framework based on the RFDB-U-Net, as
shown in Fig. 1(b). More specifically, the two-dimensional (2-D)
convolutional block is first replaced by the RFDB block, which
primarily consists of the shallow residual block (SRB) layer,
contrast-aware channel attention (CCA) layer, batch normal-
ization (BN) layer, and the skip connection. It is noteworthy
the essential contributions of the proposed RFDB-U-Net are
as follows: SRB is used to enhance the extraction function of
effective residual features of the data; CCA is added for the
comprehensive information after reconstruction; and BN is used
to accelerate the convergence of the network and to prevent
the gradient disappearance, within which the skip connection
is added to supplement the feature information lost during the
convolution process. More importantly, a new structural simi-
larity index measure (SSIM) function is exclusively designed to
the original loss function by fully restoring the high accuracy of
GPR data as well as maintaining the effective feature continuity
of data.

The core function of the RFDB framework is mainly imple-
mented through the SRB block. The SRB block consists of a
network block with residual connections of kernel size 3 × 3,
an identity mapping, and an activation unit, which can better
exploit the adaptive capability of parameter learning.

The CCA is used to adjust the weight of each channel, using
data X = [x1, x2, …, xc] with c feature maps and space size
H × W as an input. zc is the cth element of the contrast output
and HGC(·) denotes the global contrast information evaluation
function. It can be expressed as

zc = HGC(xc)

=

√√√√√ 1

HW

∑
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In this article, we employ a variant of the ReLU activation
function, known as the parametric rectified linear unit (PReLU)
activation function, in our deep neural networks. The PReLU
activation function is defined as

PReLU =

{
αix, x < 0
x, x ≥ 0

(2)

where αi is a learnable parameter. When αi = 0, the PReLU
activation function degenerates into the traditional ReLU acti-
vation function. However, the introduction ofαi allows for more
flexibility in the network and can effectively avoid the problem
of gradient disappearance, which is a common issue encountered
with the traditional ReLU activation function.

By utilizing the essential virtues of CCA, SRB, and U-Net,
RFDB-U-Net structure is ultimately formed to instantly realize
the lightweight network and properly complete the end-to-end
GPR data recovery operation.

Fig. 2. Examples of (a) randomly generated models for diverse geological
scenarios and (b) input GPR data with varying degrees of missing trace and the
corresponding output GPR data.

C. Dataset Design and Network Parameter Optimization

In this article, we present a novel GPR dataset for deep
learning, which includes 2400 sets of synthetic data and 100
sets of real measurement data. To generate the synthetic data,
we used stochastic methods [31], [32] to randomly establish
physical models, as illustrated in Fig. 2, to simulate different
geological scenarios. The depth of the model was randomly
selected between 3 and 6 m, and the distance was randomly
selected between 6 and 12 m. We generated the number of layers
of the model within the range of 2–5 to represent various types of
background material distribution, such as sand layer, soil layer,
bedrock, and different underground environments, such as urban
roads and field roads. The relative permittivity of the layers range
form 3–9.

There were 3–7 anomalies randomly distributed in the
medium. The relative permittivity of these anomalies was ran-
domly generated in the range of 1–20 to simulate different mate-
rials, shapes, and sizes (0.1–0.5 m in diameter) of underground
abnormal bodies, including PVC pipelines, metal pipelines, and
irregular cavities. Through these stochastic physical models,
our dataset provides diverse, representative, and challenging
scenarios for deep-learning tasks in subsurface imaging and
analysis.
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Fig. 3. Sliding window process.

To obtain the final training dataset, we randomly used various
types of wavelets, including Ricker wavelet, Gauss wavelet, and
Blackman–Harris wavelet, with center frequencies randomly
selected from 400, 600, and 900 MHz. We used the stochastic
model shown in Fig. 2(a) to perform forward simulation and
generate complete GPR data.

To simulate missing data, 20%–60% of the current GPR data
trace was randomly reset to the background value of the GPR
data [5], [29], [33], [34]. The final dataset is shown in Fig. 2(b),
where the data on the bottom represent the GPR data with
missing traces (i.e., input GPR data), and the data on the top
represent the predicted GPR data (i.e., output GPR data). We
collected the actual field GPR data on the test site with the
mismatch between the acquisition rate and sampling interval
by using the GSSI (Geophysical Survey Systems, Inc.) antenna
with center frequencies of 400 and 900 MHz, where the ground
truth of underground targets was known.

