
4638 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

A Large-Batch Orthorectification Generation Method
Based on Adaptive GPU Thread Parameters and

Parallel Calculation
Ruyan Zhou , Shangcheng Hu, Zhonghua Hong , Member, IEEE, Xiaohua Tong , Senior Member, IEEE,

Shijie Liu , Member, IEEE, Haiyan Pan , Yun Zhang, Yanling Han, Jing Wang, and Shuhu Yang

Abstract—Orthorectification reflects a large amount of real and
objective information, such as the characteristics of images and
the geometric accuracy of maps. Conducting a large batch of
orthorectification is a process with high time cost owing to the
pixelwise correction each image. A common approach is to use
graphics processing unit (GPU) parallel computing to accelerate
orthorectification processing. However, most of the existing GPU
acceleration studies have adopted experimental testing methods to
determine thread parameters, which are inapplicable to different
GPUs and affect the GPU acceleration performance. We put for-
ward an adaptive calculation method for GPU thread parameters
based on the performance parameters of different GPUs and by
simultaneously blocking the image automatically according to the
GPU memory space. We used 112 ZY-3 images to test the adaptive
GPU and compare it to a general GPU. The experimental results
show the following: first, for a single ZY-3 image, the GPU acceler-
ation by the adaptive calculation method presented in this article
is 43.22% higher than that by the general GPU, and the correction
time is 34.41 times faster than that of the central processing unit.
The result of the automatic image blocking was the same as that of
the artificial blocking. Second, the experimental performance on
four different GPUs indicated that all GPUs exhibited a significant
speed boost. Third, for large-batch images, the GPU acceleration by
the adaptive GPU was 32.6% higher than that by the general GPU,
which provides an adaptive optimization strategy for large-batch
image orthorectification.

Index Terms—Adaptive, graphics processing unit (GPU), large
batch, orthorectification, thread parameters.

I. INTRODUCTION

IN RECENT years, high-resolution remote sensing satellites,
for example, IKONOS, QuickBird, WorldView, TianHui,

ZiYuan, GaoFen, etc., have been launched worldwide to collect

Manuscript received 10 November 2022; revised 3 February 2023 and 16 April
2023; accepted 9 May 2023. Date of publication 15 May 2023; date of current
version 26 May 2023. This work was supported in part by the National Key R&D
Program of China under Grant 2018YFB0505400 and in part by the National
Natural Science Foundation of China under Grant 41871325. (Corresponding
author: Zhonghua Hong.)

Ruyan Zhou, Shangcheng Hu, Zhonghua Hong, Haiyan Pan, Yun Zhang,
Yanling Han, Jing Wang, and Shuhu Yang are with the College of Infor-
mation Technology, Shanghai Ocean University, Shanghai 201306, China
(e-mail: ryzhou@shou.edu.cn; m210911520@st.shou.edu.cn; zhhong@shou.
edu.cn; hy-pan@shou.edu.cn; y-zhang@shou.edu.cn; ylhan@shou.edu.cn;
wangjing@shou.edu.cn; shyang@shou.edu.cn).

Xiaohua Tong and Shijie Liu are with the College of Surveying and Geo-
Informatics, Tongji University, Shanghai 200092, China (e-mail: xhtong@
tongji.edu.cn; liusjtj@tongji.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2023.3276219

data with different repeat cycles and resolutions. Orthorecti-
fication is an image processing method that can obtain the
correct geographical coordinates of RS images by eliminating
the geometric distortions due to terrain and sensor errors [1].
The generated orthoimagery after correction contains substantial
real and objective information, not only including the geometric
accuracy of maps but also the characteristics of the images.
Therefore, the rapid generation of large-scale digital orthophoto
maps has garnered considerable attention to meet the require-
ments of different application scenarios, such as postdisaster
monitoring and map drawing [2].

There are two methods of orthorectification: direct and indi-
rect. Direct correction starts from the original satellite images
and directly calculates the geodetic reference space coordinates
corresponding to each pixel using the algorithm models. Indirect
correction is based on simulative orthoimagery; the first affine
transforms the image coordinates to ground coordinates. Sub-
sequently, its coordinates on the original image are calculated
using an algorithmic model, and finally, grey value resampling is
conducted to generate the orthoimagery. Orthorectification algo-
rithms include the physical sensor and general empirical models
[3]. With the collinearity conditions, the former expounds a
calculation formula of the original image coordinates and actual
object geographic coordinates with strict physical parameters
[4]. The ratio of one or two polynomials consists of a general
empirical model, which is a mathematical fit of physical sensor
models. The rational function model (RFM) is used as most
general empirical model, and is expressed as transformation
relation by the cubic polynomial ratio [5], [6], [7]. Tenuous level
and smooth splines modeling technology is used to abate the
deviation of the RFM polynomial coefficients for correction [8].
Oh and Jung [9] presented an efficient method that integrates
time and cost for automatic rational polynomial coefficients
(RPCs) offset compensation correction of high-resolution satel-
lite images. A lookup table can reduce workload of polynomial
coefficients calculation and accelerate the correction of images
[10]. Wang et al. [11] computed the image orientation parameters
based on the plane block adjustment method before correcting
every satellite image by the RFM. However, orthorectification
is a pixelwise process, which leads to a large number of calcu-
lations. Consequently, many existing research work is based on
small-batch images, but the orthoimagery generation of large-
batch satellite images is relatively less.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4044-2340
https://orcid.org/0000-0003-0045-1066
https://orcid.org/0000-0002-1045-3797
https://orcid.org/0000-0002-5941-0763
https://orcid.org/0009-0004-5565-3022
https://orcid.org/0000-0001-9967-7756
mailto:ryzhou@shou.edu.cn
mailto:m210911520@st.shou.edu.cn
mailto:zhhong@shou.edu.cn
mailto:zhhong@shou.edu.cn
mailto:hy-pan@shou.edu.cn
mailto:y-zhang@shou.edu.cn
mailto:ylhan@shou.edu.cn
mailto:wangjing@shou.edu.cn
mailto:shyang@shou.edu.cn
mailto:xhtong@tongji.edu.cn
mailto:xhtong@tongji.edu.cn
mailto:liusjtj@tongji.edu.cn

