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Abstract—Classification of aerial imagery is essential for water
channel surveillance and waterfront land cover characterization.
It is also beneficial to long-duration collaborative autonomous nav-
igation of both unmanned aerial vehicles (UAVs) and autonomous
surface vehicles (ASVs) to fulfill unmanned hydrologic data collec-
tion, environmental inspection, and disaster warning tasks. Deep
semantic segmentation networks trained on aerial imagery have
shown great results, however, they require finely labeled data. Ex-
isting aerial image datasets contain mostly urban scenes or fluvial
images taken from ground level or collected from the Internet,
there are no datasets that incorporate aerial and fluvial scenes
with detailed annotation from different perspectives or include
waterborne obstacles. To tackle this problem, aerial fluvial image
dataset (AFID) is presented with multiple camera perspectives
of fluvial scenes and is semantically labeled with emphasis on
water and waterborne obstacles. Deep neural networks for binary
(water and nonwater) semantic segmentation, with 12 different
combinations of five encoders and three decoding architectures,
are trained and tested in a curriculum learning scheme. Model
performance is benchmarked on AFID, and the accuracy-efficiency
tradeoff is discussed with the conclusion that the Unet architecture
with a mix transformer encoder achieves the best segmentation per-
formance with moderate computational consumption. The AFID
dataset is publicly available to facilitate future work on developing
new lightweight semantic segmentation models. Our immediate
future plan will focus on the coordination of air and surface-water
autonomous systems for navigable water detection and obstacle
avoidance in high-risk challenging environments.

Index Terms—ASV, autonomous navigation, dataset, deep
neural network, oceans and water, semantic segmentation, sensing
platforms, UAV.

I. INTRODUCTION

AUTONOMOUS surface vehicles (ASVs) are adept at au-
tonomous mission planning, path following, and obstacle

avoidance in open environments, such as lakes, oceans, and slow
flowing rivers [1], [2], [3], [4], [5], [6], [7], [8], [9]. However, nar-
row or meandering rivers and creeks have flow that is more rapid,
obstacle laden, and likely to change rapidly over geographic
and temporal spans. Changes in water level along the course
of a river and over times of heavy rain or prolonged drought
exposes shoals, debris, downed trees, and other obstacles that
pose difficulties for ASVs. Furthermore, the meandering nature
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of such rivers limits the line of sight of ASVs therefore limit-
ing reaction and planning time for safe obstacle avoidance. In
addition, ASVs also have difficulty in navigating braided river
branches due to their limited line-of-sight distance. In a fluvial
system comprised of multiple diverging and converging shallow
channels that diverge and rejoin the main channel, autonomous
agent without any a priori information must actively explore
each channel until either an obstacle impedes the agents path or
the main river branch is found.

To overcome the reaction latency of obstacle avoidance and
the inefficiencies in river branch selection during autonomous
fluvial environment traversal, camera equipped UAVs can be
utilized to form global contextualized maps of fluvial scenes
ahead of the planned ASV path. However, due to UAVs’ in-
ability to operate for a long duration of time, recharging and
selective deployments is required for use as a solution to the
ASV river branch selection problem. Cooperatively, the hetero-
geneous aerial and aquatic robotic system can fulfill long-range
and long-duration robust autonomous fluvial navigation tasks
with minimum human intervention. In addition, this cooperation
is also beneficial for energy-efficient mapping from the water
surface for open and easily navigable fluvial environments, and
from the air for complex or obstacle laden fluvial scenes.

Such cooperation is not uncommon in the field of robotics. In
the ground domain, heterogeneous cooperation between UAVs
and AGVs already has been used for many applications, such as
surveillance [10], [11], [12], rescue [13], environmental moni-
toring [14], [15], environmental mapping [16], and object trans-
portation [17]. In the surface domain, the UAV-ASV cooperation
schemas have been used in maritime surveillance [18], [19] and
rescue missions in littoral [20] and flooded urban [21] envi-
ronments. In inland waterway scenes the RIVERWATCH [22]
system uses a UAV and ASV designed for automatic monitoring
of riverine environments. Aerial imagery of fluvial scenes can be
turned into 2-D fluvial maps with localized and identified paths
and objects, which can be relayed to surface vehicles for use in
path generation for various mission modalities.

While cooperative heterogeneous robotic fleets have shown
promise in their ability to work together to navigate complex
environments, the issue still remains how to interpret sensor
data, such as visual imagery, into contextual information capable
of being used for route planning. Traditional computer vision
methods have been used to extract meaningful information from
image data [20], [21] in such instances. However, deep learning
methods require less expert analysis and fine-tuning, provide
superior flexibility across domains, and can achieve greater
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Fig. 1. RGB images captured from Wabash River and Wildcat Creek in slanted
and nadir views with corresponding multiclass annotated masks and binary
masks (water as 255 and nonwater as 0). Row a and b: Wabash River in slanted
view and nadir view, Row c and d: Wildcat Creek in slanted view and nadir
view. River (purple), boat (dark blue), bridge (red), sky (light blue), vegetation
(green), dry sediment (yellow) and waterborne obstacle (brown) classes exist in
these images.

accuracy in tasks like image classification, object detection, and
semantic segmentation [23].

