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Abstract—Building extraction from remote sensing imagery has
been a research hotspot for some time with the advancement of
AI in remote sensing. However, the edges of buildings extracted
using existing techniques are commonly broken and inaccurate
for the complex scenes in suburban and rural areas. This study
proposes a framework for extracting structures by combining
region-line feature fusion with object-based convolutional neural
networks to solve this problem. First, a building edge detection
network known as the Multichannel Attention-based Dense Ex-
treme Inception Network for Edge Detection (MA-DexiNed) is
constructed, which is considered more accurate for building edge
extraction in complicated image scenes. Second, the probability
map of the building edges obtained by MA-DexiNed is refined.
According to rule judgment, breakpoints are linked by an edge
thinning connection algorithm to obtain single-pixel, contiguous
building line features. Third, the geometric boundaries of buildings
are obtained by combining region attributes derived by unsuper-
vised image segmentation and line features obtained from deep
learning supervised segmentation. Finally, the pretrained AlexNet
is employed to identify the class characteristics of buildings. The
suggested framework was used for two GF-2 images and one Google
Earth image from various regions and with numerous types of com-
plicated scenes. The experimental findings demonstrated that this
approach could extract more precise and complete building edges
for complex image scenes compared with several existing methods.
This advancement results from constrained regional image seg-
mentation using deep semantic edge features. This methodology
can offer a benchmark for subsequent building extraction tasks
from high resolution imagery.
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NOMENCLATURE

HRS High spatial resolution remote sensing.
DexiNed Dense extreme inception network for edge detection.
CNN Convolutional neural networks.
OCNN Object-based convolutional neural networks.
MRS MultiResolution segmentation.
CBAM Convolutional block attention module.
NMS Nonmaximum suppression.

I. INTRODUCTION

THE efficient extraction of building is of great importance
in the infrastructure construction of the smart city, urban

planning, and measuring the economic development of cities [1].
With the increasing maturity of satellite sensor technology, ac-
quiring HRS images has become more convenient. HRS images
contain richer spectral, spatial, and texture information, which
creates the potential of obtaining more accurate building using
remote sensing technology [2]. Although the identification of
buildings from HRS images is a task of binary classification,
it is still a challenging topic in the remote sensing community
due to the problems of different objects which have the same
spectrum and the same objects have different spectrums in HRS
images.

The existing research on building extraction usually concen-
trates on remote sensing images with simple scenes of buildings
and relatively high image quality. However, there is still a lack
of adequate research for tasks of building extraction on complex
image scenes with complicated background information, includ-
ing suburbs or rural areas [3]. There are various understandings
of complex image scenes. Some scholars argue that the com-
plexity of the scenes is induced by the fact that the structure and
shape of buildings differ significantly from country to country
[4]. Additionally, the impact of surrounding attributes (e.g., trees
and billboards) contrast with the buildings, and the surrounding
area is extremely low. It has also been argued that the currently
existing datasets do not include the complex scenes of modern
cities (e.g., overpasses and roundabouts) [5]. Therefore, it is
insufficient to be considered a reflection of the real world.
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In this study, it is regarded that complex image scenes in
building extraction applications should include two meanings:
the complexity of the building itself and the complexity of
the environment. The intricacy of the building itself refers to
the structure’s considerable individual variances. Regional and
functional differences are frequently the driving forces behind
building forms and structure variances. A classic example of this
sort of complicated landscape is the suburb [6]. The complexity
of the environment refers to the low contrast of buildings in the
local area induced by the similarity in spectral features between
buildings and their neighboring environment. A typical real
world complex scene of this type is a rural area [7]. Furthermore,
the spatial resolution of remote sensing images is not as high
as the existing datasets (mostly aerial images), and there are
many mixed pixels in remote sensing images, which increases
the challenges of building extraction. Thus, building extraction
in complex scenes from satellite images is more practically
challenging and essential.

With the development of deep learning, it has been a trend
to introduce deep learning to solve difficult problems in remote
sensing. From OCNN [8], semantic segmentation [9] to edge de-
tection networks [10], all of them have shown good performance
in the task of building extraction. However, all these single meth-
ods have obvious shortcomings. For example, building edges ex-
tracted by semantic segmentation are commonly inaccurate and
broken [11], these two problems limit the extraction accuracy. It
is found that a single edge detection network can obtain accurate
edges of objects [12], but it is challenging to acquire contiguous
and complete edges [13]. Meanwhile, it is possible to obtain
entire edges of objects using OCNN alone; however, since this
technique generates segmented objects following clustering, the
boundaries of segmented objects are typically not the natural
boundaries of objects; therefore, the edges obtained are com-
monly less precise [14]. To solve the above problems, several
scholars have tried to cascade the semantic segmentation net-
work with the edge detection network to constrain the semantic
segmentation [15], [16]. This combined method can obtain more
accurate building edges to a certain extent. However, this method
relies on perfect polygon building samples (in other words, the
boundary of the building is accurate and closed). If there are only
partially imperfect samples, whether it can still achieve efficient
extraction of buildings is a challenge.