ZHOU et al.: LARGE-BATCH ORTHORECTIFICATION GENERATION METHOD 4639

High-performance computing (HPC) is used in various ap-
plications with the advantages of the acceleration aspects of
large data volume computing [12], [13], [14]. The HPC model
includes heterogeneous computer network, cloud, field pro-
grammable gate array, and cluster-based multi-central process-
ing unit (CPU) and graphics processing unit (GPU) systems
[15], [16], [17]. The high-efficiency processing algorithms are
explored in remote sensing image with HPC, such as hyper-
spectral imaging and endmember extraction [18], [19], [20],
[21]. They concluded that HPC technology exhibits a significant
improvement in efficiency compared to traditional computing
methods. Owing to the large amount of data from high-resolution
satellite images, a CPU-based single processor system cannot
satisfy the requirements of fast and real-time data processing,
and the multi-CPU system and FPGA are limited by high cost
and complex programming; thus, GPU parallel computing is
a better choice to accelerate the orthorectification processing.
A new inexact Newton beam adjustment algorithm based on a
multicore CPU and a single GPU, and the results of that showed
that the efficiency in speed of a single GPU increased by two-
to three-fold compared to that of a multicore CPU [22]. GPU
parallel computing is applied to accelerate the orthorectification
process of hyperspectral and unmanned aerial vehicle (UAV)
images [23], [24]. Dai and Yang [25] implemented delicate
parallel resampling to achieve fast correction. The images can
be corrected fast based on the flow model and inverse sensor
algorithm in a GPU-accelerated cluster environment [26], and
the efficiency of input–output (I/O) operation in GPU correc-
tion by maximizing the device occupancy, which enhances the
memory access efficiency [27]. Multiple GPUs are applied to
efficient processing of modulation transfer function compen-
sating and geo-rectification, and further improved the GPU
performance in three aspects: memory throughput, instruction
control, and multistream processing [28]. This method artifi-
cially divides an image into multiple blocks, which is unsuitable
for large high-resolution satellite image processing operations
by different GPUs. Li et al. [29] used GPU to accelerate the
correction processing of UAV image distortions by configur-
ing the best grid and multilevel memory. However, the Com-
pute Unified Device Architecture (CUDA) thread parameters
are determined by experimental testing, which implies that
this method may be unsuitable for applications on different
GPUs.

According to the aforementioned analysis, some problems
still exist in the current research: first, in most studies imple-
menting the existing GPU accelerating correction, the thread
block parameters are determined experimentally, which is inap-
plicable to different GPUs and affects the acceleration efficiency;
Second, in the current methods, images are corrected and need
to be artificially partitioned, which affects the automation of
correction. Therefore, the purpose of this study is to propose
an automatic and adaptive GPU thread parameter calculation
method for the generation of large-scale orthoimagery to im-
prove the calculation efficiency of orthorectification. Two criti-
cal problems are explored in this regard: the adaptive calculation
of thread parameters in different GPUs; and the correction of the
automatic blocking of the image.

Fig. 1. Orthorectification flow of adaptive GPU calculation method.

The contributions of this article are as follows.
1) We utilize GPU parallel computing to accelerate the in-

direct orthorectification process; the proposed method is
applied to large-area and large-batch high-resolution satel-
lite images, which solves the low time efficiency problem
of conventional orthorectification.

2) We propose an adaptive GPU thread parameter calculation
method, which solves the problem of optimized calcu-
lation to determine the thread parameters of GPUs, and
significantly decreases the time requirements.

3) We propose an automatic image blocking method to solve
the problem of GPU-accelerated correction of large im-
ages that needs to be partitioned according to the size of
the GPU memory.

The main organizational framework of this article is as fol-
lows: the adaptive GPU thread parameters, automatic blocking
of the image method, and the specific process of orthorectifica-
tion are explained in Section II. Section III provides the results
and analysis of the orthorectification experiment. A discussion
of the influence of thread parameters is presented in Section IV.
Finally, Section V concludes this article.

II. METHOD

The process comprises three main steps, which are illustrated
in Fig. 1. First, the satellite image is preprocessed, and the
connection points are extracted for adjustment, and the result
is used to compensate for the RPC. Second, we calculate the
geographical longitude and latitude of satellite image four corner
points to establish a simulative orthoimagery, and adaptively
partition the image and calculate the thread parameters using the
GPU. Finally, we use the GPU to calculate the original image

4640 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

coordinates for each pixel along with the grey value resampling
to generate the orthoimagery.

A. Preprocessing

Fig. 1 shows that the first step in this study is adjustment
preprocessing, which eliminates the relative positioning error
of the satellite images and the existing error in the initial RPC.
First, The SIFT can detect points with the same characteristics
and corresponding physical information in the image was used to
extract the connection points from the images [30], and the least-
squares method was used to reduce some useless connection
points. The block adjustment model was constructed according
to the connection points, and the common affine transformation
model was used to construct the difference equation for the RFM.
The object parameters and other information can be calculated
using the forward intersection calculation method and iteratively
solved to obtain the adjustment parameters [31], [32], [33].
Finally, the adjustment results are used to compensate for the
RPC parameters and update the RPC files, which are convenient
for subsequent calculations using the RFM.

B. Adaptive Calculation of the GPU Thread Parameters and
Image Blocking

1) Automatic Image Blocking: When a GPU is used to ac-
celerate the orthorectification of images, it is necessary to cut
the images into several blocks when dealing with large satellite
image data owing to the limited storage space of the GPU. The
large image mentioned here is relative to the GPU memory space,
and when the data size of the processed image exceeds the GPU
memory space, it is considered as the large image. Generally,
images are artificially divided into small blocks, which are un-
suitable for different GPUs. Therefore, we propose an automatic
image-blocking method based on the size of the remaining
available video memory space and processing data size of the
GPU. The data used are as follows: input data are the original
image and the digital elevation model (DEM), whose sizes are
Rimg and RDEM, respectively; Output data are the orthoimagery,
simulative orthoimagery are considered as orthoimagery after
grayscale assignment, the size of the image is the ratio of
maximum and minimum latitude and longitude differences to
pixel width and height, the product of the data type of the image
and the image size is the size of the memory occupied by the
orthoimagery, which is RDOM; the aforementioned data are put
into the GPU; and RGfree is the free space of the GPU memory.
As the amount of data in DEM is small compared to that in the
original images, it is unnecessary to partition the DEM. Thus, we
only divide the input original image and the output orthoimagery,
and the calculation scheme is as follows.