Due to the data-hungry nature of deep neural networks
(DNNs), there is a growing need for annotated publicly available
datasets to train and benchmark networks for various domains
and tasks [24]. Due to the abundance of annotated publicly
available datasets in urban environments, semantic segmenta-
tion has already shown potential in urban objects analysis and
decision-making assistance, such as urban planning through lane
markings [25], building extraction [26], [27], [28], and traffic
and pedestrian monitoring [29]. However, annotated publicly
available datasets containing aerial images of fluvial scenes that
focus on detection of waterborne obstacles are exceptionally
rare. Therefore, to unleash broader applications of semantic seg-
mentation to the ASV autonomous navigation and river branch
selection problems, this article presents a custom aerial fluvial
dataset (shown in Fig. 1) that has eight classes, and is binarized
to water and nonwater for all neural network training and testing.

The main contributions of this work are two-fold as follows:
1) A novel public aerial fluvial image dataset (AFID) that
incorporates aerial and fluvial scenes with detailed semantic
annotation from different camera perspectives. AFID contains
816 multiclass multiperspective semantically labeled images of
two inland waterways with annotations for waterborne obstacles.
2) Building the performance benchmark for 12 advanced se-
mantic segmentation models in curriculum training fashion on
existing datasets and the subsets of AFID to highlight the capa-
bility of the presented dataset and evaluate learning capabilities
for various segmentation architectures and feature-extracting
encoders. AFID is essential for water channel surveillance, wa-
terfront land cover characterization, and long-duration collabo-
rative autonomous navigation of both UAV and ASV to fulfill
unmanned hydrologic data collection, environmental inspection,
and disaster warning tasks using deep semantic segmentation

models. The binary segmentation benchmarks can serve as a ref-
erence for future multiclass segmentation networks to decrease
the effort spent on model selection. AFID dataset can also be
used to enrich the work on light-weight semantic segmentation
model developments, so that real-time long-duration inference
on unmanned autonomous vehicles is achievable.

The rest of this article is organized as follows: Pertinent exist-
ing datasets and their used semantic segmentation methods are
reviewed in Section II. The detailed description of our dataset is
in Section III. The experimental design and evaluation including
adopted architectures, encoders, metrics, and benchmarks are
detailed in Section IV. The discussion of experiment results is
in Section V. Finally, Section VI concludes this article.

II. RELATED WORK

For UAV to cooperatively assist ASV navigation through
complicated branching fluvial scenes, UAVs must be able to
accurately and routinely recognize water and nonwater entities
within said scene. For semantic segmentation networks to clas-
sify water pixels from RGB images, they have to be trained
on enough water-containing images to enable generalization to
in situ imagery. However, due to possible significant difference
in spatialwise and channelwise pixel distributions of water and
nonwater pixels in images among various aquatic datasets, it is
unreasonable to use many existing ground and surface datasets
to train a network for a domain-specific task, such as aerial
water segmentation. In Section II-A, RGB image datasets that
are pertinent to ASV and UAV operating in and around bodies of
water are introduced, as well as their applicability to the aerial
fluvial semantic segmentation task. Finally, a brief investigation
of semantic segmentation networks that have been used for
similiar tasks is given in Section II-B.

A. Aquatic Semantic Segmentation Datasets

Multiple maritime and fluvial RGB image datasets for se-
mantic segmentation of water exist due to the fact that water
recognition and localization has many applications. However,
many such semantic datasets serve various purposes in varying
environments (e.g., littoral or blue water, harbor, rivers, lakes,
etc.) and can have very different feature distributions. This
makes it difficult for a neural network to learn and general-
ize well across all aquatic datasets. Thus many datasets are
inappropriate for semantic segmentation network training for
segmenting water in complex fluvial scenes due to differences
in feature values and distributions. These differences narrow the
datasets that are applicable to aerial fluvial imagery inference.

To the authors’ best knowledge, existing fluvial datasets either
contain images taken on ground level from riverbanks [30],
are general low-resolution online images that contain water but
also watermarks [31], [32], or do contain aerial fluvial imagery
but with only single camera perspective and no annotations
for waterborne obstacles [33], or do contain aerial images of
rivers with waterborne floating ice but not other more common
obstacles [34]. All these factors make the multiclass annotated
aerial fluvial dataset developed within this work not only mean-
ingful for water semantic segmentation applications, such as
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Fig. 2. Qualitative comparison of the three existing fluvial datasets used for
pretraining (a)–(c) in this work with our aerial fluvial dataset (d). (a) Surveil-
lance [31]. (b) 11 rivers [33]. (c) Lantern pole [30]. (d) AFID.

river branch investigation and selection but also unique in inland
waterway autonomous navigation tasks.

Flood monitoring datasets [32], [35], [36] mainly contain
images taken from ground level that have pixel label distributions
skewed by urban backdrops and features that are uncommon in
aerial fluvial imagery. Similarly, the ATLANTIS [37] dataset
has been created for generic water resources management, but
contain diverse scenes, such as waterfalls and wet roads, where
ASVs cannot be possible to drive on, and thus, are not helpful for
training networks to recognize obstacles toward fluvial naviga-
tion. Satellite image datasets for river regulation [38], while con-
taining the applicable imagery perspective and contents, have
spatial resolutions that are too large for visualization, annotation,
and ultimately recognition of waterborne obstacles. Furthermore
the distribution of water labeled pixels in satellite imagery is
significantly lower than any imagery taken by drones in stable
flight at altitude. Maritime [6], [39], [40], [41], [42], river [43],
[44], and lakes and canal [45] datasets for ASV navigation and
mapping have images collected only from the surface level,
which share a common spatial object distribution with all boat
or shore-based imagery: water in the lower, potential obstacles
in the middle, and sky in the upper portions of images. This
spatial pattern of surface images is diametrically opposed to
aerial images of fluvial scenes [as shown in Fig. 2(d)], especially
nadir views where water labeled pixels can propagate along any
image axis in any orientation.

