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DMANet_KF: Tropical Cyclone Intensity Estimation
Based on Deep Learning and Kalman Filter From

Multispectral Infrared Images
Wenjun Jiang , Gang Hu , Tiantian Wu, Lingbo Liu, Bubryur Kim, Yiqing Xiao, and Zhongdong Duan

Abstract—It is very crucial to identify the intensity of tropical
cyclone (TC) accurately. In this article, a novel TC intensity esti-
mation method is proposed to estimate the TC intensity from mul-
tispectral infrared images in the Northwest Pacific Basin. A deep
multisource attention network (DMANet) is proposed to model the
dynamics of multispectral infrared images along the spatial dimen-
sion. We first introduce a message-passing enhancement module
based on the conditional random fields to process multispectral
infrared images. Multispectral data transfer the complementary
information to refine the features of TC. Second, we utilize a local
global attention module to make the model focus on local key
features (i.e., the typhoon eye) and obtain deeper global semantic
information of TC. The ablation experiment is set up in the same
dataset and computing environment to verify the effectiveness of
each module. Finally, we use a Kalman filter to correct the error of
TC intensity during its lifetime estimated by the DMANet model.
After using Kalman filter, the evolution of TC intensity becomes
smooth and corresponding root-mean-square error (RMSE) de-
creases from 9.79 to 7.82 knots. Compared with the best result
of the existing TC intensity estimation method, the RMSE of our
method is reduced by 9.07%. Therefore, the proposed TC intensity
estimation method shows a great potential for accurately estimating
the TC intensity.

Index Terms—Attention mechanism, deep learning, intensity
estimation, Kalman filter, tropical cyclone (TC).
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I. INTRODUCTION

G LOBAL warming did not significantly increase the occur-
rence frequency of tropical cyclones (TCs) in the past few

decades but had made TCs stronger [1]. The Northwest Pacific
Basin is one of the most active areas of TCs. In total around, 23
TCs occur over the Northwest Pacific Basin annually, causing
serious casualties and economic losses to the coastal areas [2],
[3]. In order to mitigate TC-induced disasters in the coastal areas,
it is important to estimate the TC intensity fast and accurately.

TCs usually form and mature on the warm ocean far away
from the land. Due to the limited detection distance, most
onshore weather radars cannot measure wind speed of TCs. In
contrast, the meteorological satellites can stably observe TCs
and obtain the satellite cloud images (SCIs) containing abundant
TC feature information. Although, SCIs cannot directly reflect
the TC intensity, it is very useful for estimating the TC inten-
sity [4]. Dvorak [5] proposed a Dvorak technique to estimate
the TC intensity only based on TC cloud features observed
in visible light satellite images. This technique focuses on the
typhoon eye area, the cloud type features of the typhoon eye wall,
and the spiral rain belt features of the periphery. However, the
Dvorak technique largely relies on the experience and intuition
of meteorological experts. With the development of infrared
imaging technology, Dvorak [6] introduced infrared satellite
images to obtain the cloud top brightness temperature of TC
at night, which promoted the development of Dvorak technique.
In 1984, Dvorak [7] further improved the objectivity of Dvorak
technique. After that, Velden et al. [8], [9], [10] and others
continuously optimized the Dvorak technique and successively
proposed ODT, AODT, and ADT algorithms, which further
improved the accuracy of Dvorak technique and reduced its
subjectivity, and achieved the automatic determination of TC
intensity.

The previous studies also used machine learning to estimate
the TC intensity. Statistical features and structural features were
extracted from TC infrared images, which can be used as the
input of machine learning models. Zhang et al. [11] extracted 15
statistical parameters from infrared images and proposed an ob-
jective technique to estimate the TC intensity using a correlation
vector machine. Zhao et al. [12] extracted deviation angles and
radial profiles from infrared images, then these features were
used to estimate the TC intensity based on a multiple linear
regression model. Dai et al. [13] established a relevance vector
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machine (RVM) using the mean brightness temperature gradient
of the TC eyewall with a probability of 95%. Zhang et al. [14]
constructed the deviation angle co-occurrence matrix based on
TC infrared geostationary satellite images, which was used to
estimate the TC intensity using RVM. Xiang et al. [15] developed
an intensity estimation method based on the multivariate linear
regression algorithm by learning the relationship among the TC
maximum sustained wind speed, the microwave brightness tem-
perature, and the sea surface wind speed. Liu et al. [16] used the
two-dimensional (2D) PCA algorithm to extract features from
satellite bright temperature images, then the features were used
in the k-nearest neighbor algorithm to estimate the TC intensity.
Asif et al. [17] used a kernelized support vector regression to
estimate the TC intensity. Lee et al. [18] developed a machine
learning intensity estimation system based on the spatial and
temporal features of TC satellite images.