Case 1: The total size of the input and output data is less
than the available space of the GPU memory, and no division is
necessary.

Case 2: The sum of the input and output data is greater
than the available space of the GPU memory; the original
image and orthoimagery need to be partitioned, and the number
of blocks is defined as Blockn. The range of the orthoim-
agery block reflected in the original image is wider, and the

excessive part size is k ∗Rimg; k = (latitudeul − latitudeur)/
(latitudemax − latitudemin), where latitudeul and latitudeur are
the latitudes of the upper left and upper right corner points of
the original image, respectively; and latitudemax and latitudemin

are the maximum and minimum latitudes of the original image,
respectively. Image block size was (Rimg

Blockn
+ k∗Rimg), and the

orthoimagery block size was Rdom
Blockn

after blocking the images.
The formula for the calculation of the image blocks is defined
as follows, and ceil () is rounded up:{

Blockn = 1Rtotal ≤ RGfree

Blockn = ceil
(

Rimg+RDOM

RGfree−RDEM−k∗Rimg

)
Rtotal>RGfree

. (1)

2) Adaptive Calculation of GPU Thread Parameters: When
using the CUDA framework, the pixelwise correction processing
part with high parallelism is mapped into the kernel function
of CUDA, and the kernel function that starts the correction
must set the size of the thread blocks and grids. Conventional
GPU acceleration sets the thread block size to 256, which is
a two-dimensional size of 16 × 16. In previous studies, the
size of the thread block was tested from 64 to 1024, and the
optimal number of thread blocks was selected by testing the
kernel function performance. The selected number of threads is
not always the best for different GPUs, and unsuitable thread
parameters will affect the running time of the kernel function.
Therefore, we propose an adaptive GPU thread parameter cal-
culation method to determine the thread parameters in CUDA
according to the different performance parameters of the GPU
to ensure that different GPUs can accelerate the correction
process.

Fig. 2 shows that this method first obtains the physical per-
formance parameters from the GPU; for example, the available
registers and the available share memory (SM) size in a stream-
ing multiprocessor. These parameters are then used to calculate
the thread blocks per SM that can be limited by threads, registers,
and SM, and calculate the number of warps. The minimum
value of the three warp numbers was used to calculate the warp
occupation rate and filter out the thread block size with the largest
kernel occupation rate. If multiple thread blocks have the same
occupation rate, the minimum value is considered as the final
thread block size. The thread grid size and boundary qualifier
parameter can then be determined according to the thread block
size.

From the parameters of the GPU, we can obtain the number
of threaded warps used by each SM, denoted as Numwarp_SM .
A thread warp contains Numthread_warp threads; the thread
warp’s allocation granularity is Numwarp_alloc; register allo-
cation unit size is Numreg_alloc; An SM has Numreg_SM

registers; and a thread has Numreg_thread registers. Therefore,
we can calculate the number of threaded warps in an SM limited
by the registers

Numwarp_regs =

floor(Numreg_SM

ceiling(Numreg_thread∗Numthread_warp, Numreg_alloc)
,

Numwarp_alloc). (2)

ZHOU et al.: LARGE-BATCH ORTHORECTIFICATION GENERATION METHOD 4641

Fig. 2. Flowchart of the adaptive GPU thread parameter calculation.

Fig. 3. Comparison of time after adaptive optimization of different GPUs.

Owing to the restriction imposed by the number of registers
used in the kernel function, the upper limit of a thread block size
is determined by the following formula:

Maxnumthread_block =

ceiling

(
Numreg_SM

Numreg_thread
, Numthread_warp

)
(3)

where Numreg_SM is the amount of registers in a GPU SM
and Numreg_thread is the amount of registers used in a thread.
And, we assume that the thread block size isNumthread_block =
64, 128 . . . ,Maxnumthread_block, and the actual thread warp
used by each thread block is

Numwarp_block = Numthread_block /Numthread_warp. (4)

The size of SM used by each thread in a kernel
function is SizeSmemory_block; the allocation unit size of

SM is SizeSmemory_alloc; and the SM size of an SM is
SizeSmemory_SM . Therefore, the amount of thread blocks
that the streaming multiprocessor can allocate is restricted by
threads, registers, and SM⎧⎪⎨
⎪⎩

Blocksthread =
Numwarp_SM

Numwarp_block

Blocksreg =
Numwarp_regs

Numwarp_block

BlocksSmemory =
SizeSmemory_SM

ceiling(SizeSmemory_block, SizeSmemory_alloc)

.

(5)
The GPU thread warp occupancy can be calculated for this

number of threads

Occupancyn

= MIN (Blocksthread, Blocksreg, BlocksSmemory)

× Numwarp_block

Numwarp_SM
. (6)

We can calculate the corresponding thread warp occupancy
Max(Occupancyn) by traversing the set number of threads
and obtain the minimum threads when the occupancy is at its
maximum, and Numthread_block is the thread block number.
CUDA sets the thread block and thread grid parameters through
<<<>>> when the orthorectification kernel function begins,
and the thread block size is determined using the aforemen-
tioned calculation. Selecting the two-dimensional thread indices
Blockx and Blocky should be as average as possible and calcu-
lated using the following formula:⎧⎨
⎩

Blockx = 2m < ceiling
(√

Numthread_block, 2
)

(m = 1, 2, . . . , n)

Blocky = Numthread_block

Blockx

. (7)

The corresponding two-dimensional thread grids
is: Gridx = ceil(Imgcols

Blockx
) and Gridy = ceil(Imgrows

BLocky
),

4642 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE I
ORTHORECTIFICATION BASED ON GPU PARALLEL COMPUTATION

where: Imgrows and Imgcols are the numbers of original
image rows and columns, respectively

War plaunch =
Numwarp_SM∗Numthread_warp

Numthread_block
. (8)

We can use the boundary qualifier “__launch_bounds_” to
specify the thread and thread warp to be used in the compiler
[34]. By specifying different parameters to increase the kernel
occupation, a suitable kernel can achieve better performance
optimization. In this study, the size of the thread block calculated
above is threadsperB as the first parameter, and (8) is used to
calculate the thread warp Warplaunch as the second parameter.
Simultaneously, the L1 cache is opened in the GPU to further
improve efficiency.

