
4626 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

An Improved Vis-NIR Estimation Model of Soil
Organic Matter Through the Artificial Samples

Enhanced Calibration Set
Xibo Xu , Yunhao Chen , Xiujuan Dai, Tianjie Lei , Sijia Wang, and Kangning Li

Abstract—A suitable calibration sample set is extremely impor-
tant to acquire an accurate spectral-based model for estimating
soil organic matter (SOM). However, an unrepresentative calibra-
tion sample set was frequently collected due to the inappropriate
samplings pattern caused by problematic transportation logistics
and complex geographic conditions, which resulted in fairly poor
generalization and low accuracy of the spectroscopic model. Thus,
we hypothesized that a soil sample dataset equivalent to natu-
ral soil samples could be prepared under controlled laboratory
conditions, and increase the accuracy of spectroscopic estimation
of SOM content by use of a coverage assessment method that
added laboratory-simulated near-natural samples to the natural
samples set in order to enhance the representative sample size
and variability of the calibration set. The results showed that the
near-natural samples enhanced (NSE) calibration set contained
42 natural soil samples and 28 near-natural soil samples. This
set exhibited sufficient coverage and better information integrity
within estimators space than the initial calibration set that included
43 natural soil samples. Random forest model based on the NSE
calibration set (R2 =0.90; RPIQ=4.17) more accurately estimated
SOM content than the spectral-based model built with the initial
calibration set (R2 = 0.73; RPIQ = 2.32); the SOM chemical
compositions (e.g., lipids, polysaccharides, and lignin) and their
relative abundance from the laboratory-simulated near-natural
soil samples were basically consistent with those of natural soil
samples. The inclusion of near-natural soil samples in the cali-
bration set improved the SOM spectral-based estimation model,
and was observed to be a practical method. Our results provided
a calibration set enhancement strategy that effectively supports
spectroscopic estimation model of SOM contents in the case of
pattern-biased field samplings at the local scale.

Index Terms—Artificial samples enhanced calibration set,
estimation model, proximally sensed Vis-NIR spectroscopy,
sampling pattern bias, soil organic matter (SOM).
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I. INTRODUCTION

SOIL organic matter (SOM) is a soil fertility indicator and
an indispensable part of the earth’s carbon pool [1], [2],

[3], [4], [5]. For quantitative analysis of SOM contents in the
soil, spectroscopy techniques have attracted the attention of
many scholars in recent decades. Compared with conventional
chemical analysis in the laboratory, quantitative spectroscopic
techniques can be used to efficiently and inexpensively deter-
mine SOM contents without sample destruction [6], [7].

The quantitative spectroscopic analysis of SOM contents
between spectral reflectance and the actual SOM contents in soil
samples can be acquired from a multivariate statistical model,
such as random forest (RF), partial least squares regression, and
support vector machine [8], [9], [10]. A suitable calibration set
was one of the vital parts of spectral-based model construction
[11], [12]. Theoretically, an effective multivariate statistical
model could be calibrated by a representative sample set that
covers all possible sources of the variability of the target area
soils faced during the estimation [13], [14], [15]. Furthermore,
several approaches (e.g., Kennard-Stone, D-optimal procedure,
and auxiliary information method) were developed to select the
representative samples from the field samplings dataset to build
a calibration set, and in order for improving the robustness and
generalization of spectral-based model [11], [16]. However, the
calibration samples selection strategy is ineffective when an
insufficient number of representative samples were collected
due to the inappropriate sampling patterns. Obviously, field
sample collection is affected by historical data, expert-based
experience, and geographic conditions [17], [18]. An insufficient
number of representative samples and an inappropriate spatial
pattern of sampling may result when the local environment is
harsh and transportation is not accessible. As a result, the con-
structed spectroscopic models are especially similar, resulting
in local specificity at the loss of generalization capacity that
may damage the spectral-based estimation performance [19],
[20]. Therefore, building an effective spectral-based estimation
model under the condition of field sampling bias deserves to be
explored.

For this purpose, we hypothesized that near-natural soil sam-
ples with different known SOM contents could be prepared
under a controlled experimental environment, and such samples
would be approximately equal to natural soil samples within the
research area. These samples would then be integrated with nat-
ural soil samples to enhance the representative samples size and
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Fig. 1. Flowchart for the NSE calibration set and the construction of a spectral-based estimation model of the SOM contents in the Yinbei area, China.

variability of the calibration set by use of a coverage assessment
method [i.e., near-natural samples enhanced (NSE) calibration
set] in order to improve the robustness of the spectral-based esti-
mation model at the local scale. In addition, machine learning has
been proven to be an excellent method for modeling soil proper-
ties through spectra data [21]. Machine learning is a data-driven
programming model, and as such, the quality of the calibration
sample set is decisive in acquiring an accurate spectral-based
model for SOM estimation. An important learning prerequisite
is that the calibration set must contain samples from a distri-
bution that is equal to that which the machine learning model
is expected to predict [22]. Nevertheless, this assumption is
commonly violated due to bias in the field sampling pattern.
Hence, optimizing the sample data distribution and information
integrity of the calibration set through near-natural soil samples
would help improve a machine learning-based estimation model
of SOM content.