However, the previous methods for TC intensity estimation,
including the Dvorak technique and machine learning methods,
usually extract TC features manually from the infrared satellite
images depending on the experience and intuition of experts,
leading to a certain degree of subjectivity [19], [20]. The features
of TC are extracted by the deep learning model, which can avoid
the subjectivity produced by extracting features manually. In
recent years, deep learning has been developed rapidly [21], e.g.,
convolutional neural networks (CNNs) [22], recurrent neural
networks [23], and generative adversarial networks [24], [25].
Due to the strong capability of deep learning, some researchers
tried to apply the deep learning models to the field of remote
sensing [26], [27], [28]. Combinido et al. [29] used a VGG-19
model to achieve a root-mean-square error (RMSE) of 13.23
knots, an accuracy comparable to the current feature-based
intensity estimation technologies (i.e., [12], [30], [31], [32]),
and pointed out that a clear typhoon eye is a sign of strong TC.
Chen et al. [33] used the CNN model to estimate the TC intensity,
which is trained by the satellite infrared brightness temperature
and microwave rain-rate data of TCs in all basins around the
world. But the model did not use the max-pooling layer to
prevent the typhoon eye feature from being ignored during the
learning process. Wimmers et al. [34] used 37, 85–92 GHz chan-
nels to extract TC images as the input data of the proposed model,
and the corresponding RMSE result is 10.60 knots. Compared
with aircraft reconnaissance observations, the RMSE result is
accurate enough. Kar et al. [35] extracted the geometric features
of TC images, which were used for the classification based on
a multilayer perceptron. Lee et al. [36] took the superposition
of infrared satellite images of multiple different channels as
the input of CNN model and indicated that infrared images
of different wavelengths can obtain the cloud information of
different heights. The simple superposition input of TC images
of different wavelengths cannot effectively take the advantage
of remote sensing data. Zhang et al. [37] proposed a two-branch
CNN model to estimate the TC intensity, which is trained by the
infrared and water vapor images of the Northwest Pacific Basin.
They used the temporal information, i.e., there is no obvious
change in the TC intensity at adjacent instants. This strategy
was introduced into the loss function of CNN model. Dawood et
al. [38] used the publicly available dataset HURSAT-B1 to input

CNN model for the TC intensity estimation. Higa et al. [20]
performed the fisheye distortion preprocessing on the satellite
images to enhance the features of TCs (i.e., typhoon eye, eye
wall, and cloud distribution). Combined with the knowledge in
this field, the VGG-16 model is used to estimate the TC intensity
category. Wang et al. [39] proposed a CNN model using the
attention mechanism to achieve great results of the TC intensity
estimation. Apparently, deep learning has been successfully used
to estimate the TC intensity [40].

Although deep learning has made significant achievements in
the TC intensity estimation, it is still a very challenging problem.
First, with the rapid development of remote sensing technique,
the resolution and number of remote sensing satellite data are in-
creasing dramatically. For example, BlackSky constellation in-
cludes a total of seven remote sensing satellites with a resolution
of 0.85–1.3 m per pixel, which can get submeter-level remote
sensing images [41]. However, some of the above scholars only
use single-channel spectral data, while others use multispectral
data, but only stack different channel spectral data as the input
of deep learning models. Remote sensing technology conducts
large-scale detection and observation from different heights,
which contains a lots of spatial information, but the advantage of
remote sensing data is not exploited in the above TC estimation
methods. Therefore, how to effectively use multispectral data
is still a challenge. Second, most of the deep learning models
repeatedly stacked convolution layers and max-pooling layers,
so the feature of the typhoon eye is weakened. However, the
typhoon eye is one of the most important features to charac-
terize the TC intensity, and a full exploitation of this feature
is crucial for estimating the TC intensity accurately by using
deep learning model. Third, in the research of deep learning for
the TC intensity estimation, many scholars smoothed the results
estimated by the deep learning models to improve the accuracy of
intensity estimation [19], [37]. However, the method of directly
smoothing the full cycle intensity curve is inappropriate. The
reason is that the smoothing operation of current TC intensity
should not consider the future TC intensity.

In this study, in order to solve the above problems, a novel
TC intensity estimation method is proposed, and the flowchart
is shown in Fig. 1. First, a data preprocessing method is pro-
posed for the unbalanced dataset. Second, a novel deep mul-
tisource attention network (DMANet) is proposed for the TC
intensity estimation, which makes full use of advantages from
two aspects: the beneficial fusion of the multispectral data and
the focus on the important feature of TC. A message-passing
enhancement module (MPEM) is used to capture and transmit
complementary information between the multispectral data and
refine the multispectral features from different subnetworks.
Meanwhile, the attention mechanism is applied in a local global
attention module (LGAM), so higher altitude is given to the
area of typhoon eye by the local attention mechanism. The
global attention mechanism helps the DMANet model to im-
prove its overall performance and learn deeper global semantic
information. Finally, each subnetwork separately estimates the
TC intensity from different spectral data and adds the weights
to obtain the finally TC intensity estimation of the DMANet
model. Third, we use a Kalman filter for better estimation results.
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Fig. 1. Flowchart of the proposed method.

Kalman filter uses the dynamic information of TC intensity
change. The state information and mean squared error infor-
mation at time step of n− 1 can be used to recursively obtain
the TC intensity estimation at time step of n, then the estimated
value at time step of n can be used to correct the TC intensity
estimated by the DMANet model, and better results can be
obtained.

In summary, the contributions of the present study are three-
fold.

1) We introduce an MPEM in the CNN model. The message-
passing operation can be used to enhance the expressive-
ness of important features of TCs so as to improve the
accuracy of TC intensity estimated by the model.

2) We propose an LGAM in the CNN model. It can make the
model focus on the area with a large amount of information
and enhance the ability of grasping the global feature. The
robustness of the model to object variability and spatial
layout can also be improved.

3) We use a Kalman filter to correct the error of intensity
estimation by the DMANet model. To our best knowledge,
Kalman filter is first used for TC intensity estimation
correction, and we have verified its applicability in this
study.

II. DATA OF TC

A. Data Source

The input data used for training the DMANet model come
from the high-resolution infrared satellite images of four infrared
channels captured by the Japanese Meteorological Satellites
(i.e., MTSAT-1R, MTSAT-2, and HIMAWARI-8 Satellites) in

Fig. 2. Different wavelength channels contain TC information at different
heights.

the Northwest Pacific Basin. The data were obtained from the
National Institute of Informatics of Japan (http://agora.ex.nii.
ac.jp/digital-typhoon/). The TC intensity data are provided in
the format of an integral multiple of five knots. When the TC
intensity is lower than 35 knots, it is marked as 0 knots. Each
original satellite image contains 512× 512 flat pixels and covers
about 20◦× 20◦ geographical area.