3) Orthorectification Based on GPU Parallel Computation:
This study uses the indirect correction method and accelerates
the processing using GPU parallel computation. The indirect
correction method begins from the orthorectification side and
corrects each pixel. It is relatively independent and does not
compete with the direct correction calculation; thus, it is more
suitable for GPU parallel calculation.

The GPU parallel computing algorithm for orthorectification
is presented in Table I. First, the RFM model is constructed
according to the RPC parameters and the original image coor-
dinates according to (9) [35]

{
Y = NumL(B,L,H)

DenL(B,L,H)

X = NumS(B,L,H)
DenS(B,L,H)

. (9)

Second, the average elevation of the DEM is used to iteratively
calculate the longitude and latitude (B,L) of the four corners
and determine the four solstices of the image. The image range
can be determined to establish a simulative orthoimagery. Simul-
taneously, affine transformation parameters can be established
according to the spatial resolution. Subsequently, the RPC is
put into the constant memory, and the original image, DEM,
and simulative orthoimagery are stored in the global memory
of GPU, and adaptively calculate the GPU thread parameters
simultaneously. Subsequently, the pixelwise (x, y) correction is
conducted from the simulative orthoimagery, which uses GPU
acceleration to correct each pixel: the corresponding geograph-
ical coordinates (B,L) are calculated by the established affine
transformation parameters; the corresponding row and columns
in the DEM are transformed using (B,L) and the DEM affine
parameters; resampling interpolation is conducted to obtain the
elevation value H of the longitude and latitude (B,L); the
coordinates (X,Y) of the original image side corresponding are
calculated according to (B,L,H) through the positive solution
formula of the RFM; the grey value calculated by resampling
interpolation on this coordinate is given to the orthoimagery
pixel (x, y). Finally, the correction data are transmitted to the
CPU, and the orthoimagery is generated after a grey value is
assigned to the simulative orthoimagery.

III. RESULTS AND ANALYSIS

A. Data and Hardware Environment

The data used in this study were obtained from ZY-3 satellite
images. China ZY-3 satellite is the earliest high-precision civil
stereoscopic optical satellite, which acquires three-dimensional
images of a linear array [36]. In this study, 112 images of Taihu
Basin, China were used as the original images for orthorectifi-
cation. The pixel space size is 3.5 m of the forward/backward
images and the nadir image resolution is 2.1 m [37]. The details
of the original images are presented in Table II. In addition,
public 30-m DEM data were used to obtain the elevation (http:
//www.gscloud.cn/sources/accessdata/310?pid=302).

The experiment was conducted using Visual Studio 2017.
The CPU was Intel i7-10510U, and the GPU was NVIDIA MX
350 2G with Pascal architecture, which matches the computing
power of CUDA of 6.1. The GPU parameters used to test the
adaptive thread parameters on the different GPUs are presented
in Table III.

B. Result of GPU Acceleration Efficiency of a Single Image

The calculation results of the adaptive GPU thread parameters
and image blocks for the ZY-3 nadir and forward/backward
images are compared in MX 350. As presented in Table IV,
the thread block size is 64 (8×8), the thread grid size of the
forward/backward image is 2039 × 2048, and that of the nadir
image is 3065 × 3072. The value of Warplaunch is 32, which
is the number of warps actually used by the qualifier. As the
forward/backward image data are small, the GPU does not
require partitioning, and the number of adaptive blocks of the

http://www.gscloud.cn/sources/accessdata/310?pid=302
http://www.gscloud.cn/sources/accessdata/310?pid=302

ZHOU et al.: LARGE-BATCH ORTHORECTIFICATION GENERATION METHOD 4643

TABLE II
DETAILED DESCRIPTION OF ZY-3 SATELLITE IMAGES

TABLE III
GPU PARAMETERS USED IN THE EXPERIMENT

TABLE IV
CALCULATION RESULTS OF ADAPTIVE GPU THREAD PARAMETERS AND IMAGE

BLOCKS

nadir image is two, which is consistent with the number of artifi-
cial blocks. Subsequently, we compared the performance of the
general and adaptive GPU calculations, and the time recorded in
this section is focused on the pixelwise correction, and does not
include other overheads, such as reading and writing images and
preprocessing. The nvprof performance analysis tool provided
by NVIDIA is used to record the correction time when using
CUDA for GPU acceleration.

Based on the proposed calculation results of adaptive GPU
thread parameters and image blocks, we used bicubic interpo-
lation in the resampling method to conduct a time comparison
experiment of orthorectification. The clock () function is used
in the CPU to record the quadrupole coordinates require and
pixelwise correction time. The calculation of the quadrupole
coordinates requires 0.02 s, which only accounts for a very
small part of the total running time; this article mainly records
the pixelwise corrections, as presented in Table V. For the
forward/backward images, the pixelwise correction time varies
greatly, the time of pixelwise correction of the CPU single thread
is 326.08 s, and the correction time of the general GPU is 16.21
s. The correction time of the proposed adaptive GPU thread
parameter method is only 9.43 s, which is 53.17% higher than

TABLE V
CORRECTION TIME COMPARISON

that of the general GPU, and is 34.58 times faster than that of
CPU correction. For the nadir image with more data, the time of
CPU correction is 729.83 s and that of general GPU correction
is 37.36 s. Adaptive GPU calculation has an acceleration ratio
of 34.41 for the CPU, which is 43.22% higher than that of the
general GPU. The comparison results demonstrate the adaptive
GPU calculation is preferable to those of the CPU and general
GPU methods. The blocks set manually are more suitable for the
GPU than a conventionally set thread block size. The qualifier
parameters calculated according to the determined thread blocks
can effectively improve the correction efficiency of the GPU.