In addition, to ensure the integrity and randomness of data
features and avoid mismatch of input data size, the data pairs
of the dataset are preprocessed by using a modified sliding
block selection method [35], as illustrated in Fig. 3. The number
of rows and columns of the data pairs are randomly selected
from 256, 384, 512, and 768, respectively, and the size of the
data pair was adjusted accordingly. We then used a sliding
window with the size of 256 × 256 to capture the features of the
data pair, which ensures each window contains rich abnormal
waveform features. The sliding step size was set as 32. The
overall processing flow is shown in Fig. 4.

D. Network Parameter Optimization

In order to evaluate the performance of the network and
ensure that it does not fall into an overfitting state, a validation
set was created and utilized. This validation set consists of 15
randomly selected synthetic data pairs and 15 randomly selected
real-world data pairs. For every 50 completed training epochs,
the validation loss was recorded and used to monitor the network
performance.

Fig. 4. Overall processing flow of dataset production.

In this article, we train the neural network architecture that
uses the TensorFlow 2.10 in an Ubuntu 22.04-based computa-
tional environment. The system is equipped with an NVIDIA
P4000 GPU for acceleration. The Adam optimizer is employed
during training, with a mini-batch size of 32.

The Adam algorithm is an adaptive parameter update algo-
rithm which effectively controls the step size of the learning
rate and gradient direction by using the first moment estimate
and second moment estimate. This enhances the stability of the
optimization and prevents gradients from oscillating and disap-
pearing. In addition to storing an exponentially decaying average
of past squared gradients st, Adam also keeps an exponentially
decaying average of past gradients vt, similar to momentum [36]

vt = β1vt−1 + (1− β1)∇f(θt) (3)

st = β2st−1 + (1− β2)∇f(θt) ∗ ∇f(θt) (4)

where vt and st are estimates of the first moment (the mean) and
the second moment (the uncentered variance) of the gradients,
respectively. These variables are used to update the parameters
of the model, which is done by using the gradients obtained from
the backpropagation algorithm. Specifically, the value of β1 is
set to β1 = 0.9, and the value of β2 is set to β2 = 0.99. Based on
our experimental results and the literature report, these values
have been found to be effective in controlling the optimization
process [37].

However, when vt and st are initialized to zero vectors or the
attenuation rate is very small, the final result of the optimization
process tends toward zero, resulting in a deviation from the opti-
mal solution. To address this issue, we utilize the bias-corrected
first moment estimate v̂t and second moment estimate ŝt to
counteract these biases, which are shown as follows:

v̂t =
vt

1− βt
1

(5)

ŝt =
st

1− βt
2

. (6)
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The correction factor is calculated and then used to update
the parameters of the model. The update equation for the Adam
algorithm incorporating this deviation correction is given by

θt+1 = θt − α
v̂t√
δ + ŝt

(7)

where α represents the learning rate, and δ represents a small
constant value that is used to prevent the division by zero. In
this article, we have set the initial values of α = 0.001 and δ =
10−8 based on our experimental results and the literature report
in [37].

E. Training of Deep-Learning Model

The loss function plays a crucial role in the training of deep
neural networks by comparing the output of the network with the
ground truth and the calculation of gradients for weight updates.
The choice of the loss function can have a significant impact on
network performance. Mean square error (MSE) is a commonly
used loss function in deep learning. However, the use of MSE
may sometimes lead to data being over-smoothed, resulting in
varying degrees of distortion of the GPR profile data. To address
this issue, we propose a hybrid loss function that combines
the MSE loss function with the SSIM loss function. The MSE
loss function measures the error between data pixels, while
the SSIM loss function captures the overall similarity between
data. This combination can provide a more robust and accurate
representation of data that improves network performance.

