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Abstract—Occlusion handling is crucial for improving the per-
formance of convolutional neural networks (CNNs) in real-world
remote sensing images, which are often captured in complex and
unconstrained environments. In particular, occlusion scene classifi-
cation has received significant attention due to its usefulness in var-
ious remote sensing tasks. However, existing methods are limited
by their dependence on close-world learning, which assumes that
all test cases are included in the training set. This is problematic
because occlusion is too complex to be thoroughly annotated. To
address this issue, we propose a novel contrastive learning-based
CNN that can classify out-of-distribution occluded scenes without
the need for occlusion annotation. Our approach uses a two-branch
subnetwork to learn representations of unoccluded anchor images
and occlusion-augmented images. We then employ cascade super-
vised contrastive learning to make the network’s representations
invariant to occlusion. Unlike standard contrastive learning, our
method leverages category information to avoid incompact intr-
aclass distribution and uses a cascade strategy to hierarchically
learn occlusion-invariant representations. Finally, we use a multi-
layer perceptron to classify the learned representations and assess
representation quality. We evaluate our method on the UAVDT
dataset and two simulated datasets, and the results demonstrate
that our approach accurately characterizes occluded objects and
achieves more precise classification in occlusion scenarios.

Index Terms—Convolutional neural network (CNN), contrastive
learning, occlusion images, remote sensing.

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) have greatly
impacted remote sensing (RS) and earth observation (EO)

in the past few decades, with applications ranging from traffic
management [1] and military surveillance [2] to precision agri-
culture [3]. One of the reasons for its success lies in the fact that
CNNs have been adapted to the characteristics of RS images [4],
[5], such as multiple scales [6], [7] and rotations [8], [9], [10].
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Fig. 1. (a)–(c) Example of occlusion on RS images.

However, existing methods still fall short in their performance
on real-world RS images because the training sets they rely on
typically contain all cases in the testing set [11]. In contrast,
real-world RS images are unconstrained, and testing samples
may be rare or unseen in the training set, making conven-
tional methods ineffective [12]. For instance, recognizing targets
that are partially occluded by uninterested objects (occlusion)
represents a major challenge in interpreting unconstrained RS
images [13]. Occlusion can cause significant CNN performance
degradation [14], and its occurrence is often inevitable in RS due
to buildings, trees, and mist cover, as shown in Fig. 1, which has
attracted some attention in the RS community [15], especially
among those who focus on low-altitude images, such as those
collected by unmanned aerial vehicles (UAVs) [16], [17], [18],
[19]. Despite significant efforts in this area, the exploration of
occlusion in RS images is still limited.

Occlusion handling methods can be broadly categorized into
two types: recovery-based and invariant representation-learning-
based methods [20]. Recovery-based methods mimic the infor-
mation completion process of the human neural system [21],
which retrieves the missing information in the image or feature
space [22], [23]. While occlusion recovery has achieved remark-
able progress with the recent advances in generative models such
as autoencoder and generative adversarial networks [24], [25],
information reconstruction may not be necessary or computa-
tionally efficient for many RS tasks that require only discrimina-
tive models to predict object attributes (e.g., classification, detec-
tion, and segmentation). On the other hand, occlusion-invariant
representation learning [26], [27], [28], [29] is preferable for
tasks such as those mentioned above, which aim to learn a
representation space that is insensitive to occlusion. One of
the key challenges in learning occlusion-insensitive represen-
tation spaces is to alleviate occlusion-induced high intraclass
similarity, low interclass separability, and poor representation
discriminative [30]. Several methods have been implemented to
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address this issue, including feature alignment techniques [31],
low-rank constraints for sparse representation, and attention
models to compel learning of nonoccluded representations [15],
[32], [33], [34], [35]. For example, He et al. [32] employed low-
rank and sparse constraints to the representation to account for
occlusion in infrared target tracking. Wang et al. [33] expanded
the receptive field and concentrated more on the unoccluded
areas by utilizing dilated attention cross-stage partial modules
to learn occlusion-invariant embeddings in tree recognition. Ren
et al. [34] proposed a deformable faster-RCNN by aggregating
multilayer features to extract unoccluded parts and enhance the
CNN’s generalization ability to partially occluded objects.

Current occlusion-invariant representation learning methods
are mainly built on the close-world learning paradigm, which
necessitates that testing cases are available in the training set.
However, real-world occlusion is complex and encompasses
diverse spatial and spectral patterns that make it almost impos-
sible to accommodate all occlusion cases in the training set,
rendering close-world learning inadequate. To address these
challenges, contrastive learning [36] offers an intuitive solu-
tion. Contrastive learning is a representation learning approach
that aims to produce closer representations between the anchor
image and its augmented image. This definition suggests that
occlusion invariance can be achieved by reducing the distance
between the anchor image and its occlusion-augmented image.
Contrastive learning is also semisupervised, which eliminates
the need for comprehensive manual occlusion annotations in
close-world learning. Finally, modern contrastive learning mod-
els have demonstrated compelling generalization ability [37],
[38], [39], [40], which may enhance CNNs’ ability to better
characterize real-world occlusion that is rare or unseen in the
training set.

Although contrastive learning is theoretically suitable for
occlusion handling, existing contrastive learning methods are
insufficient for learning occlusion-invariant representations on
real-world RS images due to certain limitations. On the one hand,
conventional contrastive learning disregards category informa-
tion, which is unnecessary for an occlusion-level semisupervised
problem. In addition, images with the same class in an input
batch are treated as negative, increasing their representation
heterogeneity. This may result in loose intraclass distribution or
even worsen the recognition performance of occlusion samples.
On the other hand, contrastive learning typically restricts the
final layer of CNNs, while intermediate layers should also be
occlusion-invariant. CNNs learn representations hierarchically,
which implies that intermediate layers also contain high-level
representation. Neglecting the occlusion-invariant constraint of
intermediate layers could weaken the representation’s invariance
to occlusion.