The infrared channels with different wavelengths (see Table I
and Fig. 2) are used by meteorological satellites to detect stra-
tus information and convective patterns at different heights of
atmosphere [36]. Infrared 1 (IR1, 10.3–11.3 μm) and infrared
2 (IR2, 11.5–12.5 μm) are widely used to detect high-level
cloud information, e.g., water vapor information [42], [43]. The
spectral response function of the middle wavelength shows that
the troposphere contributes the most energy, so infrared 3 (IR3,

http://agora.ex.nii.ac.jp/digital-typhoon/
http://agora.ex.nii.ac.jp/digital-typhoon/
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TABLE I
INSTRUMENT SPECIFICATIONS FOR WEATHER SATELLITES PROVIDING DATA

Fig. 3. Image transformation. (a) Original image. (b) Rotated 90◦ clockwise.
(c) Rotated 180◦ clockwise. (d) Rotated 270◦ clockwise. (e) Horizonal flip.
(f) Vertical flip.

6.5–7.0 μm) is more sensitive to the atmospheric composition
in the middle layer [44]. Infrared 4 (IR4, 3.5–4.0 μm) is more
sensitive to the droplet size change than the long wave channel in
the lower altitude atmosphere. Infrared 4 is particularly useful
for low cloud identification and is widely used to detect low
clouds [45], [46].

B. Data Preprocessing

In order to train the deep learning network, we collected the
data of four infrared channels as the input of the model. A total
of 343 TCs were recorded from 2007 to 2021. The sampling
frequency of satellite images is 6 h, but only about 3.3% of
the TC images represent TC intensity exceed 100 knots, so the
dataset is unbalanced. Unbalanced data make the model to fit
primary data first, eventually leading to model overfitting [47].
In order to solve the problem of dataset imbalance, the dataset is
balanced mainly by the secondary sampling and image transfor-
mation. When the TC intensity reaches 100 knots, the sampling
frequency is 1 h. Even after the secondary sampling, the dataset
is still unbalanced. As shown in Fig. 3, we continue to balance
the dataset by the image transformation. Rotating TC infrared
satellite images at different angles to expand the high-intensity
data samples, we only select 90◦, 180◦, and 270◦ as the rotation
angles because other rotation angles may cause the TC satellite
images to lose important features of TCs, such as the spiral rain
belt. TCs in the northern hemisphere rotate counterclockwise
in SCIs. After the images are transformed by the horizontal

TABLE II
NUMBER OF SAMPLES BEFORE AND AFTER IMAGE TRANSFORMATION

and vertical flip, the TC rotation direction becomes clockwise,
which can enhance the generalization ability of the network. For
samples with intensity of 120 knots and 125 knots, not only five
image transformation methods will be used but also the number
of samples will be increased by copying.

After the second sampling operation, the dataset is divided
into the training set, validation set, and testing set. Under the
same TC, the intensity of TC and the cloud distribution of SCIs
in the adjacent time have insignificant change. If the dataset of
SCIs for all TCs is mixed and simply divided by percentage, the
data information will be leaked out. Specifically, the training
set, validation set, and testing set may all include SCIs of one
TC. In order to prevent the data information leakage, the SCI
samples of 36 TCs were randomly selected as the validation set
and the other 36 TCs as the testing set. More details of dividing
the dataset are given in Table II. To eliminate the influence of
unnecessary features (e.g., disordered clouds) in the SCIs on the
performance of the network, the original image with a size of
512 × 512 is cropped to 400 × 400 with remaining the center of
the image, and then is compressed to 224 × 224. The selection
of cropping size is illustrated in Section V-A1. Meanwhile, all
pixel values are normalized as the input of the deep learning
model in this study.

III. METHODOLOGY

A. DMANet Overview

In the TC intensity estimation, the CNN model is usually used
to estimate the TC intensity. Lee et al. [36] used four infrared
satellite images with different wavelengths, which are stacked
into four channel images as the input of CNN model. In this
way, the complementary information between different spectral
channels cannot be fully captured. To overcome this weakness,
an MPEM is introduced in the present study. The module fuses
multispectral data and passes the complementary information
between different spectral data. The MPEM is described in detail
in Section III-B. In addition, inspired by Higa et al. [20], we
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Fig. 4. Overall framework of the proposed DMANet.

realize that the clarity of the typhoon eye and the overall shape
of the TC are two important features to estimate the TC intensity.
We propose the LGAM to enable model to focus on the feature
of the typhoon eye, surrounding clouds and overall shape of TC.
The current TC intensity is assessed by the network from these
above features. The LGAM is described in detail in Section III-C.
The proposed DMANet) is mainly composed of the MPEM and
LGAM.

To ensure a fair comparison with different models that use
RGB images, we convert grayscale images to RGB during the
preprocessing stage. As shown in Fig. 4, in the preceding steps of
LGAM, each subnetwork is repeatedly stacked by convolution
layers and max-pooling layers. The corresponding dimensions
are convi_1 [32, 3, 5, 0] (input 3 dimensions, output 32 dimen-
sions, 5 × 5 convolution kernel, 0 padding, i corresponds to
the subnetwork), max-poolingi_1 [4, 2] (4 × 4 window size,
2 stripes), convi_2 [64, 32, 3, 0], max-poolingi_2 [3, 2], and
convi_3 [64, 64, 3, 0]. The feature map after each convolution
layer corresponds to different dimensions (32 × 220 × 220,
64 × 107 × 107, 64 × 51 × 51), so three groups of dif-
ferent scale features are formed. Different feature maps in
each group use the MPEM for message passing. The feature
map generated by the last MPEM of each subnetwork is input
to the LGAM, respectively. Since the feature maps of each
group correspond to different dimensions, the enhanced feature
maps contain deeper semantic information about the features of
TCs.