In addition, in order to comprehensively evaluate the per-
formance of the proposed method, five rounds independent
experiments are conducted and the average time is calculated,
as shown in Fig. 3 and Table VI. As presented in the table, as
the GPU performance increases, the time required to correct
the images significantly decreases. The kernel running time of
the conventional GPU implemented on MX 350 before adaptive
computing optimization is 37.36 s. Additionally, the running
times on GPUs with better performance, such as GTX 1650 and
RTX 3080, can be reduced to 15.27 and 2.62 s, thereby increasing
the efficiency by 59.13% and 92.99%, respectively. After the

4644 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 4. Correction time of ZY-3 nadir image CPU in multithread.

TABLE VI
ADAPTIVE TEST OF THE ZY-3 NADIR IMAGE IN DIFFERENT GPUS

optimization of adaptive computing, the kernel function running
time on MX 350 was 21.21 s, which was 43.22% higher than
that before optimization. After optimization, the correction time
on GTX 1650 was 11.75 s, showing an increase of 23.03%; the
correction time on GTX 2080Ti was 2.35 s; and that on RTX
3080 was 2.21 s, showing an increase of only 15.72%. Although
the improvement reduced after optimizing the GPU with better
performance, a better acceleration effect was still obtained.

C. Result of the GPU Acceleration Efficiency of Large-Batch
Images

Simultaneously, we individually tested the improvement of
batch images correction time and corrected 112 ZY-3 images
with the proposed adaptive calculation method. The recording
time includes the input, correction, output, and dividing block
times of the image. First, the multithreaded correction of a
nadir image is tested in the CPU matched with MX 350, as
shown in Fig. 4. When the number of threads reaches eight CPU
cores, the increase in multithreading time gradually decreases
and converges. To prevent CPU overload when running many
threads, eight threads are selected to process batch images, and
the acceleration times of the GPU are compared. Therefore, the
experimental results of orthorectification of 112 ZY-3 images are
shown in Fig. 5, and the block-based Wallis color correction is
used. As presented in Table VII, the eight thread correction time
of the CPU is 15 313.67 s, whereas the correction time of the
conventional GPU implementation reaches 3038.638 s. Through

Fig. 5. Experimental results of large-batch orthorectification.

TABLE VII
BATCH CORRECTION TIME OF ZY-3112 IMAGES

the adaptive calculation in this article, the optimized GPU cor-
rection time reached 2084.043 s, which improved the efficiency
by 32.6% compared to that of the conventional GPU. Therefore,
when mass production of orthoimagery, after optimization using
the calculation method of the adaptive GPU thread parameters
in this study, the efficiency improvement was better compared
to that of the conventional GPU acceleration.

D. Orthorectification Accuracy Based on GPU Parallel
Computing

After experimental image preprocessing, we used the bicubic
interpolation method to resample the ZY-3 nadir image when
the orthorectification was based on GPU parallel computing.
The correction accuracy evaluated using the RMSE formula for
plane deviation with the same points is presented in Table VIII.
We converted the deviation values of longitude and latitude into
meters, and the deviation between this correction and the local
positioning system (LPS) correction results in the longitudinal
and latitudinal directions are 2.2656 and 1.2075 m, respectively,
and the overall deviation is 2.5673 m. In this study, no control
point was used for orthorectification, and the deviation was
approximately one pixel. This effect is good and meets the needs
of orthoimagery generation.

IV. DISCUSSION

First, we test the influence of different thread number on the
running time of the kernel functions. The maximum threads
Maxthreadblock can be determined by (3), which is 640. Fig. 6
shows that the height of the two-dimensional thread block is
1, and the width is increased by 64 threads each time, from
a minimum of 64 to a maximum of 640 correction programs

ZHOU et al.: LARGE-BATCH ORTHORECTIFICATION GENERATION METHOD 4645

TABLE VIII
PRECISION RESULTS OF THE SAME POINT

Fig. 6. Kernel function runtime of different thread blocks.

supported by MX 350. The experimental results show that when
the line block size is 64, the kernel function runs the least,
which is consistent with the results of the adaptive computing
thread parameters proposed herein. The increase or decrease in
time in Fig. 6 is consistent with the change in threaded warp
utilization at values of 64 and 320; in this case, the kernel
thread bundle utilization is the highest, thereby enabling the
higher performance of the GPU, and the thread parameters are
calculated using the thread warp in this study.

The running time of the correction kernel function in
the default L2 cache is 31.957 s, whereas that after en-
abling the L1 cache increased by 3.26% to 30.9152 s, which

improved the efficiency. The CUDA kernel function uses a
two-dimensional thread index to process images. The number of
the two-dimensional thread block is the arithmetic square root
of the thread block size or is close to it, with a great effect. The
running time results when the calculation thread block size is
64 are shown in Fig. 7. The two-dimensional thread block was
8 × 8, and the kernel function running time was 31.3118 s with
the best performance.

Subsequently, we analyzed the impact of the qualifier on the
kernel function time when using the different thread warps. The
thread number of the qualifier during conventional implemen-
tation was 256, and that determined by the adaptive calculation

4646 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 7. Two-dimensional threads with a thread block size of 64.

Fig. 8. Kernel function runtime of warp occupancy.

in this study was 64. The second parameter of the qualifier is
the number of threaded warps working in the SM, which can
change the warp utilization. Fig. 8 shows that as the utilization
rate increases, the kernel running time gradually decreases. The
highest performance was obtained when the utilization rate was
100%. When implementing the correction method in this study,
we observed that the higher the kernel occupancy, better the
performance.

V. CONCLUSION

Orthorectification of images is a time-consuming task. The
size of the thread block in most existing parallel computing
methods is determined by testing in existing GPU optimization
methods, which affects the orthorectification performance on
different GPUs. We propose a parallel computing method for
orthorectification with adaptive GPU thread parameters, thus
solving the problems of adaptively calculating GPU thread
parameters in different GPUs and automatically blocking the im-
age to be corrected. After images preprocessing, automatically
blocked according to the memory size of the GPU, and the GPU
thread parameters are calculated by the physical parameters
of the GPU; Finally, orthorectification is achieved based on
GPU parallel computing. To verify the efficiency of adaptive
computing, experiments were conducted on 112 ZY-3 images,
and the results were compared to those using CPU and general
GPU methods. The following conclusions were drawn.