Multiple aerial semantic segmentation image datasets [29],
[46], [47], [48], [49] collected by aircraft have been developed
to advance deep learning models and their applications to object
monitoring and tracking. However, these datasets focus primar-
ily on urban or field scenes that contain negligible or no water
pixels and are thus not applicable to semantic training of neural

networks to segment water within fluvial imagery. Aerial image
datasets of marine environments with labeled bounding boxes
of waterborne objects also exist [50], [51], but only serve for
object detection in surveys and interrogation tasks. They do
not suffice for navigation tasks because water region cannot be
represented by bounding boxes quite well. By contrast, semantic
segmentation or pixelwise classification methods offer both fea-
ture classification as well as location information of all pixels in
aerial imagery, and thus, yield both the navigable water regions
of images and pixel locations of obstacles. Currently, [33] is one
of, if not the only, aerial semantically segmented image dataset
that focuses on fluvial scenes. The dataset developed within this
work expands on [33] by using not only nadir view images but
also forward looking ones to diversify the spatial composition of
pixel classes, thus reducing the possibility of model overfitting.
Moreover, our dataset contains finely annotated pixel boundaries
for all classes, especially waterborne obstacles, and binary seg-
mentation masks for the simplified classification of water and
nonwater entities (Section III).

Three currently existing fluvial datasets are applicable to
aerial fluvial semantic segmentation that can be beneficial for in-
land waterway navigation tasks. These three networks were used
for pretraining of several deep semantic segmentation networks
(Section IV). A qualitative comparison between these datasets
and the dataset developed for this work is shown in Fig. 2. The
first fluvial scene image dataset used is not publicly available
but is available upon request from the authors. Lopez et al. [31],
[52] collected fluvial images from Google, surveillance cameras,
and other sources. The resulted dataset of 300 images has large
variances of water color, turbulence, angle, and illumination,
Fig. 2(a). Although the dataset is binary labeled (water and
nonwater) and contains watermarks on some of the images, it
was still used for pretraining due to its abundance in varying
river scenes and elevated perspectives. The second airborne
fluvial image dataset [33], [53] contains 1223 images spanning
11 rivers from 5 countries with five land-cover classes: water,
dry exposed sediment, green vegetation, senescent vegetation,
and roads, Fig. 2(b). After filtering out the mislabeled or coarsely
labeled images of this dataset, 535 images from 5 rivers were
used as part of our pretraining set. The final dataset used for
pretraining [54] proposed by [30] was collected by a camera
affixed to a pole along a river bank over a one year time span. The
dataset contains 20 309 manually binary-labeled masks for im-
ages, Fig. 2(c). Although the dataset has significant temporally
related variances in imagery, the spatial variance across dataset
images is significantly smaller than other comparable datasets
due to the fixed nature of the data recording device. Considering
the potential spatial homogeneity of the images in this dataset,
512 images were randomly extracted from the original dataset’s
validation subset for use as part of our pretraining set.

B. Semantic Segmentation Methods

For semantic segmentation networks, the output mask has
the same resolution with the input image, and each pixel is
classified according to a category. Classical machine learning
methods like support vector machines (SVM) [55] and random
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forest [56] were largely used to do image segmentation, until
deep learning methods prevail by comprehensive improvements
in performance. As for deep semantic segmentation networks,
instead of using fully connected layers at the end of other
classification networks [33], whose dimension depends largely
on input image size, fully convolutional networks (FCN) [57]
replaces those layers with pure convolutional layers, and uses
pooling information from downsampling layers to learn nonlin-
ear upsampling with transposed convolution. The downsampling
part of a network is the encoder and the upsampling part is the
decoder.

Networks, such as SegNet [58] memorize the pooling indexes
in all encoder layers and use them for exact upsampling in
decoder layers without learning, and have been used in [30],
[32] for water segmentation. Although our objective is to find a
memory and computation efficient network, we still care a lot
about model accuracy, especially boundaries accuracy of water
and waterborne obstacles. Thus, network architectures were
tested that use more information from encoding layers when
decoding, such as Unet [59], PAN [60], and DeepLabV3+ [61]
(Section IV-B2). Moreover, different encoder structures show
different feature extraction abilities [32], thus five promising en-
coding methods were chosen to conduct experiments, including
four convolution-based and one vision transformer-based en-
coders. These encoding methods are discussed in Section IV-B1
in detail.

III. AERIAL FLUVIAL IMAGE DATASET

Aerial fluvial videos were collected by a SplashDrone 4 with
waterproof GC3-S camera at a 60-Hz frame rate in both 2720
× 1536 (2.7 K) and 2560 × 1440 (2 K) resolutions during the
fall of 2021. Videos were taken on segments of the Wabash
River and Wildcat Creek in Indiana, USA. More specifically,
the Wabash River data were collected on a river segment to
the east of Prophetstown State Park (∼3.65 km), as well as at
the intersection of the Wabash River and Grant Road. Wild-
cat Creek data were collected between Wildcat Creek Park to
Peters Mill Access (∼4.71 km), at Mis-So-Lah Public Access
Point, and at the intersection of Wildcat Creek with Schuyler
Avenue.