The near-natural samples method is regarded as an easy
and effective experiment for supporting quantitative spectro-
scopic analysis of soil attributes [18], [23]. Farifteh et al. [24],
Linsinger et al. [25], Zou et al. [20], and Wang et al. [26]
created near-natural samples to characterize the spectral signals
of the key attributes in soils, and developed a spectroscopic
technique to recognize the content status of soil chemical com-
ponents. The near-natural soil samples with various known
SOM contents created under controlled laboratory conditions
exhibit the standard behaviors of SOM absorption features
that are in agreement with the natural soils, and therefore can
be help to compensate for sampling pattern shortages under
field conditions. Additionally, RF (a popular machine learning
paradigm) has been widely used in the quantitative spectroscopic
analysis, which was characterized with the low-computational
expenses, easy-to-implementation, and outstanding perfor-
mance in spectral-based estimation of SOM contents [27]. RF
combined with the NSE calibration set has shown great po-
tential for improving quantitative analysis of SOM under field
conditions.

The objectives of this study were to
1) collect the natural soil samples for building the initial

calibration set;
2) prepare the near-natural soil samples under controlled

laboratory conditions to enhance the initial calibration set
by using the coverage assessment method; and

3) integrate the NSE calibration set with the RF algorithm
to construct a spectral-based estimation model of SOM
contents under field conditions.

II. MATERIALS AND METHODS

A. Key Workflow

The workflows for the analysis processes are summarized in
Fig. 1. Initially, natural soil samples and those spectra data were
collected to build an initial calibration set. Then, the 120 near-
natural soil samples were produced under controlled laboratory
conditions and taken to enhance the initial calibration set based
on the coverage assessment method. Finally, the NSE calibration
set was employed to construct the RF model for SOM estimation
under field conditions.

B. Study Area and Sample Collection

The study area was located in the Yinbei area of western
China [see Fig. 2(a)], having a population of 1.22 million and
covering a 1000 km2 area. The Yinbei area is characterized by a
temperate continental climate, and the average temperature and
average annual precipitation are 9.69 °C and 187 mm, respec-
tively. Anthropogenic-alluvial soil is the dominant soil type and
widely covers the Yinbei area [28]. Additionally, cultivated land
accounts for more than 60% of the total area, and the western part
of the area is in the Helan Mountains. Due to low precipitation
and low temperature in the dry season, agricultural activities
are conducted during the wet season (from late April to early
October) every year, and the bare soil was exposed to remote
sensors during the dry season [see Fig. 2(c)].

With consideration for soil type, geological condition, and
land use status, sites for 43 natural soil samples and two back-
ground soil sample were predetermined using ArcGIS 10.2
software. The 45 soil samples (0–20 cm) were collected in
April 2018. Five soil subsamples were taken at each sample
location within a square with a side length of 10 m, mixed
into a representative sample (1 kg) in a sealed bag, and sent to
the laboratory for chemical analysis. The actual locations of all
samples were documented using on a global position system [see
Fig. 2(b)]. Additionally, 10 kg of background soil was collected
for subsequent production of the near-natural soil samples, and
the above-mentioned procedures were reimplemented.
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Fig. 2. Sampling sites and laboratory treatments for soil samples obtained
in Yinbei, China. (a) Geographic location of the Yinbei area in China.
(b) Actual locations of natural soil samples and the background soil sample.
(c) Soil surface in the Yinbei area. (d) Created near-natural soil samples.
(e) Spectral soil sample measurement process in the laboratory. (f) Detailed
images of soil sample locations shown in (b).

C. Proximal Vis-NIR Sensing Measurement and Chemical
Analysis

Both field spectra of natural soil samples and laboratory spec-
tra of the near-natural soil samples were measured with a Spectra
Vista Corporation (SVC) field-portable spectroradiometer (HR-
1024i). The SVC HR-1024i covered a wavelength range from
350 to 2500 nm, with 1024 spectral bands and a spectrometer
sampling interval of 1 nm. Field Vis-NIR spectra were measured
under cloudless (clear sky) weather conditions. At each sampling
site, the stones and roots on the soil surface were simply removed
(i.e., soil surface smoothed) to eliminate any shading effects on
soil reflectance. A white reference panel was initially used to
calibrate the spectrometer, followed by fiberoptic cable scanning
of the soils and recording of the spectral reflectance five times at
each sampling site. In order to minimize any changes in radiance
values, the white reference panel was used for recalibrating when
the sampling locations were different [16].