In each subnetwork, the final output value Pi of feature map
is multiplied by a certain weightαi, and their summation is used
to estimate the TC intensity. This process can be expressed as
the following formula:

kt =
4∑

i=1

Piαi (1)

where kt is the TC intensity estimation of the DMANet model;
Pi is the final output value in each subnetwork; and αi is the
weight corresponding to Pi.

B. MPEM

The advanced meteorological satellite technology provides
multispectral infrared satellite images. How to make full use of
multispectral data is a challenge, so an MPEM is proposed. The
MPEM refines features on the feature map generated by infrared
images of different wavelengths by adequately exploring the
complementarity of multispectral data based on conditional
random fields (CRFs) [48]. Each feature map can transfer its
own useful messages to other feature maps and receive useful
messages from other feature maps simultaneously.

Different spectral data can represent the cloud information at
different heights of TCs. The MPEM is used to dynamically fuse
the multispectral data to improve the accuracy of TC intensity
estimated by the DMANet model. The feature maps generated
by different subnetwork are denoted as X = {x1, x2, . . ., xi},
while the output feature maps obtained after message passing are
represented by X̂ = {x̂1, x̂2, . . ., x̂i}. CRFs are used to model
the conditional distribution of X and X̂ , and the condition
distribution is defined as follows:

P (X̂|X, θ) = 1

Z(X, θ)
exp(Φ(X̂,X, θ)) (2)

where Z(X, θ) is the normalization constant; Φ(X̂,X, θ) is the
energy function; θ is the set of parameters; Z(X, θ) is defined
as follows:

Z(X, θ) =

∫
X̂

exp(Φ(X̂,X, θ))dX̂ (3)

Φ(X̂,X, θ) is consist of a unary potential φ(x̂i, xi) and a
pairwise potential ψ(x̂i, x̂j). It is defined as follows:

Φ(X̂,X, θ) =
∑
i

φ(x̂i, xi) +
∑
i,j

ψ(x̂i, x̂j). (4)

The unary potential φ(X̂i, Xi) is used to describe the simi-
larity between the original feature maps and the feature maps
after receiving complementary information, which is defined as
follows:

φ(x̂i, xi) = −1

2
||x̂i − xi||2. (5)
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Fig. 5. Overall framework of the proposed MPEM. Taking the information
transmitted from infrared 1 to infrared 2 as an example. The implementation of
MPEM is briefly described. The feature map of infrared 1 passes the comple-
mentary information to another through a 1 × 1 convolution layer.

The pairwise potentialψ(x̂i, x̂j) is used to describe the corre-
lation between enhanced features, which is defined as follows:

ψ(x̂i, x̂j) = (x̂i)
Twi

j x̂j (6)

where wi
j is the learned parameter.

The basic formula of CRFs is given above. The message-
passing formula is given as follows:

x̂i = xi +
∑
i �=j

wij x̂j (7)

where x̂i represents xi receiving feature maps from other spec-
tral data to form enhancement feature maps, and it continues to
propagate along the subnetwork; wij is a weighting factor that
controls the complementary information passed from xj to xi.
Due to the interdependence between x̂i and x̂j , the refined x̂i is
obtained by the following formula:⎧⎨

⎩
h0i = xi
hti = xi +

∑
i�=j wij ĥ

t−1
j , t = 1 to n

x̂i = hni

(8)

where n is the number of iterations. Equation (8) is very simple
to be implemented in a CNN model. The passing of message
from xj to xi can be achieved by applying a 1 × 1 convolution
kernel (as shown in Fig. 5). wij is the learning parameter of the
convolution layer.

As shown in Fig. 4, we set up the MPEM after each of the first
three convolution layers, but simply input the multispectral data
into the model, which cannot fully capture the complementary
information between the multispectral data. The MPEM can
be used to fuse multispectral data and then fully mine the
connection between the data and the TC intensity.

C. Local Global Attention Module

The typhoon eye is an important feature for the estimation
of TC intensity by using the Dvorak technique [5]. Chen et
al. [33] did not set the max-pooling layer in the CNN because the
repeated pooling operation will reduce the resolution of typhoon
eye. Higa et al. [20] enhanced the expressiveness of typhoon

eye through a preprocessing. Apparently, the typhoon eye is
an important feature for making a correct estimation of the TC
intensity. Inspired by Li et al. [49], [50], the attention mechanism
is used to make the model to focus on the discriminant features.
Meanwhile, the global information is also important. So, the
LGAM includes the local attention module (LAM) and global
attention module (GAM) to learn the depth and global repre-
sentation and capture complementary information between the
local and global. The proposed LGAM architecture is illustrated
in Fig. 6.

1) Patch Generation: The default location of typhoon eye on
the SCIs is not far from the image center or in the center. The di-
mension of the enhanced feature map passed by each subnetwork
through MPEM is 64 × 51 × 51. The central clipping operation
is carried out on this feature map. The clipping dimension is
64 × 5 × 5, which basically covers the size of the typhoon eye.
The center cutting operation is shown in Fig. 7.

2) LAM: As shown in Fig. 6, the patch generation is the
beginning of LAM, and the weighting vector v̂l is formed in the
end of LAM. The LAM aims to focus on the local representative
patch. The patch we get is operated on the feature map, so we
can get a larger receptive field. The LAM focuses on the identi-
fication of local feature, i.e., the typhoon eye patch. In the LAM,
we do not add the max-pooling layer because the max-pooling
layer will cause the loss of high gradient information at the area
of typhoon eye, and the effectiveness of attention mechanism
will be reduced. For the clipped local patch, we only use the
convolution layer.