To fill the gap between contrastive learning and RS occlusion-
invariant scene classification, we propose the cascade supervised
contrastive learning (Cascade-SupCon) network. Our approach
introduces category information to enhance the discriminability
of representations. By defining images with the same class
as positive and others as negative, Cascade-SupCon reduces
interclass similarity and eases issues of high intraclass diversity.
Moreover, our cascade strategy ensures that occlusion-invariant

representations are learned hierarchically, with constraints ap-
plied to intermediate layers rather than only the final layer. The
main contributions of our work are summarized as follows.

1) We propose a novel CNN method for occlusion-invariant
scene classification based on an improved contrastive
learning. Specifically, Our method incorporates category
constraint and cascade strategy into SimCLR to achieve
hierarchical occlusion-invariant representation learning,
which enhance the CNN’s classification ability in occlu-
sion scenarios. Our proposed method is transplantable and
has good out-of-distribution generalization ability, making
it suitable for practical tasks such as object detection
and segmentation, which rely on accurate characterization
and classification of occluded objects. To the best of our
knowledge, this is the first work to introduce contrastive
learning into RS occlusion-invariant scene classification.

2) Our CNN operates in an occlusion-level semisupervised
manner, enabling training without the need for occlusion
annotations. This relieves the requirements of supervised
models that rely on manual annotations.

3) We introduce several evaluation metrics for assessing the
efficacy of occlusion-invariant representation learning. To
enable a comprehensive evaluation of our CNN’s occlu-
sion handling capability, we use metrics that measure
the spatial autocorrelation between occlusion and rep-
resentation distribution, interclass separability, intraclass
similarity, and representation discriminability.

The rest of this article is organized as follows. Section II de-
scribes the particulars of Cascade-SupCon. Section III presents
the details of the datasets adopted in our experiments, whereas
Section IV provides experimental results and their discussion.
Finally, Section V concludes this article and offers a brief
discussion of future works.

II. METHODOLOGY

Our Cascade-SupCon is an occlusion-invariant scene clas-
sification method based on an improved contrastive learning.
As shown in Fig. 2, Cascade-SupCon consists of a pretext
task module, a siamese representation learning subnetwork, a
cascade supervised contrastive constraint, and a multilayer per-
ceptron (MLP). The pretext task employs randomly positioned
rectangle occlusion to simulate real-world occlusion, outputting
original and occluded images for subsequent representation
learning. The siamese subnetwork synchronously characterizes
the original and occluded images. Then, the cascade supervised
contrastive constraint compels the siamese subnetwork to learn
occlusion-invariant representations. Finally, an MLP is intro-
duced to classify the input scenes based on the learned repre-
sentations and facilitates the quality evaluation of the learned
representation. In the following, Cascade-SupCon is described
in detail.

A. Pretext Task Module

In unconstrained environments, comprehensive occlusion an-
notations may be difficult due to the complexity of occlusion.
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Fig. 2. Graphical illustration of training process of Cascade-SupCon.

This restrains the effectiveness of supervised models for oc-
clusion handling, underscoring the need for the development
of occlusion-level unsupervised/semisupervised methods. Here,
we employ a training process involving pretext tasks [43] to form
the occlusion-level semisupervised learning. This approach sim-
plifies real-world tasks as specific augmentation, which facili-
tates the automatic generation of pseudo-labels and alleviates
the need for occlusion annotations required in training models
with real-world samples. As shown in Fig. 2, we simulate real-
world occlusion by utilizing green rectangles of arbitrary size
and location to occlude images, denoted as Occ(·). Regarding
pseudo-label generation, traditional pretext tasks directly utilize
data itself. However, such a strategy may be ineffective or even
detrimental when applied to occlusion handling, as previously
discussed in Section I. Therefore, we employ the category of
images as pseudo-labels instead of what traditional approaches
use. Then, the output of the pretext task module could be
expressed as

A1 = {(I1, y1), (I2, y2), . . ., (IN , yN )}
A2 = {(Occ(I1), y1), (Occ(I2), y2), . . ., (Occ(IN ), yN )}

(1)

where Ii (i = 1, . . . ,N) denotes the ith image in a minibatch of
N samples and yi denotes the corresponding one-hot encoded
label.

B. Siamese Subnetwork

We attain occlusion invariance by contrasting the representa-
tions of unoccluded and occluded views of a target. This is ac-
complished through our siamese subnetwork, which comprises
a two-branch structure that learns the representations of two
input sets (i.e., A1 and A2). More specifically, we utilize con-
volutional layers of ResNet-50 [44] to construct two branches

Fig. 3. Architecture of siamese ResNet-50.

of the siamese network (i.e., siamese ResNet-50). As shown in
Fig. 3, the network is composed of stem layer, stage layers (i.e.,
S1, S2, S3, and S4), and an adaptive pooling layer (i.e., S5).
The stem layer is constructed by 64 7× 7 convolution kernels
and a 3× 3 max-pooling layer. Each stage layer consists of
several identical bottlenecks that share the same parameter C.
For example, the S1 layer is a composition of three bottlenecks
that all contain a shortcut connection, C 1× 1, C 3× 3, and 4C
1× 1 convolution kernels.

In order to reduce the amount of parameters, two branches are
weight-shared. The input A1 ∪A2 is processed by a stem layer,
four stage layers, and an adaptive pooling layer in sequence. The
Si layer would generate a set of representations as

xi = {x1
i , . . ., x

N
i , xN+1

i , . . ., x2N
i } (2)
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where xj
i (j = 1, . . ., N) indicates the representation of the

jth original image, and xN+j
i (j = 1, . . ., N) stands for the

representation of the jth augmented image. The final output x
of siamese ResNet-50 could be represented as

x = {x1, x2, x3, x4, x5} (3)

where xi (i = 1, 2, 3, 4, 5) refers to the representation set of Si
layer.