Data collection along river segments was done by a team of
two people. While one person controlled the water-proof drone
to follow the course of the river under FAA guidelines, the
other person controlled a chase boat in pursuit of the drone to
maintain visibility. The data collection process at intersections
of river/creek and roads was done by a human pilot standing on
the river bank and maneuvering the drone to fly over the bridge
in each fluvial scene.

The AFID dataset1 [62] contains 816 images that were ex-
tracted manually from videos recorded on the SplashDrone.
Of the 816 images 303 images were from the Wabash River
and 513 images were from Wildcat Creek with both river
sets containing subsets of forward-looking (slanted view) and
downward-looking (nadir view) perspectives, Table I shows the

1https://purr.purdue.edu/publications/4105/1

TABLE I
IMAGE NUMBER OF RIVER SUBSETS AND DRONE CAMERA PERSPECTIVES

number of both the river and perspectives subsets present in the
AFID dataset.

The AFID dataset contains images that vary in water color
and texture due to sunlight, water turbulence, and shadows from
trees and other objects as shown in Fig. 2(d). There are also
a small number of fully and partially blurred images within
the dataset from drone motion and lens moisture, respectively.
As the SplashDrone and many other aquatic drones can land
and take off from water, camera immersion, and extraction
from water typically leaves residual moisture on the camera
lens surface (i.e., water droplets and steaks). The inclusion of
both crisp and blurred images is intended to increase trained
network generalizability, which may encounter similar images
during deployment in aquatic environments. In addition to image
complexities relating to water hue, image crispness, and view
differences, there are also significant amounts of waterborne
obstacles common to fluvial environments, such as downed tree
branches, exposed sand bars and sediments, and rocks in the
Wildcat Creek subset. The Wabash River subset stands in con-
trast to the Wildcat Creek subset as it contains images of wider,
deeper, less obstacle ridden, and less turbulent waters. Both
subsets have nadir and slanted views of fluvial scenes and share
the same set of semantic classes. The combined subsets serve
to broaden the limited scope of existing aerial fluvial datasets
with more camera perspectives and fluvial environments with
specific attention on obstacles that pose hazards to surface-based
watercrafts.

All images within the AFID dataset were labeled manually
using the public Pixel Annotation Tool [63] with minor mod-
ifications of the annotated semantic classes to contain classes
for river, boat, bridge, sky, forest vegetation, dry sediment,
drone (self), and fluvial waterborne obstacles. Sample annotated
images are shown in Fig. 1.

Semantic datasets can suffer from imbalances in class pixel
percentages. Being aware of any dataset class imbalances is
important as it can have a significant impact on the loss func-
tion, and further trained network performance [64]. In binary
segmentation (water and nonwater in our case) the percentage
of target class pixels usually has a positive correlation with the
network’s ability to correctly recognize and segment pixels of
that class in input images. In our dataset the water class occupies
about 45% which means that approximately 55% of pixels are
nonwater. In multiclass segmentation the obstacles class takes
up 0.17%, as shown in Fig. 3(b). Among the whole dataset,
nearly 10% of images have a water pixel ratio over 75%, nearly
42% of images have a water pixel ratio over 50%, and about
80% of images have a water pixel ratio over 25%, as shown
as Fig. 3(a).
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Fig. 3. (a) Demonstrates the imagewise water pixel percentage distribution,
and proportions of images with water pixel percentage larger than three per-
centiles (25%, 50%, 75%) over the whole dataset. (b) Illustrates the datasetwise
pixel distribution of all 8 classes.

IV. EXPERIMENTAL DESIGN AND EVALUATION

While the AFID dataset contains variance in scenes across
different fluvial systems, times of day, camera perspectives,
and scene compositions, it cannot provide training instances
for all potential encountered fluvial images. Therefore the gen-
eralizability of neural networks, specifically convolution-based
semantic segmentation networks, is leveraged to enable globally
applicable learning from locally contextualized datasets (Mid-
western US). To evaluate the performance of a semantic network
to generalize across scenes in this way the model is trained and
tested on different scenes.

Curriculum training was adapted to help improve the network
generalization, all of the networks being considered were first
trained on the existing datasets mentioned in Section II-A, and
then further trained on the novel dataset presented in Sec-
tion III. This serves to investigate the convergence rate and
generalizability of different encoder–architecture combinations
(Section IV-B), as well as the similarity of hidden representations
among fluvial datasets (Section V).

A. Data Preparation

300, 535, and 512 images were chosen from the three existing
aerial fluvial datasets (Section II-A) of [31], [33], and [30], re-
spectively, to form a base training dataset of 1347 images. Sam-
ple images from each selected subset of the surveillance [31], 11
rivers [33], lantern pole [30], and our AFID dataset are shown

Fig. 4. Pretraining and continue-training diagram of datasets and models.
Rectangle boxes denote datasets, where solid-line box around 2 validation sets
means they are grouped as a whole for all trainings, and dashed-line boxes mean
the subsets can be separate or combined in different trainings. Ellipses sitting on
top of different boxes denote models trained on that dataset, where B stands for
pretrained baseline models, C stands for continue-trained models on different
training subsets, and arrows point to the subsets that are tested upon.

in Fig. 2(a)–(d). AFID is binarized to water and nonwater for all
neural network training and testing. This is sufficient for branch
planning and obstacle avoidance of ASVs in fluvial navigation
since water pixels correspond to all navigable regions in physical
scenes. To ensure all of the annotated data were applicable
to the binary image segmentation task the classes within the
11 rivers [33] were turned into two classes by combining all
nonwater classes into a single class. The surveillance [31] and
lantern pole [30] datasets already contain binary water–nonwater
masks, and thus, no alterations were required.