In the laboratory, the soil samples were air-dried (25 °C) and
sieved through a 1 mm mesh screen. Then, six 50-W halogen
lamps were applied for the light source, with an incident angle
of 25°, and the soil was placed in a container with a diameter
of 6 cm and a depth of approximately 2 cm [see Fig. 2(e)].
Finally, the SVC HR-1024i spectrometer was used to scan the
soil samples five times, and the spectral data were recorded in a
computer.

Any abnormal spectral curves from either laboratory-obtained
spectra or field-obtained spectra were deleted. The measured
spectral reflectance of each sample was the mean value of
the remaining spectral data. The Savitzky–Golay method is a

common and easy technique used to remove random noise from
spectral reflectance data, and has been successfully applied to
smooth both laboratory-obtained spectral reflectance data and
field-obtained spectral reflectance data of natural soil samples
[29]. A noticeable noise-induced spectral range (350–399 nm)
having to do with the influence of the device and environmental
conditions was removed, and the remaining 946 spectral bands
were included in the subsequent calculation [10], [30]. After
the pretreatments of the natural soil samples described above
were completed, the SOM contents were determined using the
potassium dichromate oxidation-external heating method in the
laboratory.

D. Building an NSE Calibration Set

1) Laboratory-Preparation of the Near-Natural Soil Samples
and Measurement of Those Spectra: Producing the near-natural
soil samples and measuring those Vis-NIR spectra under con-
trolled laboratory conditions were the crucial steps for calibra-
tion set enhancement. The background soil used to prepare the
near-natural samples was initially collected from the same soil
types and locations as the natural soil samples in the research
area to ensure consistency of the soil background minerals.
During the preparation process (Fig. S1), the collected back-
ground soils were air-dried (25 °C) and sieved through a 1 mm
mesh screen, and the SOM was removed from the background
soils using H2O2 oxidation technology. Then, the soil samples
with SOM removed were divided into 50 g soil samples for
a total of 121 soil samples and stored in glass beakers [see
Fig. 2(d)]. A single sample was analyzed for actual SOM content,
and the remaining 120 background soil samples were the basic
materials for building the near-natural soil samples. Based on the
actual SOM contents of the background soil and the technical
specifications of soil-forming factors [31], [32], a production
strategy for the near-natural soil samples with different SOM
contents was created.

Specifically, different weight of standard organic fertilizers
(NY884-2012: SOM content, 45%; average) (AMPRC, 2012)
[33] was added to the background soil (with the SOM removed),
the temperature (10 °C), humidity (10%), precipitation (20 ml),
and ploughing work (that were consistent with historical data in
the study area) simulated in a constant temperature humidity
chamber, and finally, 120 near-natural soil samples with an
expected content gradient of 0.5 g·kg-1 of different SOM content
would be prepared

L = M × ρ− μ

μ− 0.216
(1)

where L is the weight (g) of the added organic fertilizer (note
that the organic fertilizers added in the study were consistent
with those applied in agricultural production activities in the
study area); M and μ represent the initial background soil
weight (g) and target SOM contents of near-natural soil samples
(g·kg-1), respectively; and ρ is the measured SOM content in the
background soil, with the value set to 3 g·kg-1 in this study.

In the near-natural soil sample preparation process, soil res-
piration and soil weight measuring errors may cause a deviation
between expected SOM contents and actual SOM contents;
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thereby, the actual SOM contents of the 120 near-natural soil
samples were determined based on the potassium dichromate
oxidation-external heating method. Additionally, a pyrolysis-
gas chromatograph/mass spectrometer (7890B-5977A, Agilent
Corporation, USA) was used to analyze SOM chemical com-
position and relative abundance in both the natural soil samples
and the near-natural soil samples to ensure the consistency of
both samples [34], [35].

Correspondingly, spectral reflectance values (i.e., near-natural
soil sample spectra) were measured in the laboratory based
on the procedures described in Section II-C. With the aim of
identifying the SOM response bands for the predictor variables
in the subsequent calculation, the above-mentioned SOM re-
moval technology was reimplemented to remove the SOM from
the 120 near-natural soil samples, and the final state of the
reflectance spectroscopy values for near-natural soil samples
was recorded.

2) Application of the External Parameter Orthogonalization
for Spectra Pretreatment: The spectra pretreatment aimed to
narrow the spectral differences between field-obtained spectra
of natural soil samples and near-natural soil sample spectra, and
thereby improve the application ability of near-natural soil sam-
ple spectra in calibration set optimization. A noticeable spectral
difference (i.e., arising from soil moisture, particle size, and
random effects) can be observed between field-obtained spectra
of natural soil samples and near-natural soil sample spectra [14].
As a result, computational complexity increases, and accuracy
is impaired in the calibration set enhancement.