C. Cascade Supervised Contrastive Constraint

After applying Siamese ResNet-50, we enhance the network’s
occlusion invariance by implementing a cascade supervised
contrastive constraint. Contrastive constraint usually involves
a similarity computation and a contrastive loss; given two rep-
resentations of the same layer xj

i and xk
i , the similarity between

them could be computed as

d(xj
i , x

k
i ) =

xj
i

T
xk
i

||xj
i ||||xk

i ||
. (4)

The design of the loss function is crucial in achieving occlu-
sion invariance. In the following, we first introduce the conven-
tional contrastive learning loss function and its limitations in
handling occlusion. Then, we explain the design of the cascade
supervised contrastive loss function. Conventional contrastive
learning is class-level semisupervised; therefore, only the anchor
image and the augmented image are considered a positive pair. In
addition, the majority of conventional contrastive loss functions
usually operate on the final layer of a siamese neural network.
Consequently, given a representation of the adaptive pooling
layer xj

5, the positive sample would be xN+j
5 . To learn a repre-

sentation space where positive samples are closer and negative
samples are further away, conventional losses [37], [39], [41],
[42] could be expressed as

lj5 = −log
exp (d(xj

5, x
N+j
5 )/τ)

∑2N
k=1 1j �=k exp (d(x

j
5, x

k
5)/τ)

(5)

where 1k �=i denotes an indicator function output 1 if and only
if k �= i and τ controls the model sensitivity towards hard
negative samples. When τ is higher, two negative but similar
samples would cause greater loss. Minimizing such losses would
decrease the representation distance between the original image
and the corresponding occlusion augmented image, introducing
pretext task invariance to the network. With the generalization
ability of contrastive learning, the invariance of rectangle occlu-
sion could even extent to real-world occlusion.

Although conventional contrastive losses introduce certain
degree of occlusion invariance, such a configuration is not
enough to handle occlusion. On the one hand, the manner of
defining positive and negative sample pairs could be detrimental
to occlusion handling. As shown in Fig. 4(a), the representation
of the occluded image (e.g., the pink point) is located far away
from their anchor image (e.g., the red point). By minimizing
conventional losses, the similarity between the representation
of the anchor and augmented images would increase, as shown
in Fig. 4(b). Nonetheless, images within the same category are

Fig. 4. Graphical illustration of the motivation to our work. The occlusion
effects on representation space are described in (a). The optimization objective-
ness of contrastive learning is described in (b). The optimization objectiveness
of Cascade-SupCon is described in (c).

considered negative and the similarity of their representation
would be decreased. For example, though the red green points
both stand for airplane representation, their distance would even
increase after the loss optimization. This positive sample defini-
tion could loosen the intraclass distribution and may worsen the
high-intraclass diversity problem caused by occlusion. On the
other hand, the constraint of conventional contrastive losses is
inadequate. They only constrain the representation of the final
layer to be occlusion invariant. Intermediate layers could also
generate high semantic representation, which implies that they
should also be occlusion invariant.

As discussed above, conventional contrastive losses may re-
sult in a loose intraclass distribution. In our approach, images
belonging to the same class are considered as positive, while
those belonging to different classes are considered as negative.
Although this configuration requires category annotation, it still
falls under the category of occlusion-level semisupervised learn-
ing. We improve the conventional contrastive loss as defined in
(6) in terms of supervised contrastive learning (SupCon) [45],
forming loss as

lj5 =
1

|P (xj
5)|

∑

xp
5∈P (xj

5)

li,p

=
−1

|P (xj
5)|

∑

xp
5∈P (xj

5)

log
exp (d(xj

5, x
p
5)/τ)∑2N

k=1 1k �=i exp (d(x
j
5, x

k
5)/τ)

(6)

where P (xj
5) is a set of representations standing for the same

category as xj
5, and |P (xj

5)| is the cardinal number of P (xi).
First, optimizing such loss would also introduce pretext task in-
variance because xN+j

5 ∈ P (xj
5). Moreover, the same category

representation is defined as positive, which helps decreasing the
intraclass diversity. The loss of the final layer takes the following
form:

Lcon
5 =

1

2N

2N∑

i=1

lj5. (7)

In order to endow all high semantic representations with
occlusion invariance, we apply contrastive loss to intermediate
layers. Such a way significantly improves the performance of
RS occlusion scene classification. Then, the Cascade-SupCon
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loss Lcon is formulated as

Lcon =
5∑

i=1

aiL
con
i (8)

where Lcon
i refers to the contrastive loss of the ith layer, and

ai ∈ {0, 1} decides the contribution of Lcon
i .

D. Multilayer Perceptron

The final step of Cascade-SupCon is classification with MLP.
It is an application of cascade supervised contrastive constraint
and facilitates the evaluation of learned representation. As aug-
mentation benefits classification, we take the augmented repre-
sentation xaug

5 = {xN+1
5 , . . ., x2N

5 } of the adaptive pooling layer
as input. In order to simultaneously generate occlusion-invariant
representations and produce accurate class predictions, we de-
sign the final loss as the sum of cascade supervised contrastive
loss Lcon and cross-entropy classification loss Lcls, which could
be formulated as

L = Lcon + Lcls

Lcls = − 1

N

N∑

i=1

M∑

j=1

yi,j log(yi,j
′) (9)

where yi,j ∈ {0, 1} denotes that the ith image in the minibatch
belongs to the jth class and yi,j

′ ∈ [0, 1] refers to the probability
that the ith image in minibatch belongs to the jth class.