Although the max-pooling layer has been shown to have a
negative impact on the accuracy of TC intensity estimation [51],
DMANet without this layer results in an excessive consumption
of computing resources. As a result, the max-pooling layer is
only removed in LAM. The dimension of input feature map fl
is 64× 5× 5. After the feature map passes through a convolution
layer, the dimension of feature map becomes 64 × 3 × 3,
then a double branch is connected behind the feature map fl.
The first one is directly paved into a 1-D vector vl, and the
other is connected to the attention model. The main function
of attention model is to generate a weight associated with vl.
The main process of attention model is described as follows:
after the feature map passes through a convolution layer, the
output dimension is 64 × 1 × 1, then the feature map is flattened
into a 64-D vector. The vector passes through the multiple full
connection layers, then a weight αl is output using the Sigmoid
function. The output is limited to a value between 0 and 1 by the
Sigmoid function, which represents the importance of this local
patch for TC intensity estimation. Specifically, 0 represents an
unrelated patch and 1 represents a particularly important patch

αl = wl(fl) (9)

where αl is the weight generated by the attention model; wl is
the operations of attention model; fl is the input vector. The
output of LAM follows the formula:

v̂l = vlαl (10)
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Fig. 6. Detailed illustration of the proposed LGAM.

Fig. 7. Interception of the patches (typhoon eye). (a) 35 knots. (b) 65 knots.
(c) 95 knots. (d) 110 knots. Taking the TC MANGKHUT as an example. The
infrared satellite images (Infrared 1) of TCs with different intensities were
selected in turn from the development process of the TC. During the development
process of the TC, the cloud amount continued to accumulate, and then the
typhoon eye appeared and became clearer as the intensity increased.

where vl is a vector that represents the unweighted feature of
local patch; αl is the weight of vl; v̂l is the vector that represents
the weighted feature of local patch.

3) GAM: This section is to describe the GAM. As mentioned
above, the LAM can automatically learn the important features
of TCs through the attention model. However, the typhoon eye is
only a part of the important features of TCs, and the overall TCs
also contain many important TC features, e.g., spiral rain belt and
global semantic information. The GAM is introduced to improve
the overall network performance and help the network to learn
deep global semantic information. As shown in Fig. 6, the
GAM is mainly composed of two branches, repeated convolution
layers and max-pooling layers.

The input feature map is defined as fg , the repeated convo-
lution layers and max-pooling layers before input to the two
branches are defined as wg , then the dimension of feature map
f̂g becomes 128 × 9 × 9. This process is described as follows:

f̂g = wgfg. (11)

The feature map f̂g is feed into the two branches. The first
branch is connected to the spatial pyramid pooling (SPP). The
SPP is mainly used to solve the problem of inconsistent input
data images and improve the robustness of CNN model. After
the SPP, the same number of vectors will be formed into the
linear layer. In the DMANet model, we use the SPP to enable
this method to capture spatial feature information of different
sizes, which can improve the robustness of the model to object
variability and spatial layout, and prevent the model overfitting.
The feature map becomes a 1-D global vector through the SPP.
The 1-D unweighted vector is defined as vg.

The second branch is the attention model. The attention model
is composed of a convolution layer, a max-pooling layer, three
full connection layers, and a Sigmoid function. The weight of
output is the global attention weight αg . The last output vector
of GAM is represented by the following formula:

v̂g = αgvg (12)

where v̂g is the vector that represents the weighted feature of
global; vg is the vector that represents the unweighted feature of
global; αg is the weight of vg.

D. Evaluation Indicators

The mean absolute error (MAE), RMSE, and R2 are com-
monly used as evaluation indicators to evaluate the effect of
regression models. Their formulae are shown as follows:

MAE =
1

N

n∑
i=1

|Y − Ŷ | (13)

RMSE =

√
1

N

∑n

i=1
(Y − Ŷ )2 (14)
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R2 = 1−
∑n

i=1(Y − Ŷ )2∑n
i=1(Y − Y )2

(15)

where N is the total number of samples; Y is the real TC
intensity; Ŷ is the intensity of the TC estimated by the model; Y
is the mathematical expectation of Y ; MAE is the mean of ab-
solute errors between the predicted and observed values; RMSE
is the sample standard deviation of the difference between the
predicted and observed values (i.e., residuals.)

E. Experimental Designs

The DMANet model contains several components, including
the MPEM and LGAM. In order to demonstrate the superiority
of DMANet model of the testing set, we set up an ablation
experiment to verify the effectiveness of each module. The
compared networks include: First, DANet-4: in the DMANet,
the MPEM is removed. Second, DANet-1: the model only uses
the LGAM and infrared 1 satellite images as data sources,
i.e., only one subnetwork in DMANet is taken. Third, DNet:
in the DANet-1, the LGAM is removed. All networks oper-
ate in the same environment, and the parameter sets are the
same. In addition, we set an experiment to compare the accu-
racy of different cropping sizes of input images, including the
450 × 450 image, the 400 × 400 image, and the 350 × 350
image.

Our models are implemented with PyTorch. The training
process runs on a GeForce RTX 3090 24 G GPU. We choose
MSE as the loss function of the network, optimizing our network
with Adam and a learning rate of 2e-4 by minimizing the MSE
loss, and the batch-size is 128. We use training set and validation
set to determine the parameters and hyperparameters of our
model. After determining the parameters and hyperparameters,
we mix the training set and the validation set together for
training. The epoch is set as 300, and the last epoch parameter
is used in the testing set. The network is trained three times
for testing, and the lowest loss is selected as the testing data
result.