An external parameter orthogonalization approach was de-
veloped by Minasny et al. [36], and successfully used to de-
compose moisture-influenced signals from the field spectra data
by comparing the differences between field-obtained spectra and
laboratory-obtained spectra of natural soil samples. Thus, in this
study, an external parameter orthogonalization was employed to
analyze the spectral differences between field-obtained spectra
of natural soil samples and near-natural soil sample spectra for
supporting the calibration set enhancement. The field-obtained
spectra data was initially transformed into a weight coefficient
matrix. Then, the weight correction matrix was extracted by
analyzing the differences between spectral transition matrix
and near-natural soil sample spectra, and a matrix inverse was
implemented to generate the pretreated spectra [36], [37], [38].

3) Using the Coverage Assessment Method for Enhancing
the Initial Calibration Set: Adding the various representative
samples from the near-natural soil sample spectral data to the
natural soil samples dataset (i.e., initial calibration set) enables
the identification of all possible sources of variability of the
target site soils included in the calibration set, which can promote
the generalization and accuracy of the recalibration model [39].

The coverage (COV) value is an index that can assess the
coverage distribution and information integrity of the sample
dataset within estimator space [40], [41], [42]. Normally, a sam-
ple set with a high coverage value indicates uniform distribution
and excellent information integrity in the estimator space, which
can promote the generalization and accuracy of the recalibration
model. The coverage assessment method was implemented for
the calibration set construction and enhancement in this stage.

In step 1, the COV value was calculated [(2) and (3)] for each
sample from the natural soil samples dataset (initial calibration
set, n = 43), and the samples were removed from the initial
calibration set as a sample with the replicated coverage value. In
step 2, m near-natural soil samples were randomly selected and
added to the initial calibration set to update the coverage value.
Note that each near-natural sample should be selected at least
once. Changes in coverage values with different sample sets
were assessed. Finally, the near-natural samples with positive
changes in coverage values were highlighted and inserted into
the initial calibration set to acquire an NSE calibration set

COV =

m∏
k=1

√∑t
j=1 (Mk − hkj)

2

t
(2)

Mk =

∑t
j=1 hkj

t
(3)

where m and t are the number of spectral bands and samples,
respectively; hkj represents the spectral reflectance value of the
kth band of the jth sample (j = 1, 2, 3, …, t); Mk is the mean
value of the spectral reflectance value of the kth band.

E. Predictor Variable Selection and RF Model

Changes in the spectral reflectance values in the prepara-
tion process of near-natural soil samples (i.e., background soil
samples with SOM removed to near-natural soil samples) were
used to identify the SOM response bands for the predictor
variables in spectroscopic models. The change intensity value
(t) for the spectral reflectance between SOM removal soils
and near-natural soil samples accounted for the SOM content
changes (Fig. S1). A high t value suggests bands in which the
spectral response for SOM is significant. The t calculation was

t =
1

2n

√∑i=n

i=1

(
Bki − bki

bki

)2

−
∑i=n

i=1

(
Cki −Bki

Bki

)2

(4)
where Bki represents the reflectance value of the kth spectral
band of the ith near-natural soil spectral sample [see Fig. 3(b)].
bki and Cki are reflectance values of the kth bands of the ith
spectral sample from soil samples with SOM removed (Fig. S1).

Furthermore, a spectral-based SOM estimation model was
constructed using the RF algorithm [43]. RF is an ensemble
method of multiple decision trees in which the unbiased estima-
tion result was chosen from various tree structures by voting
as the created features of each decision tree were assessed
[44]. In this process, the number of trees and the predictor
variables in each split of the trees were defined as 800 and 3,
respectively; Model accuracy was evaluated by using a 10-fold
cross-validation method.

Generally, the coefficient of determination (R2) and ratio
of performance to interquartile distance (RPIQ) are the key
parameters for evaluating model accuracy and stability [26],
[45], [46]. R2 indicates the level to which the target variables
are fully explained by the predictor variables. RPIQ is the ratio
of the quartile ranges (the difference value between the third and
first quartiles) to the root mean square error of the validation set.
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Fig. 3. Characteristics of the multisource spectra of samples from the Yinbei area, China. (a) is the raw spectra of natural soil samples; (b) is the pretreated spectra
of natural soil samples; (c) is near-natural soil sample spectra; (d) indicates average spectra of the different soil samples.

TABLE I
STATISTICAL CHARACTERISTICS OF SOM CONTENTS IN BOTH NATURAL SOIL

SAMPLES AND NEAR-NATURAL SOIL SAMPLES

A reliable estimation model is generally characterized by an
RPIQ> 4.05, while RPIQ values between 3.37 and 4.05 indicate
that the model provides good accuracy. An RPIQ value between
2.70 and 3.37 suggests that the model gives an approximate
estimation accuracy. When RPIQ values ranged from 2.02 to
2.70, the model is considered to be fair in estimating SOM
contents of the natural soil samples [47]. A good accuracy model
is generally indicated by larger R2 and RPIQ values.

All calculations in Section II were performed using Python
3.8.