1) For a single ZY-3 image, the GPU acceleration by the
adaptive calculation method presented in this article is

43.22% higher than that of the general GPU, and 34.41
times faster than the correction time of the CPU. The result
of the automatic image blocking was the same as that of
the artificial blocking.

2) The method was tested in four different GPUs, and their
performances were compared. The results indicate that all
the GPUs exhibited a great speed boost. The correction
time of the best GPU was only 2.21 s for a single image.

3) For large-batch images, the GPU acceleration by the
adaptive calculation method presented in this article is
32.6% higher than that of a general GPU, which provides
an adaptive optimization strategy for large-batch image
orthorectification.

Notably, the main idea of the proposed method can apply in
large batches of image processing tasks; for example, image
mosaicing, block adjustment, and dodging uniform colors. In
the future, we will attempt to further optimize the utilization of
streaming multiprocessors in the GPU to achieve better efficient
image processing.

REFERENCES

[1] G. Zhou, R. Zhang, D. Zhang, J. Huang, and O. Baysal, “Real-time ortho-
rectification for remote-sensing images,” Int. J. Remote Sens., vol. 40,
no. 5/6, pp. 2451–2465, 2019, doi: 10.1080/01431161.2018.1488296.

[2] T. Wang et al., “Large-scale orthorectification of GF-3 SAR im-
ages without ground control points for China’s land area,” IEEE
Trans. Geosci. Remote Sens., vol. 60, Jan. 2022, Art. no. 5221617,
doi: 10.1109/TGRS.2022.3142372.

[3] D. Poli and T. Toutin, “Review of developments in geometric modelling
for high resolution satellite pushbroom sensors,” Photogrammetric Rec.,
vol. 27, no. 137, pp. 58–73, 2012, doi: 10.1111/j.1477-9730.2011.00665.x.

[4] Y. Zhang, M. Zheng, X. Xiong, and J. Xiong, “Multistrip bundle block
adjustment of ZY-3 satellite imagery by rigorous sensor model without
ground control point,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 4,
pp. 865–869, Apr. 2015, doi: 10.1109/lgrs.2014.2365210.

[5] M. Alkan, G. Buyuksalih, U. G. Sefercik, and K. Jacobsen, “Geometric
accuracy and information content of WorldView-1 images,” Opt. Eng.,
vol. 52, no. 2, Feb. 2013, Art. no. 026201, doi: 10.1117/1.oe.52.2.026201.

[6] J. Jeong, C. Yang, and T. Kim, “Geo-positioning accuracy us-
ing multiple-satellite images: IKONOS, QuickBird, and KOMPSAT-
2 stereo images,” Remote Sens., vol. 7, no. 4, pp. 4549–4564, 2015,
doi: 10.3390/rs70404549.

[7] J. Cao, B. Yang, and M. Wang, “Jitter compensation of ZiYuan-3 satellite
imagery based on object point coincidence,” Int. J. Remote Sens., vol. 40,
no. 16, pp. 6116–6133, 2019, doi: 10.1080/01431161.2019.1587204.

[8] X. Shen, B. Liu, and Q. Li, “Correcting bias in the rational polyno-
mial coefficients of satellite imagery using thin-plate smoothing splines,”
ISPRS J. Photogrammetry Remote Sens., vol. 125, pp. 125–131, 2017,
doi: 10.1016/j.isprsjprs.2017.01.007.

[9] K.-Y. Oh and H.-S. Jung, “Automated bias-compensation approach
for pushbroom sensor modeling using digital elevation model,” IEEE
Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3400–3409, Jun. 2016,
doi: 10.1109/tgrs.2016.2517100.

[10] W. Zhao, L. Yan, and Y. Zhang, “An efficient orthorectification method
for satellite images,” Front. Comput. Technol. Appl., vol. 1, no. 1, pp. 1–8,
2020, doi: 10.33969/twjournals.fcta.2020.010101.

[11] T. Wang et al., “Planar block adjustment and orthorectification of ZY-3
satellite images,” Photogrammetric Eng. Remote Sens., vol. 80, no. 6,
pp. 559–570, 2014, doi: 10.14358/PERS.80.6.559-570.

[12] D. Qian, “High performance computing: A brief review and prospects,”
Nat. Sci. Rev., vol. 3, no. 1, p. 16, 2016, doi: 10.1093/nsr/nww009.

[13] P. Balaprakash et al., “Autotuning in high-performance computing ap-
plications,” Proc. IEEE, vol. 106, no. 11, pp. 2068–2083, Nov. 2018,
doi: 10.1109/jproc.2018.2841200.

[14] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. benini, “A
semisupervised autoencoder-based approach for anomaly detection in
high performance computing systems,” Eng. Appl. Artif. Intell., vol. 85,
pp. 634–644, 2019, doi: 10.1016/j.engappai.2019.07.008.

https://dx.doi.org/10.1080/01431161.2018.1488296
https://dx.doi.org/10.1109/TGRS.2022.3142372
https://dx.doi.org/10.1111/j.1477-9730.2011.00665.x
https://dx.doi.org/10.1109/lgrs.2014.2365210
https://dx.doi.org/10.1117/1.oe.52.2.026201
https://dx.doi.org/10.3390/rs70404549.
https://dx.doi.org/10.1080/01431161.2019.1587204
https://dx.doi.org/10.1016/j.isprsjprs.2017.01.007
https://dx.doi.org/10.1109/tgrs.2016.2517100
https://dx.doi.org/10.33969/twjournals.fcta.2020.010101
https://dx.doi.org/10.14358/PERS.80.6.559-570
https://dx.doi.org/10.1093/nsr/nww009
https://dx.doi.org/10.1109/jproc.2018.2841200
https://dx.doi.org/10.1016/j.engappai.2019.07.008

ZHOU et al.: LARGE-BATCH ORTHORECTIFICATION GENERATION METHOD 4647

[15] D. Tychalas and H. Karatza, “High performance system based on cloud
and beyond: Jungle computing,” J. Comput. Sci., vol. 22, pp. 131–147,
2017, doi: 10.1016/j.jocs.2017.03.027.