IV. KALMAN FILTER

A. Background of Kalman Filter

Kalman filter is an algorithm that uses the linear system state
equation to estimate the system optimally through the system
input and output data with Gaussian noise [52]. Because the
data include the influence of noise and interference, the optimal
estimation can be regarded as a filtering process. Even if the
noise is non-Gaussian, Kalman filter still has more advantages
than the other filters. Kalman filter is a data processing method
to remove noise and restore real data, which is suitable to linear,
discrete, and finite dimensional systems. It can estimate the
state of dynamic systems in a series of data with errors [53].
Because the Kalman filter is easy to program and has strong
applicability, it is the most widely used filter at present and has
been widely used in communication, data assimilation, and other
industries [54], [55].

B. Kalman Filter

In the present study, the Kalman filter is used to deal with
the time-series problem. To avoid disclosing the future TC in-
tensity information, when Kalman filter is adopted to determine
the current TC intensity information, we use the current and
previous TC intensity estimated by the DMANet model. The
TC intensity change is continuous. Assuming that the intensity
change process is a linear process, we use the original Kalman
filter to smooth the TC intensity change process. An important
point for the Kalman filter is to determine the initial value, which
is sampled by a normal distribution. Considering that the TC
intensity is a development process and slowly absorbs energy
from the marine environment to enhance its intensity, the TC
cannot suddenly change from a tropical depression to a TC with
a certain intensity. Meanwhile, the minimum wind speed of TCs
is 35 knots. Therefore, the mean value and variance of initial
value are set to 35 knots and 0.2 knots, respectively.

Kalman filter is mainly proposed for linear systems. Here,
we will introduce the basic principle of Kalman filter. The state
and observation equations are to infer the state of the current
moment based on the state and control variables of the previous
moment, and the equations have the following expression:

{
xk = Axk−1 +Buk−1 + wk−1

zk = Hxk + vk
(16)

where xk is the state vector at the current moment; xk−1 is the
transition vector at the previous moment; zk is the measured
value at time k, this study considers the output value of the
model at time k as the measured value; A represents the system
parameters;B is the matrix that transforms the input into states,
and set to 0; H represents the parameters of the measuring sys-
tem, and set to 1;uk−1 is the amount of control over the system at
time k-1; Wk−1 and vk are the Gaussian noise of the prediction
process, they are white Gaussian noise with expectation 0 and
covariance Q and R as follows:

{
wk−1 ∼ N(0, Q)
vk ∼ N(0, R).

(17)

Kalman filter process and five basic formulae are given as
follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̂−k = Ax̂k−1 +Buk−1

P−
k = APk−1A

T +Q
x̂k = x̂−k +Kk(zk −Hx̂−k )
Kk = P−

k H
T (HP−

k H
T +R)−1

Pk = (I −KkH)P−
k

(18)

where x̂−k is the prior state estimate at time k; x̂k−1 is the optimal
estimate at time k − 1; P−

k is the a priori estimated covariance
at time k; Pk−1 is the posterior estimated covariance at time
k − 1; x̂k is also called the optimal estimate;Kk is the filter gain
matrix, which is the intermediate calculation result of filtering,
also called the Kalman gain or Kalman coefficient; Pk is the
optimal estimate.
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TABLE III
PERFORMANCE COMPARISON ON DIFFERENT MODELS

C. Kalman Filter Parameter Settings

In this article, the Kalman filter method is used to deal with
the 1-D time series of TC intensity. Different parameter settings
in Kalman filter will play a decisive role in the correction of
the model. The observation covariance is set to 0.2, and the
transition covariance is set to 0.1, corresponding to R and Q in
(17), respectively. The transition matrix is set to 1, it isA in (16).

V. RESULTS

A. Model Performance

1) Ablation Experiment in Testing Set: First, the effective-
ness of MPEM and LGAM is discussed. The evaluation in-
dicators, such as RMSE and MAE, are used to evaluate the
performance of these models. As shown in Table III, the DNet
exhibits the worst performance on the testing set due to the lack
of MPEM and LGAM. Compared with the DNet, the DANet-1
applies the LGAM to estimate the TC intensity. The reason is
that the DANet-1 relies on local important feature and captures
deeper global semantic information. As a result, the DANet-1
achieves better performance. Specifically, the RMSE is reduced
by 10.6%, and the MAE is reduced by 8.8%. Compared with
the DANet-1, the DANet-4 includes multispectral data, which
leads to a reduction of 0.94% in the RMSE and 1.09% in the
MAE. Apparently, the introduction of multispectral data can
indeed enhance the network to extract more features related to
TC intensity. Meanwhile, the MPEM in DMANet fully explores
the complementarity between multispectral data and enhances
the features with CRFs; thus, the DMANet has a significant
improvement in performance. Compared with the above three
models, the DMANet is the optimal one. Compared with the
DNet, the RMSE and MAE of DMANet decrease by 18.3%
and 19.0%, respectively. These comparisons demonstrate the
effectiveness of each module of the DMANet.

Fig. 8 shows scatter plots of the actual value of TC intensity
versus the estimation of network using different models. The
estimated results of all models share a common feature, i.e.,
low-intensity samples are more overestimated and high intensity
are more underestimated. In contrast, each module can reduce
the bias and make the estimated intensity closer to the black
dotted line.

Table IV presents the performance comparison on different
cropping sizes. The only difference is the cropping sizes of input
images, and the performances of different cropping sizes are
compared to find a suitable size. When cropping size is equal to
350×350, the RMSE and MAE are lower than that of 400×400.

Fig. 8. Scatter plots of best-track intensity versus estimated intensity using
different models.

TABLE IV
PERFORMANCE COMPARISON ON DIFFERENT CROPPING SIZES

The reason is that this cropping size crops out some important
features of TC, resulting in reduced performance. In addition,
the RMSE and MAE of 450 × 450 are also lower than that of
400 × 400, the reason is that the surrounding unclipped clutter
of clouds affects the power of DMANet model.