III. DATASETS

We utilize UAVDT [46] and simulation datasets to evaluate
the performance of Cascade-SupCon. The UAVDT dataset is
utilized to assess the network performance in real-world oc-
clusion handling, while the simulated datasets are used for
further network behavior analysis due to the lack of fine-grained
occlusion annotations in the real-world data. In this section, we
introduce the UAVDT and the simulation datasets separately.

A. UAVDT Dataset

UAVDT is developed to facilitate a range of UAV computer
vision applications in unconstrained environments, including
those with various types of occlusion, weather conditions, and
camera viewpoints. To evaluate the performance of Cascade-
SupCon, we transform the dataset into a scene classification
format. Specifically, we train the model on a set of 15 000 unoc-
cluded samples and test it on a set of 6429 unoccluded and 300
occluded samples. This enables us to assess the network’s ability
to classify real-world RS images with and without occlusion,
even though it has not received specific training on occluded
samples.

B. Simulated Datasets

Several RS image datasets include occluded samples. How-
ever, they do not annotate whether the objects are occluded
or elaborately describe the occlusion status, such as occluder’s
sizes and types. This situation hinders the further analysis of the

network occlusion handling mechanism. The computer vision
community usually uses simulated occlusion to aid network
analysis because simulation methods can fully control occlusion
status. The popular PASCAL 3D+ [47] and Occluded-COCO-
Vehicles [14] are simulated datasets, yet they expedite the
progress of occlusion handling massively. Therefore, we gen-
erate simulated datasets based on DIOR [48] and LEVIR [49],
namely, DIOR-Occ and LEVIR-Occ, to support further analysis
of the proposed method.

As shown in Fig. 5, we simulate occlusion by sticking various
patterns as occluders. Since the real-world occlusion is complex,
our simulation is designed to have the following characteristics.

1) The occlusion on an object is randomly simulated, where
the position of the occlusion is not predetermined, and
therefore, the occlusion is randomly spatially distributed.
The randomness of simulated occlusion is an imitation
of real-world occlusion, which has been adopted in most
available occlusion datasets [14], [47]

2) The patterns’ size is diverse, which mimics multiscale
occlusion. The sizes of patterns are divided into four
occlusion levels, namely, L0 (no occlusion), L1 (20–40%
area of the object is occluded), L2 (40–60% area of the
object is occluded), and L3 (60–80% area of the object is
occluded).

3) The types of occluders are abundant, including rectangles,
clouds, trees, and camouflages. Besides, the shapes and
colors of patterns are diverse, even when those patterns
are of the same type. For example, we introduce different
shapes of clouds, such as sparse and dense clouds. The
colors of clouds are also multifarious, like dark and white
clouds.

In our experiments, we use 70% of the data as a training set
and 30% as a test set. For DIOR-Occ, it has four types of objects
(airplanes, ships, storage tanks, and windmills), with 17 635
samples in the training set and 7560 samples in the test set.
LEVIR-Occ includes three types of objects (airplanes, ships, and
storage tanks), with 7718 samples in the training set and 3310
samples in the test set. To assess the network’s generalization
ability on out-of-distribution occlusion samples, the training set
of both DIOR-Occ and LEVIR-Occ only contains L0 data, while
the test set includes four types of occlusion (rectangle, tree,
cloud, and camouflage) and four levels of occlusion (L0, L1,
L2, and L3).

IV. EXPERIMENTS

In this section, we present the results and discussion of exper-
iments being conducted on the UAVDT and simulated datasets
to showcase the effectiveness of the proposed Cascade-SupCon.
The experiments on the UAVDT dataset aim to demonstrate the
usefulness of the proposed method in real-world occlusion han-
dling, while the experiments on the simulated datasets illustrate
the behavior and mechanism of Cascade-SupCon. The rest of
this section is organized as follows. Section IV-A provides the
definition and intuitive meaning of the metrics adopted in our
experimental result analysis. Section IV-B details the networks,
parameter settings, and computation environment being used in
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Fig. 5. Examples of different occlusion types and categories on the simulated DIOR-Occ dataset.

the experiments. In Section IV-C, we evaluate the classification
performance on various datasets, while Sections IV-D–IV-F
analyze the network behavior from intraclass, interclass, and
cascade strategy angles, respectively.

A. Evaluation Metrics

This section introduces five quantitative evaluation metrics
adopting for analyzing experimental results.

1) Classification Accuracy: The classification accuracy is
used to assess the scene classification performance. In the ex-
periment, we measure the classification accuracy of different
categories and different occlusion levels to analyze the occlu-
sion robustness of the model. Meanwhile, we comprehensively
measure the model’s performance using the overall classification
accuracy.

2) Global Moran Index (GMI): The GMI [50] initially mea-
sures the spatial autocorrelation between geographic entities. In
our experiments, we utilize GMI to measure the dependence
of intraclass representation distribution on occlusion levels and
types. The value of GMI ranges from −1 to 1. When the GMI
approaches 0, the data distribution does not rely on occlusion
status and distributes randomly. When the GMI approaches 1,
the data distribution shows positive autocorrelation, meaning
that the objects with similar occlusion status gather together.
On the contrary, the data distribution shows negative autocor-
relation when the GMI nears −1, representing that data with
similar occlusion status repel each other. In short, the network
that produces a GMI closer to 0 can be recognized as more
occlusion invariant because it generates representations that are
less affected by occlusion.

3) Trace of Interclass Covariance Matrix (TSB): TSB refers
to differences between interclass representations. The interclass

covariance matrix is the covariance matrix of each class’s mean
vectors (representations), and TSB is the trace of it. When TSB
is larger, the difference between interclass representations is
more significant, which facilitates learning robust discrimination
functions.

4) Trace of Intraclass Covariance Matrix (TSW): TSW mea-
sures the differences of the intraclass representations. The intr-
aclass covariance matrix of a category is defined as the covari-
ance matrix of such class’s representations. TSW is defined as
the prior probability-weighted sum of the intraclass covariance
matrix of each class. The smaller the TSW, the more compact the
intraclass distribution, reducing the chance of misclassifications.