In the field of remote sensing, methods for combining edge
detection with image segmentation have been proposed for a
long time [17], [18]. However, all these methods are imple-
mented using traditional edge detection operators, including
Canny [19] and Sobel [20], which are challenging to be helpful in
complex image scenes. Currently, some researchers have tried to
obtain edges using deep learning methods instead of traditional
edge detection operators to achieve edge-constrained image
segmentation. For example, Kucharski et al. [21] proposed a
new semantic segmentation network to perform separate extrac-
tion of cell edges and cell centers, which was then combined
with a labeled watershed algorithm to achieve high-precision
image segmentation. In this study, we attempt to introduce a
combination of deep learning edge detection and OCNN to use
in the building extraction task to achieve accurate extraction.

To achieve more accurate segmentation, there is an urgent
need to study a methodology that combines the area informa-
tion obtained by unsupervised segmentation with the edge line
features gained through supervised segmentation. Based on such
an idea, this article proposes to fuse deep learning edge detection
with image region segmentation to enhance the correctness
of building geometric boundaries. This study proposes a new
method linking deep learning edge detection with OCNN to
obtain more accurate and complete building edges from HRS
images in complex scenes, which combines building edge line
features obtained by the edge detection network and building
region features obtained by MRS [22] at the feature level. This
method implements a novel idea for image segmentation by
combining supervised and unsupervised segmentation.

II. RELATED WORK

A. Building Extraction From HRS Images

Currently, approaches for building extraction can be divided
into two categories: methods based on shallow features and
strategies based on deep learning [23], [24]. The methods based
on shallow features primarily adopt the spectral, texture, or
spatial characteristics of buildings in remote sensing images to
construct morphological indicators [25], [26] or adopt region-
based image segmentation methods for building extraction [27],
[28]. The morphological methods are susceptible to noisy infor-
mation; therefore, they are unsuitable for complex image scenes.
Image segmentation methods prevent the phenomenon of “salt
and pepper noise” well; however, the classification accuracy
of these methods depends solely on the segmentation effect.
Notably, incorrect segmentation frequently occurs when the
edges of buildings are too similar to the neighboring object units
(e.g., roads) regarding spectral and textural attributes. All the
above methods can efficiently extract simple scenes; however,
achieving high accuracy in complex image scenes is challenging.
Therefore, it is difficult to use only the shallow features of the
image to meet the requirements of practical applications. Thus,
how to exploit the deep features of HRS images has become a
current research hotspot.

With the advancement of deep learning technology [29], [30],
[31], [32], [33], several researchers have tried to apply deep
learning models to building recognition and extraction [34], [35],
[36]. Previously, the OCNN classification method is generated
according to deep learning classification combined with the
object-based image segmentation method. This method widely
applies to land cover and functional region classification [37],
[38], [39], [40]. Subsequently, from the early FCNN [41] to
U-Net [42], SegNet [43], DeepLab-V3 [44], the pixel-based se-
mantic segmentation achieves end-to-end recognition of features
at various scales [45]. Liu et al. [46] proposed a lightweight
network called LRAD-Net for building recognition, which has
fewer parameters and faster computational speed. Hui et al.
[47] used an enhanced U-Net to extract buildings. A large
amount of pixel-level annotations is a prerequisite for semantic
segmentation that can achieve high accuracy recognition. To
reduce the time of manual annotation, many semi-supervised
methods have emerged. Li et al. [48] proposed an instruction
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to assign the perturbation to the intermediate feature represen-
tations within the encoder of the network, which reduces the
misclassification of buildings. Kang et al. [49] proposed a seg-
mentation named PiCoCo for building extraction, which is based
on the enforcement of pixelwise contrast and consistency in the
learning phase. Recently, edge detection networks have provided
novel ideas for building extraction. Lu et al. [10] used RCF for
building extraction and proposed a postprocessing algorithm for
edge thinning. Xia et al. [50] proposed a semi-supervised deep
learning method based on an edge detection network to improve
the accuracy of building roof detection with a small number of
samples.