2) Ablation Experiment of Different TC Categories: Table V
presents the comparison of different models under different TC
categories. The definition of maximum sustained wind speed
in Table V comes from Japan Meteorological Agency (https:
//www.jma.go.jp/jma/kishou/know/typhoon/1-3.html). Except
for the RMSE in violent category, the results of ablation experi-
ment show that the DMANet achieves the best performance com-
pared with other models. The MPEM and LGAM of DMANet
can complement each other to achieve a significant improve-
ment. For example, in the very strong category, the RMSE and
MAE of DANet-4 (MPEM) and DANet-1 (LGAM) are close to
the performance of DNet, so the effect of MPEM and LGAM has
not been fully exerted. Compared with the DNet, the DMANet
mixes the two modules to obtain significant improvement of
15.1% in RMSE and 19.2% in MAE. Section II-A has pointed
out that multispectral data represent the TC cloud information
and convective patterns at different heights. The MPEM trans-
mits the complementary message between multispectral data to
enhance feature maps. Meanwhile, the LGAM directly performs
the attention operation on the feature maps outputted by the

https://www.jma.go.jp/jma/kishou/know/typhoon/1-3.html
https://www.jma.go.jp/jma/kishou/know/typhoon/1-3.html
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TABLE V
INTENSITY AND THE NUMBER OF SAMPLES IN THE TESTING SET FOR EACH TC CATEGORY AND THE PERFORMANCE OF ALL MODELS IN EACH CATEGORY

Fig. 9. (a) Box plot of bias in each category. (b) Absolute error curve related to the percentage using the DMANet. (c) Bias curve between the actual intensity
and the estimated intensity in validation set samples.

MPEM. The LGAM can estimate the TC intensity based on
the enhanced 3-D TC features, so the DMANet shows reliable
estimation accuracy in both high intensity and low intensity and
the DMANet errors are reduced.

3) Analysis of DMANet Error Distribution: Fig. 9(a) shows
the box plot of bias in each category using the DMANet. The
green line in the middle of box is the median of bias in different
categories. The boundary lines of blue box and black line rep-
resent the first and third quartiles of the bias and the upper and
lower limits of the bias, respectively. If the TC intensity bias has
outliers that exceed the maximum or minimum observed values,
these outliers are expressed in dots. Regardless of outliers, the
MAE of violent category is the lowest. The median, lower limit,
and upper limit are 3.70 knots, −3.71 knots, and 18.56 knots,
respectively. When TC intensity is violent, it will bring greater
disasters to the coast, so the violent TC is paid more attention.
Obviously, the DMANet has completed this task well. Mean-
while, the above results show that the estimation of DMANet is
conservative. That is to say, when the TC intensity category is vi-
olent, the model tends to underestimate the TC intensity. Because
for a dataset with continuous numeral labels, the estimated in-
tensity tends to be biased toward the middle of labels, which can
bring loss function (MSE) greater benefits (the normal category
is the same result). The highest error of MAE is the strong cate-
gory, with a median of 4.79 knots and lower limit and upper limit
of −20.44 knots and 23.37 knots, and the highest upper limit is
from strong category. The smallest lower limit is root in normal
category, with a median of−3.71 knots and lower limit and upper
limit of −24.31 knots and 17.14 knots. In addition, the bias of
very strong category has a median of 2.07 knots, and the lower
and upper limits are −13.88 knots and 21.44 knots, respectively.

The absolute error curve related to the percentage is shown
in Fig. 9(b). The percentages corresponding to the absolute
error of 5 knots, 10 knots, 15 knots, and 20 knots are 45.0%,
71.7%, 87.5%, and 96.0%, respectively. Fig. 9(c) shows the
bias curve between the actual intensity of TC and the estimated
intensity in the testing set. The intensities of testing samples are
arranged from low to high. The bias is obtained by subtracting
the estimated value from the actual value. Obviously, the overall
trend of bias gradually changes from negative value to positive
value with the increase of TC intensity in Fig. 9(c).

B. Comparison With General Models

Due to the development of deep learning, a lot of general
models (e.g., VGG-16 or ResNet-50) have been proved to
perform well in regression tasks [56]. Meanwhile, the general
models also show great accuracy in the TC intensity regression
tasks [20], [29]. In order to contrast the performance of DMANet
with the general models, the DMANet is compared with the
general models (i.e., AlexNet, VGG-16, and ResNet-50) with
the same tuning parameters and dataset. The results are listed
in Table VI. The performances of DMANet and other general
models are compared mainly based on the RMSE and MAE.
Table VI presents that the DMANet model can obtain lower
error and better accuracy of TC intensity estimation than the
other general models.

C. Kalman Filter Performance

The results predicted by the DMANet and DMANet with a
Kalman filter (DMANet_KF) are shown in Table VII. After
Kalman filter correction, the RMSE error and MAE error of
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TABLE VI
PERFORMANCE OF DMANET AND OTHER GENERAL MODELS

TABLE VII
PERFORMANCE AFTER USING KALMAN FILTER

network are reduced by 20.1% and 21.5%, respectively. The
reason why Kalman filter works is explained in Section IV.