5) Geometric-Based Separability Criterion: It is inadequate
to measure representation separability using TSB and TSW
alone because separability depends simultaneously on inter- and
intraclass distribution. We use the geometric separability crite-
rion (J) to measure the overall separability of the representations.
J is defined as TSB/TSW, which can comprehensively consider
intraclass differences and interclass differences. The larger the
J, the more significant the interclass difference, and the more
compact the intraclass distribution; consequently, the better the
separability.

B. Experimental Setups

We conduct experiments using six occlusion level unsuper-
vised/semisupervised networks, namely, ResNet-50, ResNet-50
with occlusion augmentation, MoCo, SimCLR, SupCon, and
Cascade-SupCon. ResNet-50 experiments demonstrate that con-
ventional CNNs are not robust to RS occlusion and reveal the
effects of occlusion on representations learned by CNNs. To
conduct ablation experiments, we use ResNet-50 with occlusion
augmentation since contrastive learning methods (i.e., SimCLR,
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TABLE I
UAVDT CLASSIFICATION ACCURACIES

MoCo, SupCon, and Cascade-SupCon) rely on data augmenta-
tion. We analyze the SimCLR and MoCo classification perfor-
mance and network behavior to decide our baseline contrastive
learning model and identify the gap between contrastive learning
and occlusion handling. Furthermore, we reference SupCon to
add category constraints to contrastive learning, which alleviates
the loose intraclass distribution problem of contrastive learning
in occlusion handling. Finally, the experiments of Cascade-
SupCon further certify the effectiveness of the proposed method,
specifically category constraints and cascade strategies.

The general network setups are as follows: input images are
resized to 224× 224, and all networks are trained for 20 epochs
using SGD as the optimizer, with a learning rate of 0.001 and a
momentum of 0.9. We set the learning rate empirically without
any specific considerations. Setting the learning rate to 0.001
has been used in many existing works, such as [51], [52], and
[53] and deep learning API [54]. ExponentialLR is used with
the parameter γ set to 0.6 to decrease the learning rate after each
epoch. The experiments are performed on an NVIDIA RTX-
2070 Super with 8-GB RAM, and the batch size is set to 4.
For Cascade-SupCon, we set the temperature parameter τ to
0.07, which is popular in contrastive learning. Regarding the
cascade contributions ai, we set them to 1 when i = 4, 5 and 0
when i = 1, 2, 3, 4. This choice is based on the consideration that
low-level representations are not necessarily occlusion invariant.

C. Experiment 1—Classification Performance

We conduct separate scene classification experiments on the
UAVDT and simulation datasets. The following sections present
and discuss the respective experimental results. The UAVDT ex-
periments confirm that the proposed Cascade-SupCon approach
is capable of satisfactorily handling real occlusion. Furthermore,
the simulation dataset experiments provide additional evidence
of the advantages of the Cascade-SupCon method.

1) UAVDT Classification Accuracy Comparison: Table I
showcases the classification accuracies on the UAVDT dataset.
The first column demonstrates that ResNet-50 can accurately
classify unoccluded scenes; however, the accuracy drops by
48.4% for occluded scenes. This lack of robustness highlights the
need for developing occlusion-invariant methods for applying
CNNs to unconstrained RS images. SimCLR shows a 7.7%
improvement in accuracy for occluded scenes compared with
ResNet-50. However, the 11.2% drop in accuracy for unoccluded
scenes indicates that it is insufficient for occlusion handling
when compared with ResNet-50. Regarding MoCo, the occlu-
sion classification accuracy is unsatisfactory, and the unoccluded
classification accuracy even shows severe degradation. This
highlights a discrepancy between the potential of trendy con-
trastive learning for learning occlusion-invariant representation

and its current limitations in handling occlusion effectively. We
evaluate the performance of SupCon and find that it can classify
both unoccluded and occluded scenes accurately, indirectly in-
dicating that the gap between contrastive learning and occlusion
handling stems from the lack of category constraints. Finally, we
present the classification performance of Cascade-SupCon in the
sixth column. Cascade-SupCon improves the occlusion classifi-
cation performance by 16.4% compared with ResNet-50 while
retaining the ability to classify unoccluded scenes. These results
demonstrate that the proposed Cascade-SupCon approach is
suitable for real RS applications in occlusion environments.

2) Simulation Dataset Classification Accuracy Comparison:
We present the classification accuracies on simulation datasets
in Table II. In two simulation datasets, the average accuracies
perform similarly to the UAVDT experiments. The effects of
occlusion on CNNs’ classification accuracy are more specific in
this result. We can see that ResNet-50 can classify L0 data well.
However, the accuracy drops sharply as the occlusion degree
increases. In DIOR-Occ, the classification accuracy degradation
even reaches 58.1% when the objects are severely occluded. It
demonstrates that applying CNNs in occlusion RS images is
unreliable, significantly when the occlusion degrees are high.
The comparison between SimCLR and MoCo reveals that Sim-
CLR performs better in all occlusion levels. Therefore, we
take SimCLR as the baseline contrastive learning model in the
following experiments. Comparing the results of SupCon and
Cascade-SupCon, we can conclude that the cascade strategy
improves the classification ability in every occlusion level. The
advantages of the cascade strategy are more prominent when the
occlusion degree is higher.

D. Experiment 2–Intraclass Analysis

1) Occlusion Effects on Intraclass Distribution: This section
explores the impact of occlusion on the intraclass representa-
tion distribution by comparing the differences in distribution
between unoccluded and occluded data. We begin by obtaining
representations of unoccluded objects. Specifically, we extract
image patches of unoccluded objects from the original DIOR
and LEVIR datasets and apply ResNet-50 for representation
learning. We then use TSNE [55] for dimensionality reduction
to obtain 2-D representations, which facilitate visualization and
intuitive analysis. Fig. 6(a) displays the representation distribu-
tion of unoccluded storage tanks in the DIOR dataset, which
mainly form four clusters.