Our dataset was first split into Wabash River and Wildcat
Creek subsets due to their differences, as discussed in Section III.
The geographic subsets were then further split into training,
validation, and test sets with a 40%–20%–40% split. Each sub-
set’s test set was then additionally combined together to form an
equally weighted super-set for testing across both fluvial scenes.
After the base training was done with existing datasets, all the
models were tested on the the Wabash River, Wildcat Creek, and
the combination test sets.

After testing the networks ability to transfer to the new data,
all the models were further trained on the training set of each
subset and their combination, and then tested on the unseen
test subset and the combined test set. All steps of training
have the same early-stopping criteria based upon F1 Score of
validation set of combined Wabash River and Wildcat Creek
subsets (Section IV-C). Model training, validation, and testing
scheme on the split dataset is shown in Fig. 4.

Our multiclass dataset was converted to binary labels (water
and nonwater) to align with the navigation specific challenges
this dataset in part tries to solve and the existing fluvial datasets.
However, it still stands as a unique fluvial aerial semantic seg-
mentation dataset due to its attention to waterborne obstacles
and inclusion of multiple aerial camera view angles.
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B. Segmentation Architectures

State-of-the-art semantic segmentation neural networks usu-
ally consist of a encoder that captures contextual information,
and a subsequent decoder that recovers the spatial information,
with skip connection that bypasses at least one layer from the
encoding (downsampling) process to decoding (upsampling)
process, so as to merge features in various resolution levels
to recover the fine-grained spatial and contextual information.
Since the decoder often has geometrically symmetric shape and
sequentially reverse order with the encoder, different semantic
segmentation architectures mainly vary in the decoding process
where various methods of connections between the encoder and
decoder parts are used. The details of the encoders we used in
this work are provided in Section IV-B1, and that of architectures
are given in Section IV-B2.

1) Encoders: Convolutional neural network (CNN) encoders
aim to summarize or encode image features using kernels into
a spatially dense yet feature verbose latent space that stands
for a more abstract representation of the input. On the other
hand, inspired by the Transformer [65] design in NLP, many
vision-targeted works split an image into a sequence of linearly
embedded patches, then feed into a standard Transformer to learn
a feature representation with stronger effective receptive field
(ERF). Encoder learning involves teaching an encoder how to
accurately distill an input into a latent space that is most helpful
in correctly classifying an image. Different encoders use differ-
ent layered architectures or attention mechanism to enable either
faster or more accurate latent space realizations for inputs. In this
article, to evaluate the performance of different encoders on the
binary semantic segmentation task, the following five popular
encoders are investigated: 1) ResNet [66], 2) Xception [67],
3) MobileNet-V3 Large 100 [68], 4) EfficientNet-B4 [69], and
5) MiT-b1 [70].

ResNet [66] features residual learning which connects the
input and output of each layer (or block). This makes the net-
work easier to optimize and decreases the degradation problem
for considerably deeper networks while increasing accuracy.
In this work, a moderate-sized ResNet encoder, ResNet50, is
used. ResNet50 is a moderate-sized ResNet encoder with 16
bottleneck blocks (each contains three convolutional layers), one
initial convolutional layer, and one average pooling layer.

Xception network [67], like Inception-v4 [71], merges the
idea of GoogLeNet [72] and ResNet [66], but replaces Incep-
tion modules with depthwise separable convolutional layers. It
has been shown that separable convolutional layers use fewer
parameters, less memory, and fewer computations than regular
convolutional layers, and have comparable or even better per-
formance than Inception modules [73].

MobileNets [68] are small, low-latency, low-power models
designed to effectively maximize accuracy while being mindful
of the restricted resources for embedded or mobile applications.
MobileNet V3 [68] harnessed multiple network architecture
search algorithms, adapted nonlinearities, and applied squeeze
and excite [74] in a quantization friendly and efficient manner.
In this article, we used the MobileNet V3 large model with a
100% layer width multiplier (no shrinkage) and no resolution

TABLE II
ENCODER-DECODER MODEL SPECIFICATIONS IN TERMS OF ON-DISK MODEL SIZE

IN MEGABYTES, GFLOPS AND PREDICTION SPEED (NVIDIA RTX2060, BATCH

SIZE=1, AVERAGED OVER 300 INFERENCES) IN MILLISECONDS. SPECIFICALLY,
RESNET50, MOBILENET V3 LARGE 100, EFFICIENTNET-B4 AND MIT-B1

ENCODERS WERE TESTED, DETAILS IN SECTION IV-B1. BEST PROPERTY VALUES

ACROSS ALL MODELS ARE EMPHASIZED IN BOLD.

-
-
-

-
-
-

-
-
-

multiplier since the model size is already very small compared
to other networks shown in Table II.

EfficientNet [69] tries to achieve a better balance between
model accuracy and efficiency by a compound scaling method,
which scales all dimensions of network width, depth, and res-
olution. In this article, we use EfficientNet-B4, which applies
fourth power to the scaling factors along all three dimensions
under some constraints. EfficientNet has a moderate model size
when compared with other networks, as shown in Table II.