As shown in Fig. 10, four TC sequences are randomly selected
from the testing set. As TC system absorbs energy from the
surroundings to enhance the TC intensity, the TC intensity is a
continuous development process. From the actual intensity, we
can see that the intensity of TCs rarely changes in a short time,
and most of them increase or decrease slowly. However, although
the SCIs are from adjacent instants, the cloud cover and shape
also show a different state, and the intensity estimated by model
is also different. After correction with Kalman filter, the intensity
changes more slowly. The intensity at most instants is closer to
the actual intensity best track than the uncorrected intensity.
In the case of TC 2017 TALIM, the RMSE and the maximum
bias estimated by the DMANet from 2017/09/15/18:00 UTC
to 2017/09/17/00:00 UTC are 14.78 knots and 22.50 knots,
respectively. However, the estimated intensity of DMANet is
unreliable. Then, Kalman filter is added to correct it, and the
RMSE and the maximum bias are reduced to 6.02 knots and
11.6 knots, respectively.

Fig. 11 shows the scatter plots of best-track intensity versus
estimated intensity using the DMANet model and DMANet_KF
model. After the correction using Kalman filter, the performance
of DMANet_KF model is better compared with that of DMANet
model, which demonstrates that Kalman filter can indeed use
information of intensity series to eliminate the error of the model
to a certain extent. To our best knowledge, Kalman filter is first
used for TC intensity estimation correction and the time-series
estimation results are smoother after using Kalman filter. The
results of modifying TC intensity time series well demonstrate
the effectiveness of Kalman filter.

D. Comparison With Other Satellite Estimation Methods

The performance results of the existing deep learning models
and DMANet_KF are shown in Table VIII. Strictly speak-
ing, it is not fair to directly compare our model with these
models because of different datasets used in these models. In

addition, it is difficult to reproduce the data and model at the
same time. However, in order to show the performance of our
method, the intensity estimation methods of other scholars are
still used to compare. Compared with the intensity estimation
methods of other scholars, the DMANet_KF achieves better
performance. The best RMSE of the existing deep learning
models is 8.60 knots. Compared with the best result, the RMSE
of DMANet_KF model is reduced by 9.07%.

VI. DISCUSSION

With the rapid development of remote sensing technology,
many multimodal data with complex and heterogeneous ob-
servations can be obtained. Multimodal remote sensing data
on TCs are used to estimate TC intensity. Deep learning has
been successfully applied to multimodal remote sensing data
processing due to its ability to mine deep features and powerful
processing capabilities. The main challenges faced by the TC
intensity estimation are mainly attributed to the typhoon’s vari-
able cloud system features and the multimodal data fusion. On
the one hand, this complex cloud distribution makes it difficult
for models to determine typhoon intensity. And on the other
hand, due to the heterogeneity of multimodal data, the simple
superposition of data cannot take the advantage of multimodal
data.

The study results show the potential of DMANet to integrate
multimodal remote sensing data to estimate TC intensity. For the
remote sensing images with different channels, the information
is different. The message-passing enhancement mechanism of
the DMANet model can capture and transfer complementary
information between multimodal remote sensing data. Further-
more, the message-passing mechanism makes it suitable for
remote sensing data of various spectra. Hence, their feature
expression ability can be enhanced by fusing the advantageous
features of multiple channels. These improved features help the
DMANet model to effectively identify and extract deep features
from the cluttered cloud information. Quantitative experiments
are proven effective.

The cloud information of the multimodal remote sensing
data contains many chaotic clouds. In order to avoid model
confusion, the typhoon eye is given greater weight to help the
DMANet model make the accurate judgment. However, this
given weight is automatically calculated by the attention model
of the DMANet model. The DMANet model judges the impor-
tance of the typhoon eye in the input remote sensing image to
the task and automatically calculates the corresponding weight.
Additionally, experts in related fields assess the intensity of
TCs through the typhoon eye, and this knowledge is introduced
into the structure of the DMANet model through the attention
mechanism.

Furthermore, adding a time factor to TC intensity estimation
can provide a more reasonable input for disaster prevention and
mitigation models. This article uses the Kalman filter to correct
the TC intensity for the first time. As shown in Fig. 10, the
performances of correcting TC intensity time series well show
the effectiveness of Kalman filter.
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Fig. 10. Estimation of TC intensity over time series. The number above each time point represents the difference between the error estimated by the model and
the error after Kalman filter. If the value is positive, it means that the estimated value after Kalman filter is closer to the estimated value of the network, and the
closer value is the positive value. If it is negative, it is the opposite.
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TABLE VIII
PERFORMANCE COMPARISON WITH OTHER SATELLITE ESTIMATION METHODS

Fig. 11. Scatter plots of best-track intensity versus estimated intensity using
the DMANet model and DMANet_KF model.

VII. CONCLUSION

In this article, we propose a novel DMANet for the TC
intensity estimation, which provides practical guidance of us-
ing advanced computer vision technique to estimate the TC
intensity. The multispectral satellite images in the Northwest
Pacific Basin for the period 2007–2021 are downloaded from
the National Institute of Informatics of Japan. A preprocessing
method is proposed for solving the imbalance of dataset. Then,
the DMANet model is proposed to estimate the TC intensity
using multispectral satellite images. The model includes two
aspects: first, an MPEM based on CRFs is used to produce
the enhanced feature map by multispectral data, which is more
conductive to mining different features of multiple wavelength
channel images. Second, an LGAM is proposed to pay attention
to the important feature and obtain the deeper global semantic
information.

The ablation experiment shows that the DMANet model
achieves excellent performance using SCIs and verifies the ef-
fectiveness of each module. Compared with the general models,
the RMSE of DMANet is reduced by 11.40%–24.34%, and
the MAE of DMANet is reduced by 7.59%–25.91%. Mean-
while, the DMANet model has the best performance when the
TC category is violent, which indicates that the DMANet can
estimate the intensity of violent TC more accurately. Finally,
Kalman filter is used to modify the time-series estimation results.
The RMSE of the testing set is decreased from 9.79 to 7.82
knots, and the MAE is decreased from 7.52 to 6.19 knots.
Kalman filter verifies its applicability in the estimation of TC
intensity.
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