The MSE shown in (8) and the SSIM shown in (9) are used
as the mixed loss function for this network training

MSE(x, y) =
1

N

N∑
i=1

(xi − yi)
2 (8)

where x represents the original data, y represents the recon-
structed data, and N represents the number of data matrix el-
ements

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)(σxy + C3)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)(σxσy + C3)
(9)

where x represents original data, y represents reconstructed
data, and μx and μy represent the mean values of x and y,
respectively. σx and σy represent the standard deviation of x and
y, respectively. σxy represents the covariance of x and y. C1, C2,
and C3 are constants to avoid system errors with denominators
of zero.

Therefore, the hybrid loss function can then be expressed as

Loss(x, y) = MSE(x, y) + SSIM(x, y). (10)

In this article, we focus on demonstrating the effectiveness of
incorporating the RFDB module in improving the performance
of the original network. To achieve this, we conduct network
training on both U-Net and RFDB-U-Net models. The training
process is defined for a total of 1000 epochs and the loss value of
training and validation is illustrated in Fig. 5. The results show
that all the loss functions exhibit an overall decreasing trend,
indicating that neither model has fallen into an overfitting state.
Furthermore, the loss function of the RFDB-U-Net model shows

Fig. 5. Loss function: (a) U-Net and (b) RFDB-U-Net.

TABLE I
COMPARISON OF TRAINING PARAMETERS

a flatter trajectory and a faster convergence speed when com-
pared to that of the U-Net model, with less drastic oscillations.
In addition, both models performed well on the validation set,
indicating that the network has adequate generalization capacity.
The results demonstrate the performance of the RFDB-U-Net
with respect to improving the overall capability of the network.

During the training process of the network, RFDB module
enhances the detail feature capture capability of lightweight net-
work and optimizes the network performance, but floating-point
operations presecond and trainable parameters are increased in
this process, as shown in Table I. This will be the focus of our
future network optimization efforts.

F. Evaluation Metrics

For the synthetic data, this article uses the SNR and SSIM
image evaluation indexes to evaluate the quality of the recon-
structed GPR data. The expression of SSIM is defined in (9),
and its value range is [0, 1].
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The SNR expression is defined as

SNR = 10log10

∑N
i=1

∑M
j=1 [f(i, j)]

2

∑N
i=1

∑M
j=1 [f(i, j)− f̂(i, j)]

2 (11)

where f(i, j)represents the original data, f̂(i, j)represents the
processed data, M and N represent the size of the data matrix.

Generally, a higher SNR represents a less noise B-scan with
higher quality.

Since there is no original data for comparison between labora-
tory data and measured data, we introduce the Brenner gradient
and entropy focusing functions to evaluate the sharpness of
reconstructed images of missing data based on autofocusing
metrics [38], [39]. The basic principle of image sharpness eval-
uation is that the focused image has high contrast, clear, and
high frequency information on the edge of the corresponding fre-
quency domain. The focusing basis of Brenner gradient focusing
algorithms is on the high-frequency components of the image.
That is, fully focused image means it has a high degree of clarity
and the presence of abundant high-frequency components, par-
ticularly at the edges of the image. In contrast, defocused image
means blur, which reflects the attenuation of high-frequency
components in the frequency domain, also denotes the lack of
detail and sharpness at the edges. This method is widely applied
by virtue of its real-time feature as reported in [40]. The Brenner
gradient focusing function is a fast, rudimentary edge detector,
measuring the difference between a pixel and a neighbor that
is typically two (m = 2) pixels away, which can be expressed
as

B =

I∑
i=1

J∑
j=1

[s(i, j)− s(i+m, j)]2 (12)

where s(i,j) is the grayscale pixel value at coordinates (i,j), and
I and J represent the number of pixels in the i and j directions,
respectively.

Entropy can then be used to describe the abundance of infor-
mation. The entropy focusing evaluation function is based on
the gray distribution with diversity in the focusing image. For a
I × J size of the image, there is L grayscale level for statistical
result, and the probability of occurrence of kth grayscale level
is Pk. The entropy focusing evaluation function is defined as

E = −
L∑

k=1

Pklogb (Pk) (13)

where Pk ∈ (0, 1) and
∑L

k=1 Pk = 1, the value of b is set to 2,
which based on our experimental results and the literature report
[41]. The entropy of the focused image is maximum when the
grayscale level probability is used to calculate the entropy.