[16] D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro, and N. Petra,
“Approximate multipliers based on new approximate compressors,” IEEE
Trans. Circuits Syst. I: Regular Papers, vol. 65, no. 12, pp. 4169–4182,
Dec. 2018, doi: 10.1109/tcsi.2018.2839266.

[17] A. Borghesi, M. Molan, M. Milano, and A. Bartolini, “Anomaly detec-
tion and anticipation in high performance computing systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 4, pp. 739–750, Apr. 2022,
doi: 10.1109/tpds.2021.3082802.

[18] E. Christophe, J. Michel, and J. Inglada, “Remote sensing processing:
From multicore to GPU,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 4, no. 3, pp. 643–652, Sep. 2011, doi: 10.1109/js-
tars.2010.2102340.

[19] A. Agathos, J. Li, D. Petcu, and A. Plaza, “Multi-GPU implemen-
tation of the minimum volume simplex analysis algorithm for hy-
perspectral unmixing,” IEEE J. Sel. Topics Appl. Earth Observ. Re-
mote Sens., vol. 7, no. 6, pp. 2281–2296, Jun. 2014, doi: 10.1109/
JSTARS.2014.2320896.

[20] E. Torti, G. Danese, F. Leporati, and A. Plaza, “A hybrid CPU–GPU real-
time hyperspectral unmixing chain,” IEEE J. Sel. Topics Appl. Earth Ob-
serv. Remote Sens., vol. 9, no. 2, pp. 945–951, Feb. 2016, doi: 10.1109/JS-
TARS.2015.2485399.

[21] R. Zhang, G. Zhou, G. Zhang, X. Zhou, and J. Huang, “RPC-based
orthorectification for satellite images using FPGA,” Sensors, vol. 18, no. 8,
2018, Art. no. 2511, doi: 10.3390/s18082511.

[22] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz, “Multicore bun-
dle adjustment,” in Proc. IEEE Comput. Vis. Pattern Recognit., 2011,
pp. 3057–3064, doi: 10.1109/CVPR.2011.5995552.

[23] C.-C. Yeh, Y.-L. Chang, P.-H. Hsu, and C.-H. Hsien, “GPU accelera-
tion of UAV image splicing using oriented fast and rotated brief com-
bined with PCA,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2018,
pp. 5700–5703, doi: 10.1109/IGARSS.2018.8519046.

[24] Y. E. Esin, B. Demirel, Ö. Özdil, and Ş. Öztürk, “Ortho-rectification of
hyperspectral camera data with Central Processing Unit and Graphics
Processing Unit,” in Proc. 9th Int. Conf. Recent Adv. Space Technol., 2019,
pp. 465–468, doi: 10.1109/rast.2019.8767856.

[25] C. Dai and J. Yang, “Research on orthorectification of remote sensing
images using GPU-CPU cooperative processing,” in Proc. Int. Symp.
Image Data Fusion, 2011, pp. 1–4, doi: 10.1109/isidf.2011.6024247.

[26] Z. Lei, M. Wang, D. Li, and T. L. Lei, “Stream model-based
orthorectification in a GPU cluster environment,” IEEE Geosci. Remote
Sens. Lett., vol. 11, no. 12, pp. 2115–2119, Dec. 2014, doi: 10.1109/
lgrs.2014.2320991.

[27] Y. Sun, B. Liu, X. Sun, W. Wan, K. DI, and Z. Liu, “A CPU/GPU
collaborative approach to high-speed remote sensing image rectification
based on RFM,” in Proc. Remote Sens. Environ.: 18th Nat. Symp. Remote
Sens. China, 2014, vol. 9158, pp. 89–96, doi: 10.1117/12.2063894.

[28] M. Wang, L. Fang, D. Li, and J. Pan, “Using multiple GPUs to accelerate
MTF compensation and georectification of high-resolution optical satellite
images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8,
no. 10, pp. 4952–4972, Oct. 2015, doi: 10.1109/jstars.2015.2477460.

[29] L. Penglong, D. Yi, D. Songjiang, L. Ding, J. Ziwei, and X. Yong, “A
method of rapid distortion correction for UAV image based on GPU-CPU
co-processing technology,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
2018, pp. 5720–5723, doi: 10.1109/igarss.2018.8518556.

[30] H. Kartal, U. Alganci, and E. Sertel, “Automated orthorectification of VHR
satellite images by SIFT-based RPC refinement,” ISPRS Int. J. Geo-Inf.,
vol. 7, no. 6, 2018, Art. no. 229, doi: 10.3390/ijgi7060229.

[31] B. Yang, M. Wang, W. Xu, D. Li, J. Gong, and Y. Pi, “Large-scale block
adjustment without use of ground control points based on the compensation
of geometric calibration for ZY-3 images,” ISPRS J. Photogrammetry Re-
mote Sens., vol. 134, pp. 1–14, 2017, doi: 10.1016/j.isprsjprs.2017.10.013.

[32] X. Li et al., “Planar block adjustment for China’s land regions with
LuoJia1-01 nighttime light imagery,” Remote Sens., vol. 11, no. 18, 2019,
Art. no. 2097, doi: 10.3390/rs11182097.

[33] X. Zhang, R. Feng, X. Li, H. Shen, and Z. Yuan, “Block adjustment-based
radiometric normalization by considering global and local differences,”
IEEE Geosci. Remote Sens. Lett., vol. 19, Oct. 2020, Art. no. 8002805,
doi: 10.1109/lgrs.2020.3031398.

[34] Cuda C Programming Guide, Version 10.0, NVIDIA Corp., Santa Clara,
CA, USA, 2018.

[35] S. Gholinejad, A. A. Naeini, and A. Amiri-Simkooei, “Optimization
of RFM problem using linearly programed �1-regularization,” IEEE
Trans. Geosci. Remote Sens., vol. 60, Jan. 2021, Art. no. 5601009,
doi: 10.1109/tgrs.2020.3045091.

[36] X. Tong et al., “Optimal selection of virtual control points with planar con-
straints for large-scale block adjustment of satellite imagery,” Photogram-
metric Rec., vol. 35, no. 172, pp. 487–508, 2020, doi: 10.1111/phor.12339.