MiT (mix vision transformer) is proposed in the work of Seg-
former [70] for transformer-based simple and efficient semantic
segmentation. As a feature encoder, MiT has a hierarchical
feature representation to generate CNN-like multilevel features
with larger effective receptive field. In comparison to other
ViT [75]-based architectures like SETR [76], MiT encoder is
not only light-weight but also can capture both high-resolution
coarse and low-resolution fine features.

2) Architectures: Network decoders, or upsampling layers,
within an architecture play a significant role in deep semantic
segmentation tasks. Unlike image classification where the spa-
tial representation of the output does not matter, in semantic
segmentation the classified output features must have the same
spatial resolution as the input. This creates two codependent
requirements for decoders, one of spatial extraction and one
of accurate pixel classification at spatial density. For this work
multiple semantic segmentation architectures, whose major con-
tributions lie in the decoding process, were tested and briefly ex-
plained, including Unet [59], DeepLabV3+ [61], and PAN [60].

Unet [59] architecture consists of a convolution path to ex-
tract context and a symmetric deconvolution path that enables
precise localization with skip connections (cropped and copied
along channel dimension) between same level downsampling
and upsampling layers. With the benefits brought by skip con-
nections, U-Net can capture fine spatial information and bolster
segmentation results whilst keeping computation costs low.
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DeepLabV3 [77] architecture proposed atrous spatial pyramid
pooling (ASPP), which does convolutions with kernels of differ-
ent strides (dilation rates) in parallel on the encoder-generated
feature maps. On top of DeepLabV3, DeepLabV3+ [61] incor-
porates a single skip connection (channelwise concatenation)
between one encoder layer and the ASPP-processed layer, as
well as two bilinear upsamplings before and after the skip
connection. In this work, we adopted the decoding part from
DeepLabV3+ architecture.

Pyramid Attention Network (PAN) [60] exploits the potential
of both attention mechanisms and spatial pyramids to extract
precise dense features for pixel labeling by introducing feature
pyramid attention (FPA) module and global attention upsample
(GAU) module. Acting like a postprocessing layer after the
final encoder layer, the FPA module performs spatial pyramid
attention combined with global pooling to improve feature repre-
sentation and receptive fields, whilst the GAU module provides
globally aware spatial context to latent space features to aid in
localization of classified decoder outputs.

Although DeepLabV3+ [61] investigated the incorporation of
depthwise separable convolution from Xception [67] with atrous
spatial pyramid pooling (ASPP) [77], it is still controversial
to combine them into a single semantic architecture since the
DeepLabv3+ atrous depthwise convolution modifies the Xcep-
tion encoder itself. A similar case happens for the combination of
the Xception encoder and PAN [60] network architecture. Since
dilation mode of DeepLabV3+ decoder is only for convolution
layers, the combination of DeepLabV3+ with MiT encoder is
also invalid. Thus finally we tested on 12 encoder-architecture
combinations, details shown in Table II.

C. Evaluation Metrics

When evaluating the model performance, two metrics are
used: (1) mIoU (mean intersection over union) and (2) F1
Score (harmonic mean of precision and recall), which are ef-
fective measures of how well network inferences overlap with
groundtruth masks. The four terms, true positive (TP), true
negative (TN), false positive (FP), and false negative (FN),
can each be thought of as a 2-D tensor along imagewise and
classwise directions, respectively. As this article investigates
binary (water and nonwater) semantic segmentation, all terms
collapse to single dimension array along imagewise direction,
and both metrics are calculated at image level and averaged over
the dataset.

mIoU =
TP

TP + FP + FN
(1)

F1 Score =
2TP

2TP + FP + FN
(2)

soft Dice Loss = 1− 2 ypred
T · ymask

|ypred|1 + |ymask|1 . (3)

The objective function, or loss function, for the training of
all tested semantic segmentation networks in this article is soft
Dice Loss [78], which is approximately 1− F1 Score. Suppose
ypred and ymask are flatten 1-D vectors of sigmoid activated
prediction probability and mask values (water: 1, nonwater: 0)

of water pixels, respectively, the definition of soft Dice Loss is
shown in (3), where |ypred|1 and |ymask|1 are 1-D norms of
vectors.

Properties, such as model size, giga floating-point operations
(GFLOPs), and average inference speed, of each implemented
network (Table II) are measured using a Github repository [79]).
These three parameters illustrate the model memory consump-
tion, mathematical calculations, and time consumption, respec-
tively, for a network forward inference pass. An intuitive sense
of speed, memory, and power consumption of different networks
is critical to enable informed decisions regarding network de-
ployment on memory and power limited embedded devices for
real-world applications, such as ASV-UAV navigational coop-
eration.

D. Network Implementation

All training, validation, and testing was done on a NVIDIA
RTX2060 GPU with 6 GB of VRAM. PyTorch Lightning [80]
was used as a training and testing boilerplate to rapidly assemble,
change, train, and test networks within a common framework
using PyTorch [81]. A Github repository [82] was used to easily
assemble the encoder and architecture frameworks. Finally,
Wandb [83] was used to log training and evaluation processes,
model hyperparameters, and training checkpoints.

Running mean and standard deviations of all batch normaliza-
tions [84] were maintained throughout the training processes of
each model. Model (specifically encoder) weights are pretrained
on ImageNet [85]. All images and masks are resized to 320
× 544 during dataloader transform, in which resolution the
obstacles in river are still visible. Besides, the height and width
are each a power of 2 since encoders usually have five stages
of downsampling by a factor of 2. Batch size of training data
was 6 and 16 b native automatic mixed precision (AMP) was
used to account for limited graphic memory allocations. The
Adam optimizer [86] was used with learning rate 0.0001 for
all networks. Soft Dice Loss [78] [(3)] was used as the single
loss function across all training due to its nonconvex nature and
better performance on imbalanced data [64]. A maximum of 75
epochs was set for each training session, with early stopping
implemented for changes in the networks validation F1 score,
with a patience of 10 epochs, and minimum delta of 0.