III. RESULTS AND ANALYSIS

A. Statistical Summary of SOM Contents

The summary statistics for SOM contents in both the natural
soil samples and laboratory-prepared near-natural soil samples
from the Yinbei area of China are provided in Table I, and the
created near-natural soil samples and their actual SOM contents
are listed in Table S1. As shown in Table I, the mean SOM value
for the 43 natural soil samples was 10.17 g·kg-1, ranging from
6.09 to 21.00 g·kg-1. According to the Chinese classification
criteria of soil nutrient materials [48], the SOM content level
was the lowest (10–20 g·kg-1 and 6–10 g·kg-1). Furthermore,
the SOM contents of the near-natural soil samples ranged from
5.20 to 99.20 g·kg-1, and were widely distributed in all content
intervals. The mean SOM content was 36.91 g·kg-1. The SOM
values for the 43 natural soil samples suggested low distribution
variation with a standard deviation of 3.35, while the standard

deviation value in the sample set of near-natural soil was 19.06.
The clear variations in SOM values in the sample set had a
positive effect on model convergence and the ability to decrease
errors in the estimated values in the model calibration [49]. With
regard to the actual SOM contents of near-natural soil samples
(Table S1), wide SOM content ranges and large sampling sizes
contributed to the high median and average SOM values of
the near-natural soil samples set compared with the natural
soil samples set. All possible sources of the variability of the
target area soils can be provided with the acquired near-natural
samples set, thus effectively enhancing the initial calibration
set. Importantly, SOM’s absorption feature identification and
differences analysis of spectral curves can also benefit from such
near-natural soil samples sets.

B. Characteristics of Multisource Proximally Sensed Spectra

The characteristics of the spectral curves, including the raw
spectra and the pretreated spectra of the 43 natural soil sam-
ples and 120 near-natural soil sample spectra, are displayed
in Fig. 3. Logarithmic transformation of spectral reflectance
is an effective method for highlighting the absorption features
of spectra. This transformation also provides support for an-
alyzing the differences between different soil samples among
the multiple spectra sources [20]. Specifically, all logarithmic
spectral curves showed smooth curves. The pretreated spectra
were observed to have the same trend as the spectra of the
near-natural samples, indicating their spectral differences have
been minimized. The raw spectral curves were pretreated by the
external parameter orthogonalization, and suggested regularity
in contrast to the dispersion and irregularity of the raw spec-
tral data. The spectral curves of the near-natural soil samples
also illustrated regular and uniform changes. Furthermore, the
spectral reflectance curves indicated rapidly increasing trends in
the range of 400–600 nm. Significant water absorption features
at approximately 1900 nm are clearly shown in the spectral
curves.

Clear differences in the spectral absorption valleys and depths
resulted from the various chemical components in the soils, and
provide the basis for SOM estimation under given environmental
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Fig. 4. Results for the spectral change intensity value and the spectral characteristics of (a) the collected background soils from which SOM has been removed.
(b) Created near-natural soil samples with different known SOM contents. (c) Near-natural soil samples from which SOM has been removed. (d) Spectral change
intensity value (t).

conditions even though the negative effects on the spectral
curves due to the environment and uncertain factors were also
significant. Therefore, analysis of the SOM spectral features
and noise sources should be conducted. The raw spectral curve,
pretreated spectral curve, and near-natural soil spectral curve
are shown in Fig. 3(d). The spectral reflectance values of the
raw spectra ranging from 400 to 2500 nm increased as the
spectra pretreatment was conducted, indicating that the moisture
effects from the spectral data were minimized. Additionally, the
performance differences in the spectral pretreatments used for
removal of spectral differences in various wavelength ranges
were significant, such as in the 400–1400 nm and 1400–2500 nm
ranges. Thus, source identification of the external noise may be
useful for explaining this phenomenon. The noise features (i.e.,
spectral differences features) and their change curves are also
illustrated in Fig. 3(d). Spectral ranges of 500–650 nm, 700–950
nm, 1700–1850 nm, and 1900–2000 nm showed obvious noise
features. Specifically, spectral noise in the range of 700–950 nm
may be generated by vegetation residue, and the vibration of
–OH in the soil moisture was indicated by spectral absorption at
approximately 1900 nm [50]. Spectral noise in the wavelength
range of 500–650 nm may be derived from mixed environmental
factors, such as organic matter and iron [51]. Furthermore,
the materials responsible for generating the spectral noise in
the wavelength range of 1700–1850 nm cannot be accurately
identified, and artificial operations (e.g., drying, grinding, and
sieving) may be the cause of the noise generation. Additionally,
few noise features occurred close to the SOM-related material
bands, increasing the difficulty of noise source identification.
Note that the spectral reflectance features of soil salt could affect
the reflectance values of SOM, as the spectral reflectance values
in the visible wavelength range improved by 10%–50% [52].
Wang et al. [53] and Xu et al. [28] have indicated that the study
area suffers from salinization, and that the soil is characterized
by high salt content. However, salt information was not consid-
ered in the design of the external parameter orthogonalization
correction method, and this oversight may have contributed to
the correction bias of the field-obtained spectra in the wavelength

range of 400–1400 nm. Overall, the raw spectral data pretreated
by the external parameter orthogonalization method were close
to the near-natural soil spectra data under laboratory conditions,
suggesting that the spectral differences were minimized.