We investigate the impact of occlusion degrees on the intra-
class representations distribution by conducting an analysis on
image patches that are occluded by trees. We employ ResNet-50
and TSNE to learn representation and reduce dimensionality.
We assign 0.25 to represent L0, 0.5 to represent L1, 0.75
to represent L2, and 1 to represent L3 and use the GMI to
measure the existence of positive spatial autocorrelation in the
occlusion levels. The results, shown in Table III, indicate that
the GMI of both the DIOR and LEVIR datasets, after being
occluded by trees, is significantly greater than 0. This suggests
that the occlusion levels have an impact on the distribution of
representations, and objects with similar occlusion levels tend to
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TABLE II
CLASSIFICATION ACCURACIES ON SIMULATED DATASETS

Fig. 6. Effects of occlusion levels and occlusion types to representation distribution. (a) Scatterplot after ResNet-50 extracts the unoccluded storage tank
representations in the DIOR dataset after TSNE dimensionality reduction. (b) After using trees with different occlusion levels to occlude the storage tank scene in
the DIOR dataset, we show the scatterplots of TSNE dimensionality reduction representations extracted by ResNet-50. Specifically, we use red for L0 level data,
green for L1 level data, blue for L2 level data, and purple for L3 level data. (c) After the storage tank scene in the DIOR dataset is occluded using five types of
occluder at the L3 level, we show the scatterplots of TSNE dimensionality reduction representations extracted by ResNet-50. Specifically, we use red for black
rectangle occlusion data, green for camouflage occlusion data, blue for cloud occlusion data, and purple for noise rectangle occlusion data.

TABLE III
GMI OF DIOR AND LEVIR OCCLUDED BY TREE DIFFERENT

OCCLUSION LEVELS

cluster together. In addition, Fig. 6(b) shows the representation
distribution of occluded storage tank image patches in the DIOR
dataset, where the representations are grouped into five clusters
and the spatial distribution of representation points significantly
correlates with the occlusion level. This finding suggests that the
occlusion levels amplify the differences in the representations
of samples from the same category.

We explore the influence of occlusion types on representations
by using black rectangles, noise rectangles, camouflages, clouds,
and trees with specific occlusion levels to occlude original image
patches. We let 0.2 represent black occlusion, 0.4 represent noise
occlusion, 0.6 represent camouflage occlusion, 0.8 represent
cloud occlusion, and 1 represent tree occlusion. ResNet-50 and

TABLE IV
GMI OF DIOR AND LEVIR OCCLUDED BY DIFFERENT OCCLUSION TYPES

TSNE are used to obtain 2-D representations. Then, we use
GMI to measure whether there is spatial autocorrelation between
representations of occlusion types. As shown in Table IV, when
the occlusion level is L1, the mean values of the GMI of the
DIOR and LEVIR datasets are 0.356 and 0.370, respectively,
which are significantly greater than 0. This shows that even when
the degree of occlusion is relatively small, the representation
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Fig. 7. (a)–(l) TSNE dimensionality reduction scatterplot after extracting representations from storage tank images using each model. Use red for L0 level data,
green for L1 level data, blue for L2 level data, and purple for L3 level data. (a)–(e) are visualizations of the DIOR-Occ dataset. (h)–(l) are visualizations of the
LEVIR-Occ dataset.

distribution still has a significant positive spatial autocorrela-
tion of occlusion types. That is, representations with similar
occlusion types tend to cluster together. When the occlusion
level is L2, the mean GMI values of the two datasets reach
0.632 and 0.567. When the occlusion level is L3, the mean
values of GMI of the two datasets reach 0.866 and 0.771, re-
spectively. This shows that with the increase of occlusion levels,
the influence of occlusion type on the representation distribution
increases sharply. Especially, for the DIOR dataset, the GMI
even reaches 0.866, which indicates that the representation is
almost distributed according to the occlusion types. Fig. 6(c)
shows the representation distribution of storage tank images with
L3 occlusion. It can be seen that the representations form clusters
by occlusion types, and the representation distribution is severely
fragmented. This shows that occlusion types cause significant
differences in terms of intraclass representations, and the richer
the type of occlusion, the more significant the difference.

In summary, the distribution of representations exhibits pos-
itive spatial autocorrelation on both the occlusion level and the
occlusion type. The occlusion level and the occlusion type affect
the spatial distribution of representations, and representations
with similar occlusion levels and occlusion types form clusters.
This phenomenon leads to the fragmentation of intraclass repre-
sentation distribution, resulting in increased intraclass variabil-
ity. In order to reduce the impact of occlusion, it is necessary to
reduce the intraclass variability caused by occlusion level and
occlusion type.

2) Network Intraclass Distribution Comparison: As shown
in Fig. 7, TSNE is used to reduce the dimension of the storage
tank scenes in the two datasets, and the representations are
colored according to the occlusion level. In ResNet-50, the
scattered points are severely fragmented, and the representations
form clusters according to the occlusion level. As shown in
Fig. 7(a)–(d), pretext-task-augmented ResNet-50, SimCLR, and
SupCon effectively reduce the distance between clusters for
the DIOR-Occ dataset, the clusters are still obvious, and there
is a significant positive spatial autocorrelation. As shown in
Fig. 7(e), for the DIOR-Occ dataset, Cascade-SupCon not only

effectively reduces the distance of each cluster but also mixes
representations of different occlusion levels more evenly, effec-
tively reducing the positive spatial autocorrelation. As shown
in Fig. 7(h)–(l), for the LEVIR-Occ dataset, compared with
ResNet-50, pretext-task-augmented ResNet-50, SimCLR, and
SupCon, Cascade-SupCon could better reduce the clustering
distance and reduce the spatial positive autocorrelation. As
shown in Table V, it can be seen that the GMI of ResNet-50 in the
two datasets is 0.839 and 0.805, respectively, showing a strong
positive spatial autocorrelation. The GMI of Cascade-SupCon
in the two datasets is 0.676 and 0.638, respectively, and the
positive spatial autocorrelation is the lowest, which can best
eliminate the influence of the occlusion level on the distribution
of representation classes.