E. Benchmarks

Based on the experimental setup described in Section IV,
performance of pretrained and continue-trained models on two
subsets and the combined test set are presented in Table III.
Noticeably, all examined models achieve good results after
continue-trained on the combined test set. The table shows
five main noticeable aspects of the novel dataset and the tested
networks. First, the Unet-MiT model achieves the best perfor-
mance on the unseen combined test set after pretraining, and
PAN-MiT model has the second best performance. This reveals
the higher generalization ability of Transformer-based encoders
over CNN-based ones. Second, among all continue-trained mod-
els with ResNet or MobileNet encoder, models performance
is less competitive to other encoders with the same decoding
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TABLE III
MODEL PERFORMANCE BENCHMARK ON TEST SETS OF OVERALL DATASET AND TWO (WABASH RIVER ONLY AND WILDCAT CREEK ONLY) SUBSETS WITH

PRETRAINED BASELINES (DENOTED BY B, BEST SCORE IS UNDERLINED BOLD) AND CONTINUE-TRAINED (DENOTED BY C, BEST SCORE IS BOLD) MODELS

architecture. This further illustrates that semantic segmentation
model performance relies more on encoder design than decoder
design. Third, nearly all Wabash River continue-trained models
exhibit performance drop when tested on Wildcat Creek subset,
showing that the Wabash River subset stands in contrast with
the Wildcat Creek subset enough to challenge network general-
ization from the former to the latter.

Fourth, the opposite happens for the Wildcat Creek continue-
trained models, showing that the inclusion of obstacle heavy
environments is important for network success and does not hin-
der network performance in less cluttered fluvial environments.
Finally, the DeepLabV3+-EfficientNet model has the largest per-
formance boost after continue-training on either subset or overall
set, and it is the only model here that improves after subset
continue-training, which further validates the power of com-
pound scaling method brought by EfficientNet (Section IV-B1)
and ASPP brought by DeepLabV3+ (Section IV-B2).

V. DISCUSSION

Inspired by the concept of curriculum learning [87], where
learning the broad concepts on less complex training sets first
and then refining the concepts on more complex training sets
gives distinct advantages over a network that is trained to grasp
all scene complexities at once. The training scheme in this work
utilized existing fluvial datasets to provide base training for the
networks on context surrounding fluvial scenes before exposing
the networks to our novel dataset with more complex and fine-
grained waterborne obstacles.

The incorporation of curriculum training is validated by the
performance drop (Table III) of models trained beyond the
existing base set with Wabash River subset and then tested on
the more complex Wildcat Creek subset. The subset is more
complex as it involves more water-born obstacles causing it
to be significantly different than the pretraining datasets and
Wabash River subset, Fig. 2(d) and Fig. 2. Another reason
for the continue-training and cross-testing in the experiments
is to investigate the generalization ability of different network

Fig. 5. (a) Validation set F1 Score of all epochs during pretraining on existing
datasets and continue-training on Wabash-Wildcat overall training set in terms of
different encoders and (b) different architectures. Solid line represents median,
vertical color span represents standard error.

architectures, which were trained and tested on different fluvial
scenes.

The training process of neural networks exhibits inconspicu-
ous difference in terms of continue-training convergence speed
across different decoding architectures. As shown in Fig. 5(b),
the sloper of validation F1 Score is basically the same for all
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Fig. 6. Bar plots of models’ overhead and performance comparisons. R, X,
E, M and T represent ResNet50, Xception, EfficientNet-b4, MobileNet V3
Large 100 and MiT-b1, respectively. DLV3P is abbreviation of DeepLabV3+
architecture. (a) Model Overhead. (b) Model Performance.

decoding architectures. One difference is that PAN architec-
ture shows to have more learning stability across all epochs
than Unet and DeepLabV3+. However, the training curves of
networks show significant difference in validation set F1 Score
across different encoders. As shown in Fig. 5(a), the MiT and
Xception encoders show a higher learning rate in the pretraining
stage, the ResNet encoder shows the largest performance boost
when continue-training starts, whereas the EfficientNet and
MobileNet encoders have the slowest learning speeds in both
pretraining and continue-training stages. Model F1 score starts
from about 0.8 since ImageNet [85] pretrained weights were
used. Given enough epochs, all models achieve approximately
good F1 scores on the validation set.

Fig. 6 provides visual presentation of model overhead and
performance. The best-performing model has MiT as encoder
and Unet as decoding architecture, as shown in Fig. 6(b). In
addition, from Fig. 6(a), this model has nearly half the size
and FLOPs compared to those with ResNet50 and Xception
encoders. Besides, the Unet-EfficientNet model reaches almost
the same F1 Score and mIoU as the Unet-Xception model at
only two thirds of its memory consumption and less than half
of its FLOPs. The variant of each encoder was chosen to make
the encoder-architecture model have approximately the same
size (around 25 MB) as the other encoders. The exception to
this was the MobileNet encoder, where the biggest variant only
occupies around 10 MB.