In addition, the combination of multiple single methods has
been a recent research hotspot [16]. For instance, Marmanis
et al [15] fused SegNet with HED for building recognition. Li
et al. [17] combined an edge detection operator and marker-
based watershed segmentation algorithm to achieve the effect of
optimal segmentation. Furthermore, Chen et al. [18] proposed a
multiscale segmentation method subject to edge constraints.

B. Edge Detection

Edge detection is a fundamental problem in image processing
and computer vision. The purpose of edge detection is to iden-
tify a series of points in a digital image where the brightness
varies significantly. The development history of edge detection
algorithms can be roughly divided into three stages. In the
first stage, edges are usually computed using low-level features
(e.g., gradients) of the image. Algorithms like Sobel [20] and
Canny [19] are used in many fields due to their simplicity of
implementation. In the second stage, edge detection is achieved
by learning from manually designed features. Many excellent
algorithms have emerged in this stage, such as Pb [51], gPb [52],
and Statistical Edges [53]. They all outperformed the algorithms
based on low-level features and performed well in a variety of
datasets. In the third stage, with the development of deep learn-
ing, CNN-based methods gradually become the mainstream of
edge detection algorithms. CNN’s superb capability of feature
mining provides the possibility of extracting deep edge features.
For example, networks such as HED [54], RCF [55], and CEDN
[56] are widely used in the task of feature extraction. Particularly,
the DexiNed [57], one of the most developed edge detection net-
works currently, can obtain more accurate and fine object edges.
Its training method does not necessitate the use of pretraining
weights or finetuning. It is worth noting that although remote
sensing images often have lower spatial resolution than natural
images, they contain rich spectral information. Therefore, it is
necessary to develop a new edge detection network that is more
suitable for remote sensing tasks, taking into account the data
characteristics of remote sensing images.

III. METHODOLOGY

To avoid broken and inexact edges in building extraction tasks
from complex image scenes, this study suggests a framework
for linking region-line feature fusion and OCNN for building
extraction from HRS images. Fig. 1 depicts the architecture of
the framework. This method comprises three modules, the first

is the line feature extraction module. First, a new multichan-
nel attention-based dense extreme inception network for edge
detection (MA-DexiNed) is constructed in this study, through
which the edge probability map of the building is obtained.
Subsequently, the proposed edge thinning connection algorithm
based on rule judgment in this study obtains the building line
features. Next is the region feature extraction and region-line
feature fusion module, which applies MRS to obtain the regional
characteristics of the building and combine them with the line
features to accomplish image segmentation. Finally, the OCNN
building extraction module trains the AlexNet [58] with manu-
ally labeled samples. Then the attributes of the forecasted points
are identified, and the most voting algorithm obtains the building
extraction results. The key steps in the above process are detailed
in the next few subsections.

A. Edge Detection Network MA-DexiNed

Given the limitations of existing methods for building edge
detection tasks in complicated remote sensing scenes, this study
offers MA-DexiNed, a novel network based on DexiNed and the
multichannel attention model. Fig. 2 depicts the architecture of
the network.

As depicted in Fig. 2, the network backbone of MA-DexiNed
can be categorized into six major blocks, which are comprised
of standard convolutional layers concatenated together. In this
study, we eliminate the pooling layer of the last three key blocks
of DexiNed and extend the size of the convolutional kernel
of this layer, which aims to extend the receptive field for the
model to fully guarantee spatial detail information in deeper
feature maps. As if the network reaches a significantly deep
level, it is straightforward to cause loss of spatial information,
which in turn makes the inaccuracy of edge localization in the
output image. Additionally, CBAM is inserted in the middle
of each set of convolutional layers in the last two significant
blocks, through which the network can learn the importance
of various feature maps and locations of pixels; therefore, it
improves the feature extraction ability of the network. CBAM is
a plug-and-play lightweight module built by Woo et al. [59]. This
module has been widely used in most basic networks. Thus, all of
them have been substantially enhanced. The CBAM comprises a
channel attention submodule and a spatial attention submodule.
The channel attention submodule comprises maximum pooling
and average pooling in parallel. In contrast, the spatial attention
submodule includes maximum pooling and average pooling in
series. The introduction of CBAM has two main reasons. First,
it leverages the excellent spatial feature enhancement ability of
CBAM to improve the spatial position information of objects in
the deep feature maps. Second, it utilizes CBAM’s channel fea-
ture enhancement ability to give more attention to the multiband
characteristics of remote sensing images.