C. Identified Spectral Bands for Predictor Variables

The calculation results for the spectral change intensity value
(t) are shown in Fig. 4, in which the change intensity in soil
spectral reflectance between soils with SOM removed and
the near-natural soil samples with various SOM contents is
illustrated. Based on prior experience with the SOM response
bands and environment-induced spectral noise described in the
literature [19], [54], the spectral bands were selected as the
input variables for building a spectroscopic quantitative model
when the t values were greater than 0.91. Subsequently, a total
of 265 spectral bands used as input variables were determined,
consisting of five wavelength ranges: 600–800 nm, 2040–2180
nm, 2270–2320 nm, and 2390–2465 nm.

Using near-natural soil sample spectral data can support the
identification of the SOM response bands for predictor variables.
The spectral wavelengths in the range of 600–800 nm were asso-
ciated with the chromophores and the humic acid in the organic
matter. The vibrations of N–H and C–O structure shows spectral
features at approximately 2100 nm, and is considered to have
a close relationship with SOM. Our results agree with findings
previously reported in the literature [9], [55]. Additionally, the
SOM-related bands for C–H bonds were also indicated by the
spectral response at approximately 2300 nm [56], [57].

D. Near-Natural Soil Samples Enhanced (NSE) Calibration
Set

The NSE calibration set enabled the sample set to cover the
spectral signals (i.e., representative samples) not captured in
the initial calibration dataset; thus, the model’s generalization
capacity was increased as the bias was corrected [58], [59]. The
first two principal component (PC) scores of spectra data for the
initial calibration set (that included 43 natural soil samples) and



4632 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 5. PC scores within the projection space of the (a) initial calibration sample set and (b) NSE calibration set.

Fig. 6. Scatter plot of measured SOM values versus estimated SOM values
obtained using (a) initial calibration set and (b) NSE calibration set; R2 and
RPIQ indicates coefficient of determination and RPIQ distance, respectively.

the NSE calibration set (that included 42 natural soil samples and
28 near-natural soil samples) are illustrated in Fig. 5. A total of
94% of the variation was accounted for by the first two PCs. This
result indicated that the NSE calibration set was characterized
by vast spectral diversity and sufficient coverage compared with
the sparse distribution of projection scores within the PC space
on the initial calibration set. Additionally, some PC spaces on
the initial calibration set were deficient, such as projection space
ranges of−2 to−1.1 of PC2, and this deficiency may damage the
subsequent calibration analysis of the spectral-based estimation
model. The NSE calibration set provided a sufficient estimator
space with good coverage, abundant spectral signals, and infor-
mation integrity, and effectively supported spectral-based model
calibration.

E. Performance of Models Built With Initial Calibration Set
and NSE Calibration Set

As shown in Fig. 6(a), the model built with the initial calibra-
tion set exhibited poor performance (R2 = 0.73; RPIQ = 2.32)
for SOM estimation. SOM estimates were significantly different
from the measured SOM contents for the natural soil samples.

In addition, the NSE calibration sample set was also employed
to model estimates of SOM, as indicated by the R2 and RPIQ
values of 0.90 and 4.17, respectively [see Fig. 6(b)]. The RPIQ
value increased from 2.32 to 4.17 when the enhanced calibration
set was involved in the SOM spectral estimation, suggesting the
model estimation capability was satisfactory.

IV. DISCUSSION

A. Feasibility of Calibration Set Enhancement Via
Near-Natural Soil Samples

The SOM chemical compositions and their relative abundance
from the near-natural soil samples were basically consistent with
those of natural soil samples. SOM is normally developed based
on mineral background materials exposed to natural weathering
and anthropologic activities [60], [61]. Thus, during the produc-
tion process of near-natural soil samples, the soil background
materials are initially collected from the same locations as the
natural soil samples in the research area to eliminate incon-
sistencies in spectral information generated by the mineralogy
components of the soil. Then, the soil-forming environment
(temperature and precipitation) and human activities (fertilizer
application and plowing work) are simulated under controlled
laboratory conditions. Near-natural soil samples with different
known SOM contents are created and can be representative of the
case research area. Finally, the laboratory-measured spectra of
near-natural soil samples (i.e., near-natural soil sample spectra)
are collected.

Additionally, the SOM chemical compositions of soil samples
were obtained by the pyrolysis-gas chromatograph/mass spec-
trometer [34], [35], indicating that lipids and polysaccharides
were important SOM components in both natural soil samples
and near-natural soil samples with relative abundances of 30%
and 17% as well as 25% and 19%, respectively. The relative
abundances of lignin, n-bearing, and nonlignin aromatics in
SOM were approximately 10% (see Fig. 7).