It can also be verified from Fig. 6(a) that encoder types have
more impact on the final model size and matrix operations

Fig. 7. Qualitative comparison of binary (water and nonwater) predictions of
multiple encoder-decoder semantic segmentation networks. Rows a-h denote,
respectively. (a) Original RGB images. (b) Ground-truth masks. (c) EfficientNet-
Unet predicted masks. (d) MobileNet-Unet predicted masks. (e) MiT-Unet
predicted masks. (f) EfficientNet-DeepLabV3+ predicted masks. (g) MiT-PAN
predicted masks. (h) EfficientNet-PAN predicted masks.

required for a forward pass than architecture does. It can be
observed that models with ResNet50 encoder have the largest
model size and FLOPs among all five tested encoders, while
MobileNet encoder occupies the least memory. As the most
memory-efficient encoder, MobileNet V3 Large 100 consumes
almost one third of the memory of EfficientNet-b4, with at
most 0.6% mIoU and 0.2% F1 Score performance drop. This
makes it also a promising encoder to balance the computational
and power requirements of network inferences with the models
ability to properly segment fluvial scenes.

Furthermore, it can be observed from Fig. 6(b) that mIOU and
F1 Score are positively correlated for all tested models. From
(1) and (2), it is known that F1 Score measures the average
performance of a network on a dataset, whereas mIOU measures
the worst-case performance. Thus the positive correlation of
these two metrics reveals the fairness to use either metric as
the early stopping criterion together with measuring the model
convergence rate during the training process (Fig. 5). Similarly,
the same correlation exists between model size and floating-
point operations in a forward pass, which can be observed from
Fig. 6(a).

The analysis demonstrated that the performance differences
among all tested models are inconspicuous [Table III and
Fig. 6(b)], however, their overhead differences are quite large
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[Table II and Fig. 6(a)]. Fig. 6 shows that models with Unet ar-
chitecture have an overall higher performance with a higher vari-
ance of model overhead. Moreover, models with EfficientNet
encoder have both moderate performance and overhead, while
models with MobileNet encoder have the worst performance but
the least overhead. To better visualize the performance differ-
ence among models while considering the accuracy-overhead
tradeoff, six promising models were selected for further qual-
itative comparison: Unet architecture with MiT-b1, Efficient-
b4 and MobileNetV3Large100 as encoders, DeepLabV3+
architecture with Efficient-b4 as encoder, PAN architecture with
MiT-b1 and EfficientNet-b4 as encoders.

A qualitative comparison of the inferenced binary masks of
four input images (two from Wabash River, two from Wildcat
Creek; two slanted view, two nadir view) from six chosen models
is presented in Fig. 7. Row a and row b are original RGB
images and ground-truth masks, respectively. Rows c through
e are the predictions of the Unet architecture with three best
encoders. Row f is the prediction of DeepLabV3+ architecture
with EfficientNet-b4 encoder. Row g and row h are results from
the PAN-MiT-b1 network and PAN-EfficientNet-b4 network.

For fine-grained waterborne obstacles, Unet-EfficientNet
(row c) and PAN-MiT (row g) suffer the least from false nega-
tives, whereas other models falsely recognize more water pixels
as nonwater, as shown in the first column. From column three and
column four, it can be seen that the Unet-MiT (row f) model has
the highest resolution predictions of waterborne obstacles, but
also suffers from false positives shown in column 1. In addition,
MobileNet-based model (row d) struggle handling water reflec-
tions and shadows and have larger numbers of false negatives
(column 1) and false positives (column 4). Conclusively, the
Unet-MiT model has the best prediction accuracy according
to Table III. Unet-MiT and PAN-MiT models have the best
accuracy-efficiency tradeoff according to Figs. 6 and 7.

VI. CONCLUSION

ASV navigation along rivers and creeks with branch planning
is challenged by localized flatten view from the surface level.
Currently, it is still difficult for ASVs to make long-range
navigation plans with river branch selection in GPS-denied
areas, and to swiftly and safely do obstacle avoidance while
navigating in narrow, rapidly flowing, and obstacle-intensive
inland waterways. This hinders the applications using ASV, like
autonomous water quality/level monitoring, land cover change
analysis, and disaster alerts. UAVs can provide images from
various elevations, camera perspectives, and radial distances,
with fluvial context beyond that obtainable by an ASV. This
article presents the novel semantic-segmented multiclass AFID
with 816 images. This dataset is featured with both slanted and
nadir perspectives of drone images taken on top of river and
creek, with carefully and finely labeled eight classes, especially
waterborne obstacle pixels, for autonomous fluvial navigation of
both drones and surface vehicles in inland waterways. Multiple
deep semantic segmentation encoder–decoder neural networks
were pretrained on the existing fluvial datasets, and continued

trained on our dataset to build the binary (water and nonwa-
ter) baseline performance of models in terms of F1 Score and
mIOU. Comparison among models was conducted, and analyzed
both quantitatively and qualitatively, with special attention in
accuracy-efficiency tradeoff. The semantic segmentation models
Unet-MiT and PAN-MiT stand out from the 12 tested models
with the most potential in water segmentation and embedded
device deployment.

In the future, this dataset will be used to train the light-weight
multiclass semantic segmentation models to be deployed di-
rectly on UAV and/or ASV to gain more awareness of water
and obstacles regions during autonomous enroute navigation.
Besides, this AFID dataset has been made publicly available [62]
for researchers both in remote sensing field and robotic au-
tomation field to train their deep semantic segmentation neural
networks on for various tasks.
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