[37] X. Huang et al., “High-resolution urban land-cover mapping and
landscape analysis of the 42 major cities in China using ZY-3
satellite images,” Sci. Bull., vol. 65, no. 12, pp. 1039–1048, 2020,
doi: 10.1016/j.scib.2020.03.003.

Ruyan Zhou received the Ph.D. degree in agricultural
bio-environment and energy engineering from Henan
Agricultural University, Zhengzhou, China, in 2007.

She is currently an Associate Professor with the
College of Information Technology, Shanghai Ocean
University, Shanghai, China. Her research interests
include photogrammetry and deep learning.

Shangcheng Hu received the B.E. degree in me-
chanical design, manufacturing, and automation from
the Guangling College of Yangzhou University,
Yangzhou, China, in 2021. He is currently working
toward the M.Eng. degree in computer technology
with Shanghai Ocean University, Shanghai, China.

His research interests include remote sensing big
data, image processing, and high-performance com-
puting.

Zhonghua Hong (Member, IEEE) received the Ph.D.
degree in GIS from Tongji University, Shanghai,
China, in 2014.

He has been an Associate Professor with the Col-
lege of Information Technology, Shanghai Ocean
University, Shanghai, China, since 2019. His re-
search interests include satellite/aerial photogramme-
try, high-speed videogrammetric, planetary mapping,
3-D emergency mapping, GNSS-R, deep learning,
and processing of geospatial big data.

Xiaohua Tong (Senior Member, IEEE) received the
Ph.D. degree in geographic information system (GIS)
from Tongji University, Shanghai, China, in 1999.

From 2001 to 2003, he was a Postdoctoral Re-
searcher with the State Key Laboratory of Informa-
tion Engineering in Surveying, Mapping, and Remote
Sensing, Wuhan University, Wuhan, China. He was
a Research Fellow with The Hong Kong Polytechnic
University, Hong Kong, in 2006. From 2008 to 2009,
he was a Visiting Scholar with the University of
California, Santa Barbara, Santa Barbara, CA, USA.

His research interests include trust in spatial data, photogrammetry and remote
sensing, and image processing for high-resolution satellite images.

https://dx.doi.org/10.1016/j.jocs.2017.03.027
https://dx.doi.org/10.1109/tcsi.2018.2839266
https://dx.doi.org/10.1109/tpds.2021.3082802
https://dx.doi.org/10.1109/jstars.2010.2102340
https://dx.doi.org/10.1109/jstars.2010.2102340
https://dx.doi.org/10.1109/penalty -@M JSTARS.2014.2320896
https://dx.doi.org/10.1109/penalty -@M JSTARS.2014.2320896
https://dx.doi.org/10.1109/JSTARS.2015.2485399
https://dx.doi.org/10.1109/JSTARS.2015.2485399
https://dx.doi.org/10.3390/s18082511
https://dx.doi.org/10.1109/CVPR.2011.5995552
https://dx.doi.org/10.1109/IGARSS.2018.8519046
https://dx.doi.org/10.1109/rast.2019.8767856
https://dx.doi.org/10.1109/isidf.2011.6024247
https://dx.doi.org/10.1109/penalty -@M lgrs.2014.2320991
https://dx.doi.org/10.1109/penalty -@M lgrs.2014.2320991
https://dx.doi.org/10.1117/12.2063894
https://dx.doi.org/10.1109/jstars.2015.2477460
https://dx.doi.org/10.1109/igarss.2018.8518556
https://dx.doi.org/10.3390/ijgi7060229
https://dx.doi.org/10.1016/j.isprsjprs.2017.10.013
https://dx.doi.org/10.3390/rs11182097
https://dx.doi.org/10.1109/lgrs.2020.3031398
https://dx.doi.org/10.1109/tgrs.2020.3045091
https://dx.doi.org/10.1111/phor.12339
https://dx.doi.org/10.1016/j.scib.2020.03.003

4648 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Shijie Liu (Member, IEEE) received the Ph.D. degree
in cartography and geographic information engineer-
ing from Tongji University, Shanghai, China, in 2012.

He is currently a Professor with the College of Sur-
veying and Geo-informatics, Tongji University. His
research interests include geometric exploitation of
high-resolution remote sensing and its applications.

Haiyan Pan received the Ph.D. degree in survey-
ing and mapping from Tongji University, Shanghai,
China, in 2020.

She is currently a Lecturer with the College of
Information Technology, Shanghai Ocean University,
Shanghai, China. Her research interests include mul-
tispectral/hyperspectral image classification, multi-
temporal remote sensing data analysis, and change
detection.

Yun Zhang received the Ph.D. degree in applied
marine environmental studies from Tokyo University
of Maritime Science and Technology, Tokyo, Japan,
in 2008.

Since 2011, he has been a Professor with the Col-
lege of Information and Technology, Shanghai Ocean
University, Shanghai, China. His research interests in-
clude the study of navigation system reflection signal
technique and its maritime application.

Yanling Han received the B.E. degree in mechan-
ical design and manufacturing and the M.E. degree
in mechanical automation from Sichuan University,
Sichuan, China, in 1996 and 1999, respectively and
the Ph.D. degree in engineering and control theory
from Shanghai University, Shanghai, China, in 2005.

She is currently a Professor and is with Shang-
hai Ocean University, Shanghai, China. Her research
interests include the study of ocean remote sensing,
flexible system modeling, and deep learning.

Jing Wang received the Ph.D. degree in biomedical
engineering from the Department of Biomedical En-
gineering, Shanghai Jiao Tong University, Shanghai,
China, in 2014.

Since 2015, she has been a Lecturer with the
College of Information Technology, Shanghai Ocean
University, Shanghai, China. Her research interests
include computer vision and medical image process-
ing.

Shuhu Yang received the Ph.D. degree in physics
from the School of Physics, Nanjing University, Nan-
jing, China, in 2012.

He has been a Lecturer with the College of In-
formation Technology, Shanghai Ocean University,
Shanghai, China, since 2012. His research interests
include hyperspectral remote sensing, evolution of
the Antarctic ice sheet, and the use of navigational
satellite reflections.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