Laboratory prepared near-natural soil samples with different
known SOM contents were roughly equal to the natural soil
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Fig. 7. Relative abundances of major compositions in SOM acquired from
a pyrolysis-gas chromatograph/mass spectrometer. (a) Natural soil samples.
(b) Near-natural soil samples.

samples, and can be used to compensate for the shortages of the
insufficient number of representative soil samples in calibration
set. Furthermore, plant secretions and secondary metabolites
are also essential factors contributing to SOM generation, and
vegetation information needs to be considered when further
eliminating inconsistencies between natural and near-natural
soil samples [62].

B. Applicability of Calibration Set Enhancement Strategy

Narrowing the spectral differences between natural and near-
natural samples is an essential issue in implementing calibration
set enhancement; the coverage assessment of the calibration
sample set can be affected by spectral differences. Laboratory-
prepared near-natural soil samples were initially reported by
Farifteh et al. [24] and Zhou et al. [18]. These samples were
primarily used to determine the spectral absorption features
of the soil components because the near-natural soil samples
were not affected by the heterogeneous constituents of the soils.
Furthermore, Wang et al. [26] attempted to enlarge the field
sample size with samples prepared under controlled laboratory
conditions. Still, a model built with mixed samples did not
show satisfactory performance and was even lower than the
performance of the initial model, suggesting that the spectral
difference between field-obtained spectra of natural soil samples
and near-natural soil sample spectra may damage the general-
ization and robustness of the model. In addition, Zou et al. [20]
suggested that spectral differences could be removed using a
laboratory-field spectral transformation method (e.g., external
parameter orthogonalization, direct standardization, and piece-
wise direct standardization method) in order to increase the accu-
racy of laboratory-field spectral-integrated estimation. Spectral
difference removal is crucial for calibration set enhancement via
laboratory-field spectra-data integration.

The size of the NSE calibration set and the calibrated model
performances were influenced by the relative coverage value of
the near-natural soil sample in coverage assessment. Initially,
a sample did not affect the coverage value of the sample set
and could be removed from the initial calibration set (n = 43).
As shown in Fig. 8, near-natural soil samples (≤ 28) with
positive relative coverage values could enhance the coverage
and information integrity within the estimators space of the

Fig. 8. NSE calibration set with various numbers of near-natural samples and
the calibrated model performance.

Fig. 9. Frequency distribution of SOM contents of the samples from the NSE
calibration set in Yinbei, China.

calibration set, thereby improving the model generalization. In
contrast, the near-natural soil samples (sample 29 and sample 30)
characterized with the negative relative coverage value impaired
the performance of the spectral-based model based on the NSE
calibration set. Thus the calibration set enhancement strategy
may be ineffective when the near-natural soil samples posed no
effect or negative effects on the coverage values of the natural
soil sample set. In other words, an expert-based sampling design
and a sufficient number of representative samples are also vital
for improving the SOM spectral-based estimation at the local
scale.

The NSE calibration set was employed to improve the
spectral-based model by changing the size of the representative
samples and those distribution patterns over the estimator space.
The frequency distribution of SOM contents of soil samples from
the optimized calibration set is shown in Fig. 9. Results showed
that the SOM values of 43 natural soil samples in the initial cal-
ibration set were mainly distributed in the ranges of 0–10 g·kg-1

and 10–20 g·kg-1, while the samples in the NSE calibration set
(that included 42 natural soil samples and 28 near-natural soil
samples) exhibited a log-normal distribution ranging from 0 to
60 g·kg-1. The calibration sample set was distributed over a wide
SOM content range that could cover the SOM variation of future



4634 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

predicted samples. Theoretically, natural soil derived from par-
ent materials should follow a normal distribution. However, soil
data obtained from the NSE calibration set showed a log-normal
distribution. In fact, the soil system of the research area has expe-
rienced high-intensity human activities (especially agricultural
practices) for a long time, and the initial data distribution has
been changed and commonly exhibits a log-normal distribution.
Various studies have reported these articles [61], [63], [64], and
[65]. The log-normal distributed calibration set was close to
the SOM frequency distribution of natural soil data, and thus
satisfies the data distribution prerequisites of a machine learning
model, and strengthens the model’s prediction ability for SOM
contents under field conditions [22]. Furthermore, Lucà et al.
[12] suggested that the minimum number of soil samples for
a machine learning model (e.g., support vector machine) to be
sufficiently trained is 72. The sample size of the initial calibration
set (n= 43) is smaller than this threshold, which may be a reason
for the poor performance of the initial calibrated model. Note
that the enhanced calibration set in this study consisted of 70
representative samples, which is basically consistent with the
results of Lucà et al. [12].