III. SYNTHETIC DATA EXPERIMENT (CASE 1)

A. Setup

An underground pipe and cavity model is built and illustrated
in Fig. 6. The model dimensions were set as 4.0 m × 8.0 m,
and it consists of three layers, from top to bottom: an air layer,
a soil layer (containing six pipes and an irregular cavity), and

Fig. 6. Model of relative permittivity constant distribution.

TABLE II
EVALUATION OF GPR DATA RECOVERY INDEX VALUES FOR VARIOUS

ALGORITHMS

a substrate medium. The permittivity constants of the soil layer
and substrate medium were set as 4 and 9, respectively. As cavity
and pipeline models were concerned in this article, conductivity
was not considered and was set to zero. The simulation was
carried out using the finite difference time-domain method [42],
[43] with a Riker wavelet source at the central frequency of
400 MHz and a time window of 60 ns. The time and space
intervals were set as 0.04 ns and 0.02 m, respectively. In line with
the in-site testing scenarios, signals were intentionally designed
to be received randomly, and two percentages of missing traces
(20% and 50%) were considered. In the simulation results, only
the 50% stacking section was used and presented, as shown in
Fig. 7.

B. Results and Discussions

Table II lists the metrics of reconstruction using the proposed
method, ISTA [44], [45], FISTA [44], [45], POCS, and deep-
learning-based U-Net [29] in terms of the SSIM and SNR. The
results show that, whether the 20% or 50% missing trace data are
concerned, the traditional methods have large differences from
the original complete data with different degree of signal loss,
both metrics of SSIM and SNR reveal the outperformance of the
proposed RFDB-U-Net.

As shown in Fig. 7, all methods represent various degrees
of reconstruction performance with 50% missing trace. The
data processed by deep-learning methods [Fig. 7(e) and (f)] are
cleaner than traditional methods [Fig. 7(b) and (d)], in which
the extra noise has been introduced during the reconstruction by
traditional methods.
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Fig. 7. Comparison of the original missing synthetic data (a) and the reconstructed data of each method as well as the overall profile and local magnification:
(b) ISTA; (c) FISTA; (d) POCS; (e) U-Net; and (f) RFDB-U-Net.

To compare the specific detail of the hyperbolas, we zoom
in the hyperbolic portion of the data, as highlighted by red
box in Fig. 7. The detail indicates that our method shows more
continuous and smoother homogeneous events especially with
respective to the faint-amplitude reflections. To this end, the
proposed method could make use of more residual information
of each layer for feature learning, additionally, skip connection
is added to the remaining elements to further compensate for
the missing features in the convolution process, which bear the
potential to extract more hyperbolic details and more continuous
waveforms. To some extent, the proposed method represents
a more optimized and adaptive version of the U-Net, thereby
the reconstructed data could match precisely with the data truth
since the extracted information is more prominent with more
hyperbolic details.

IV. EXPERIMENTAL TEST (CASE 2 AND CASE 3)

A. Setup

To validate the practicality of the proposed method, we further
designed a laboratory model (Case 2) to simulate the missing-
trace problem that may be encountered in the acquisition pro-
cess. Fig. 8 shows the sand tank laboratory in the Geoscience
Building of Central South University.

Four anomalies were buried in tank, and parameters of ab-
normal were listed in Table III. For data acquisition, we used
400 MHz antenna of GSSI SIR-4000 radar with the distance
measurement mode, the sampling points per trace and the time

Fig. 8. Laboratorial physical model of distribution.

TABLE III
BASIC PARAMETERS OF THE LABORATORY MODEL

window were set as 1024, 30 ns, respectively. The sampling rate
was set as 100 traces/m, and the length of the survey line was
4 m, with a total of 400 traces were collected, as the B-scan
shown in Fig. 9(a). Due to the fluctuation and discontinuity of
the site near the iron sphere (No. IV), together with the mismatch
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Fig. 9. Comparison of the original missing laboratory data (a) and the reconstructed data of each method as well as the overall profile and local magnification:
(b) ISTA; (c) FISTA; (d) POCS; (e) U-Net; and (f) RFDB-U-Net.