In Fig. 8, TSNE is used to reduce the dimensionality of the
storage tanks scenes in both datasets for visualization purposes.
The resulting plot is colored according to the type of occlusion.
The plot in Fig. 8(a) and (h) shows that ResNet-50 produces
clusters formed by occlusion types, and the representation
distribution is fragmented. Pretext-task-augmented ResNet-50
and SimCLR reduce the distance between clusters and spatial
autocorrelation to varying degrees, as shown in Fig. 8(b), (c)
and (i), (j). However, the results are unsatisfactory. SupCon
reduces the distance between clusters, but the positive spatial
autocorrelation still persists, as illustrated in Fig. 8(d) and (e).
On the other hand, Cascade-SupCon mixes the representations
evenly, effectively reducing the positive spatial autocorrelation,
as shown in Fig. 8(f) and (g). Both SupCon and Cascade-SupCon
effectively reduce the positive spatial autocorrelation for the
LEVIR-Occ dataset, as depicted in Fig. 8(k) and (l). The GMI
of Cascade-SupCon is 0.701 on the DIOR-Occ dataset, which
most effectively eliminates the influence of occlusion types, as
indicated in Table VI. On the other hand, for the LEVIR-Occ
dataset, the GMI of SupCon and Cascade-SupCon is 0.622 and
0.627, respectively, indicating that they almost equally eliminate
the effect of occlusion type.

Based on the aforementioned analysis, it can be concluded
that among the five unsupervised occlusion scene classification



4574 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE V
GMI FOR OCCLUSION LEVELS OF REPRESENTATIONS EXTRACTED ON DIOR-OCC AND LEVIR-OCC TEST SETS

Fig. 8. (a)–(l) TSNE dimensionality reduction scatterplot after extracting representations from storage tank images using each model. We use red for black
rectangle occlusion data, green for camouflage occlusion data, blue for cloud occlusion data, purple for noise rectangle occlusion data, and yellow for unoccluded
data. (a)–(e) are visualizations of the DIOR-Occ dataset. (h)–(l) are visualizations of the LEVIR-Occ dataset.

TABLE VI
GMI FOR OCCLUSION TYPES OF REPRESENTATIONS EXTRACTED ON THE DIOR-OCC AND LEVIR-OCC TEST SETS

algorithms, Cascade-SupCon is the most effective in reducing
the positive correlation between representations and occlusion.
It achieves this by effectively reducing the distance between
clusters and minimizing the differences in representation distri-
bution. Therefore, Cascade-SupCon can effectively mitigate the
impact of occlusion on the distribution of intraclass representa-
tions.

E. Experiment 3—Interclass Analysis

1) Occlusion Effects on Interclass Distribution: We investi-
gate the impact of occlusion on interclass distribution by com-
paring the differences in representations between unoccluded
and occluded images. We perform representation learning using
ResNet-50 on both the original DIOR and LEVIR datasets, as
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TABLE VII
SEPARABILITY INDEX COMPARISON BETWEEN OCCLUDED AND UNOCCLUDED

DIOR AND LEVIR DATASET

Fig. 9. Effects of occlusion on interclass representations. (a) TSNE dimension-
ality reduction scatterplot after using ResNet-50 to extract representations from
the unoccluded DIOR dataset. (b) TSNE dimensionality reduction scatterplot
showing the use of ResNet-50 to extract representations of the DIOR dataset
after occlusion. Both of them use red for planes, green for boats, blue for storage
tank, and purple for windmills.

well as their respective occluded versions. Subsequently, we
compute the TSB, TSW, and J, as shown in Table VII. In the
DIOR dataset, the unoccluded TSB of 51.072 and TSW of
34.998 indicate significant interclass distance and a compact in-
traclass distribution, with a J value of 1.460, indicating good sep-
arability. However, upon the addition of occlusion, TSB drops
to 18.671, TSW increases to 55.127, and J decreases sharply to
0.338, indicating significantly reduced class separability due to
the decrease in interclass distance and the loosening of intraclass
distribution. A similar trend is observed in the LEVIR dataset.
The scatterplots in Fig. 9 of the original DIOR and DIOR-Occ
datasets reveal that the overlap between different classes is mini-
mal prior to occlusion, with a relatively concentrated distribution
of intraclass representations. However, after the introduction of
occlusion, the overlap increases considerably, the distribution
of intraclass representations becomes very loose, and the sepa-
rability decreases significantly. These findings demonstrate that
occlusion can decrease interclass distance and loosen intraclass
distribution, leading to misclassification.