In addition, a widely-used representative sample selection
strategy (Kennard-Stone method) [10] was used for calibration
set construction in this study. The calibrated model’s perfor-
mance (R2 = 0.75; RPIQ = 2.71) was better than the spectral-
based model built with the initial calibration set (R2 = 0.73;
RPIQ = 2.32), while it was lower than the spectral-based model
(R2 = 0.90; RPIQ = 4.17) calibrated with the NSE calibration
set. The effect of an inappropriate sampling pattern on the
initial calibration set cannot be eliminated by a sample selection
method. The calibration set enhancement strategy based on
the near-natural soil samples shows the obvious advantage of
building an effective calibration set under the conditions of
sampling pattern bias.

In general, near-natural soil samples involved in calibration
set enhancement to build an improved spectral-based model for
SOM estimation is a practical method. However, an important
prerequisite is to eliminate the spectral difference between nat-
ural and near-natural samples because the spectral difference
would interfere with the coverage assessment of the sample set,
damaging the calibration set enhancement. Additionally, near-
natural soil sample preparation may be more expensive than field
sampling costs in the short term, but the constructed near-natural
sample dataset can support the calibration set enhancement
for a long time into the future. This strategy still seems to
be an efficient and low-cost method for SOM spectral-based
estimation at the field scale.

C. Uncertainty Analysis

The established national soil spectral database for calibration
set enhancement may be an alternative solution. Rossel et al.
[39], Seidel et al. [66], and Zhao et al. [67] integrated the
field-obtained spectra of natural soil samples with the spectra
from the national soil spectroscopic database (e.g., Chinese Soil
Spectroscopic Database), and the calibration model produced
high accuracy for key soil component estimation. However,

some issues with calibration set enhancement based on the
national soil spectroscopic database need to be resolved. First,
the acquisition standards of natural soil spectra data should be
consistent with those of the national soil spectroscopic database
and open to the public [6]. Second, a national soil spectroscopic
database should be convenient for users to access. However,
this is very difficult to accomplish in less developed regions,
such as Asia and Africa (i.e., locations where national soil
spectral databases are still under construction). Additionally,
databases should also cover all soil types within the regional
scope. Otherwise, the complexity of calibration set enhancement
will be increased and unreliable estimates will be generated [16],
[68].

The strategy for calibration set enhancement needs further
optimization. A spiking algorithm is an approach that can be
used to support the calibration set enhancement for spectral-
based estimation of SOM contents. Li et al. [69] and Ji et al.
[70] successfully spiked the local sampling dataset into the
Chinese Soil Spectroscopic Database data for content estimation
of several soil parameters at the local scale. However, if the
spectral characteristics of the soil spectral library data are similar
to those of the local spectra data of natural soil samples, the
spiking method would show fairly poor accuracy [59]. In fact,
the enhancement strategy of augmenting representative samples
in the calibration set was devoted to explaining the spatial
variability, and relied on the spatial variability of the site studied,
compared with the spiking method, covering the variability
of samples from the different locations in different soil types
and landscapes [7]. Furthermore, SOM is not a unique factor
affecting soil spectral reflectance, and the coverage assessment
and spectral-based estimation model may be affected by various
components of soils [16], [55]. In the future, a matrix effect cor-
rection should be considered in constructing the spectral-based
estimation model. Additionally, as a result of the autocorrela-
tions in the observed samples, the data cross-validation approach
method may generate overly optimistic validation results in
spectral-based SOM estimates, and thus not be recognized as a
robust validation method. An unbiased validation strategy based
on the design-obtained sampling method or adding additional
independent samples may be an ideal method for validating
model accuracy [71], [72]. Although the issue described above is
obviously beyond the scope of our current research, it deserves
further study.

V. CONCLUSION

In this study, an NSE calibration set strategy was proposed for
improving the spectral-based estimation model of SOM contents
for use under conditions when the field sampling patterns are bi-
ased. Results showed that the NSE calibration set (that included
42 natural soil samples and 28 near-natural soil samples) posed
sufficient coverage and better information integrity within the
estimators space than the initial calibration set (that included 43
natural soil samples), and this calibration set would be beneficial
to the machine learning-based model calibration. The RF model
based on the NSE calibration set produced a satisfactory result
(R2 = 0.90; RPIQ = 4.17) in SOM estimation, in contrast
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to the fairly poor accuracy (R2 = 0.73; RPIQ = 2.32) of the
spectroscopy model when the initial calibration set calibrated it.
The SOM chemical compositions (e.g., lipids, polysaccharides,
and lignin) and their relative abundance from the laboratory-
simulated near-natural soil samples were basically consistent
with those of natural soil samples. The use of near-natural soil
samples and a coverage assessment method for calibration set
enhancement was proven to be a practical method. The results
presented in this study provide an efficient strategy for building
a calibration set that can be applied to a pattern-biased field
sampling dataset to improve the spectral estimation of SOM
contents under field conditions at the local scale.
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