Fig. 10. In-site field measurement of a road testing in Zhengzhou.

between the sampling rate and trace interval, the traces collected
near the iron sphere (No. IV) were unexpectedly missed in the
raw collected data.

Furthermore, for validating the effectiveness of the proposed
method on the complicated in-site field cases (Case 3), we
selected the field GPR data collected through a road testing in
Zhengzhou, China, as shown in Fig. 10.

For data acquisition under the distance measurement mode,
the GSSI SIR-4000 GPR instrument with 400 MHz antenna was
also used. We set the sampling points as 512 and the time window
as 35 ns. The sampling rate was 50 traces/m, and the length of the

survey line was 18.4 m, with a total of 920 traces were collected.
Due to the unevenness of ground surface, mismatch between
trace interval and sampling rate, trace-loss issue also occurs in
the B-scan of common offset gathers, as shown in Fig. 11(a).

B. Results and Discussions

For the laboratory experiment (Case 2), as shown in Fig. 9,
all methods show various degrees of reconstruction perfor-
mance. Similarly, the details of the hyperbola near the iron
sphere (No. IV) are highlighted by red dotted box and shown
in Fig. 9. The results demonstrate that traditional methods
are failed to reconstruct the missing traces, while the deep-
learning methods show considerable improvements in term of
reconstructing the continuous events, as well as the complete
hyperbola. As the CCA and SRB layers are combined, the
proposed method is superior to U-Net in terms of the poten-
tial to capture more residual information of each layer and to
further strengthen the extraction and optimization of residual
features.

Considering the in-site laboratory and in-site field data are
rather different from the simulated GPR data, we finally evaluate
the reconstruction performance using Brenner gradient focusing
function and entropy focusing evaluation function. Since more
residual information has been extracted to reconstruct the ab-
normal features, the proposed method provides a more focused
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Fig. 11. Comparison of the original missing field data (a) and the reconstructed data of each method as well as the overall profile and local magnification:
(b) ISTA; (c) FISTA; (d) POCS; (e) U-Net; and (f) RFDB-U-Net.

image by improving the contrast between the detailed features
and the background [39].

As shown in Fig. 12 (Case 2), with the highest evaluation
index, the proposed method quantitatively outperforms other
methods in the laboratory case.

For the in-site field test (Case 3), the reconstruction results
of different methods are compared by red box in Fig. 11(b)
and (f), which confirms that the proposed method is capable of
reconstructing the “B-scan truth” with more details. The U-Net
method, as shown in Fig. 11(e), improves the continuity of
the reflection events in comparison to the traditional methods.

However, its extraction and reconstruction ability are somewhat
limited mainly due to its lightweight architecture. In contrast,
the RFDB-U-Net algorithm enhances the extraction scale of
residual features by incorporation of the RFDB module and
especially the implementation of a hybrid loss function. These
improvements allow the algorithm to capture more hyperbolic
features hidden in the profile and conducive to a smoother
representation of abnormal waveforms. These visual evaluations
are also supported by quantitative measures of sharpness and
edge information of the image, as shown in Fig. 13. It can also
be found that the highest auto-focusing value is obtained by
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Fig. 12. Comparison of evaluation indicators.

Fig. 13. Comparison of evaluation indicator.

the RFDB-U-Net, which delivers a preferable reconstruction
performance and reconfirms the practicability of the proposed
method in the complex environment for field data acquisition.

V. CONCLUSION

The major contribution of the proposed framework is the
incorporation of the RFDB module into a lightweight U-Net
architecture, since the SRB and CCA modules are the most
critical components of the RFDB to preserve valid information
lost in different layers. In addition, a new combination of MSE
and SSIM is introduced as a hybrid loss function to improve
the continuity of valid information in the presence of extensive
missing GPR traces.

We compare the reconstruction performance of the pro-
posed framework with the state-of-the-art methods using miss-
ing traces of synthetic data, laboratory data, and on-site field
data. The results present practical evidence of the proposed
framework and demonstrate its ability to improve the details
of information on reconstruction features and accuracy, which
could offer high potential for 3-D GPR scanning tasks and fine
GPR inversion imaging in complex interference environments
for the GPR community.
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