2) Network Interclass Distribution Comparison: Five algo-
rithms are used for representation learning on the test sets of
DIOR-Occ and LEVIR-Occ, and TSB, TSW, and J are calculated
as shown in Table VIII. TSB values of ResNet-50 on both
datasets are 18.522 and 30.477, respectively, indicating that
the distances between various representations are small in the
representations learned by ResNet-50. However, its TSW values
are 55.043 and 2517.045, respectively, indicating a very loose in-
traclass distribution that could result in serious misclassification
due to overlapping representations among various categories.
Consequently, its J value is only 0.336 and 0.012, indicating
poor separability. Augmentation significantly improves the intr-
aclass distribution while maintaining a similar distance between
classes, leading to a TSB of 20.430 in the DIOR-Occ dataset

TABLE VIII
SEPARABILITY INDEX OF REPRESENTATIONS EXTRACTED IN DIOR-OCC AND

LEVIR-OCC TEST SETS

and a TSW of 57.611, which is better than ResNet-50. Similarly,
in the LEVIR-Occ dataset, the TSB remains similar, while the
TSW is greatly improved, demonstrating the effectiveness of
augmentation in compacting the intraclass distribution. SimCLR
shows substantial improvement over ResNet-50 and agent task
enhancement with TSB values of 71.017 and 70.978 in the DIOR
and LEVIR datasets, respectively. However, SimCLR performs
poorly on TSW, with the DIOR data’s TSW even expanding to
642.189 and a very loose intraclass distribution. SupCon has
the highest TSB on both datasets and effectively expands the
interclass distance. However, the TSW is enlarged in the DIOR
dataset, and on the LEVIR-Occ dataset, the TSW is even larger
than the augmentation strategy. This implies that SupCon can
expand the interclass distance but is inadequate in reducing the
intraclass distribution. J values of SupCon on the two datasets
are 1.156 and 0.987, respectively, indicating a significant im-
provement in representation separability. Cascade-SupCon has
a significantly more compact intraclass distribution than other
models, with TSW values of 27.636 and 25.368 on the two
datasets. TSB values of Cascade-SupCon on the two datasets are
73.241 and 52.950, respectively, which are lower than SupCon.
This is because Cascade-SupCon employs a stringent intraclass
distribution constraint, which results in a compact intraclass
representation distribution. This means that even with a lower
interclass distance, TSB converges to a lower value without
causing extra loss. Although Cascade-SupCon’s TSB values are
not the best, its J values of 2.650 and 2.087 on the two datasets
are two times larger than the J of SupCon, indicating that it
learns the representations with the highest separability among
the comparison methods.

Fig. 10(a) and (h) indicates that ResNet exhibits heavy overlap
between representations of various categories, resulting in poor
separability with close distance between classes. Augmented
ResNet-50, depicted in Fig. 10(b) and (j), effectively reduces
the intraclass distance, but still exhibits severe overlap between
categories and poor separability. Conversely, Fig. 10(c) and (k)
demonstrates that SimCLR increases interclass differences but
suffers from a loose intraclass distribution, with lower values of
J. Despite this, SimCLR still performs better than augmented
ResNet-50. SupCon, as shown in Fig. 10(d) and (i), demon-
strates good separability and significant differences between
classes, but the intraclass distribution remains relatively loose.
Finally, Fig. 10(e) and (k) demonstrates that Cascade-SupCon
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Fig. 10. (a)–(l) TSNE dimensionality reduction scatterplot after using each model to extract the representations of the datasets. We use red for airplanes, green
for ships, blue for storage tanks, and purple for windmills. (a)–(e) are visualizations of the DIOR-Occ dataset. (h)–(l) are visualizations of the LEVIR-Occ dataset.

TABLE IX
OCCLUSION SCENE CLASSIFICATION ACCURACY OF SUPCON WITH DIFFERENT CASCADE LAYERS ON DIOR-OCC AND LEVIR-OCC TEST SETS

has the best separability, displaying a very compact intra-
class distribution and minimal confusion between categories,
ultimately leading to more accurate classifications. We con-
clude that Cascade-SupCon provides an optimal solution to the
problems of small interclass distance, loose intraclass distribu-
tion, and severe occlusion-induced misclassification.

F. Experiment 4—Cascade Strategy Analysis

To investigate the impact of the number of cascade layers
on occlusion scene classification, we present the classification
accuracy on simulated datasets based on the number of cascade
layers in Table IX. While SupCon only constrains the pooling
layer and is unable to accurately classify highly occluded scenes,
Cascade-SupCon employs SupCon on both the pooling layer
and Stage-4 layers, resulting in more comprehensive semantics
constraints. Compared to SupCon, Cascade-SupCon effectively
enhances the classification accuracy for each occlusion level.
However, adopting more cascaded layers does not always yield
better results. The introduction of shallow representations leads
to a decrease in the classification accuracy of occluded scenes
to varying degrees. For instance, when using the DIOR-Occ
dataset, the introduction of Stage-3 representations results in
a classification accuracy of 91.21%, which is lower than the

91.68% achieved by SupCon. In the case of the LEVIR-Occ
dataset, the situation is even more pronounced when consider-
ing the additional introduction of Stage-3, Stage-2, and Stage-
1 representations. The classification accuracy is significantly
lower than that of Cascade-SupCon and even lower than that
of SupCon. This is because the shallow layers of CNNs extract
detailed representations, and it is unreasonable to assume that
the details of occluded and unoccluded images would remain
unchanged. Based on these experimental results, we propose to
limit the constraints to the pooling layer and Stage-4 in Cascade-
SupCon. In future studies, we aim to develop an occlusion scene
classification model that is insensitive to the number of cascaded
layers.

V. CONCLUSION

In this article, we proposed a novel scene classification net-
work capable of working in partially occluded scenarios, called
Cascade-SupCon. The network is based on contrastive learning,
which is used to classify occluded RS images for the first time.
By employing contrastive learning, interclass similarity induced
by occlusion decreases without the need for occlusion annota-
tion. In addition, the method can increase intraclass similarity
by introducing category information. Furthermore, it generates
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occlusion-invariant representation hierarchically using a cas-
cade strategy, which improves its occlusion handling capabil-
ity. Our network is evaluated on UAVDT and two simulation
datasets, and the results demonstrate that it can adapt to severe
and unseen occlusion. In our work, we also introduced additional
evaluation metrics to comprehensively assess occlusion scene
classification performance. Experimental results suggest the ex-
cellent performance of our method. In future work, this method
could be extended to object detection and semantic segmentation
applications.
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