The MA-DexiNed can input multichannel image data.
Remote sensing images generally have more bands (channels)
than natural images. Therefore, multiband data has a high
prospect for feature mining, particularly the infrared band of
remote sensing images, which plays a decisive role in the feature
construction of buildings. Therefore, the MA-DexiNed proposed
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Fig. 1. Process for combining region-line feature fusion with OCNN for building extraction.

Fig. 2. Architecture of MA-DexiNed.

in this study is uniquely designed to extract building edge
features from HRS images in complex scenes.

B. Edge Thinning Connection Algorithm Based on Rule
Judgment

MA-DexiNed can obtain a more comprehensive and precise
building edge probability map. It is vital to thin the edge prob-
ability map to obtain pixel-level building line features. This
study uses a rule-based postprocessing algorithm to thin the
edge probability map output from the edge detection network.

The workflow of the algorithm is depicted in Fig. 3. NMS is
commonly employed for post-processing of edge detection [60].
However, the thinning using only NMS results in broken edges,
severely impacting future attribute fusion efficacy. Therefore, in
this study, after obtaining the preliminary thinning results using
NMS, breakpoints are identified and linked based on rules to
warrant that the building edges on rule judgment are as complete
as possible.

In this study, the eight-neighborhood approach is used for
breakpoint identification, i.e., based on the preset breakpoint
template, we adopt the sliding window method to correspond
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Fig. 3. Workflow of edge thinning connection algorithm based on rule judg-
ment.

one by one to determine whether the center point of the window
is a breakpoint. After obtaining the breakpoints of the entire map,
the breakpoints that meet the connection conditions are screened
based on the distance threshold a between the breakpoints.
Breakpoints that are closer to this threshold are preserved for
connection. This connection rule is based on the assumption that
building units exist in isolation. Hence, the building breakpoints
that should be connected are typically near one another. The
threshold a is an empirical value. Following many experiments,
it has been discovered that the threshold (a) is most suitable
between 6 and 8. Subsequently, it proceeds to judge whether
the saved breakpoints to breakpoints have nonzero edge proba-
bility values on their connection paths, i.e., whether there are
nonzero values on this path in the original edge probability
map. If they exist, the two breakpoints are linked in priority.
Otherwise, the two breakpoints with the shortest distance are
connected in preference based on the distance criterion. This
rule is set given the “invalid rejection” phenomenon of NMS,
which means that NMS tends to eliminate some discontinuous
building edge points with low probability value in the edge
probability map thinning process. However, these points are
commonly the weak edges of buildings that are challenging to be
found by the edge detection network. Therefore, following the
designed connection rules, this study attempts to make the best
use of these points to obtain complete and adjacent building edge
features. After the above breakpoints connection, the smaller
area of pseudoedge connected regions in the image is eliminated
to obtain the building line features. The following pseudocode
shows the particular process of thinning connection algorithm.

C. Region Feature Extraction and Region-Line Feature Fusion

Image segmentation is an unsupervised method that uses the
heterogeneity of the present image pixel and the neighboring
pixels for regional segmentation to obtain region attributes of
the building. The heterogeneity is a statistical index that does
not consider the semantic characteristic among building image
pixels. Thus, the buildings obtained by OCNN are moderately
complete; however, their edges are imprecise. In contrast, the
deep learning edge detection network is a supervised segmen-
tation method, and the obtained line features are semantically
informative. These line attributes are also commonly actual
building edges; however, this method typically suffers from
missed and false detections. The suggested region-line feature

Algorithm 1: Edge Thinning Connection Algorithm Based
on Rule Judgment.

1: Input: Edge_strength_map; a
2: Process:
3: Initial_thinning_map = NMS(Edge_strength_map)
4: Breakpoints = Breakpoint(Initial_thinning_map)
5: For i in Breakpoints do
6: Candidate_point =

Range_search(Initial_thinning_map, i, circular, a)
7: For j in Candidate_point do
8: Route_value_ij =

Route_search(Edge_strength_map, i, j)
9: Distances_ij = Distance(i, j)
10: Route_value =

Route_value.And_array(Route_value_ij)
11: Distances = Distances.And_array(Distances_ij)
12: If (Route_value = = 0)
13: [i, j] = minimum(Distances)
14: Else
15: [i, j] = minimum(Route_value)
16: Thinning_connection_map =

Connection(Initial_thinning_map, [i, j])
17: Breakpoints.Delete_array(Breakpoints, [i, j])
18: Output: Thinning_connection_map

fusion method is to complement the merits of the above two
methods. The image segmentation and stronger feature mining
ability of OCNN are employed to augment the missed and
false detection of the edge detection network. The more precise
building edges obtained by the edge detection network are used
to constrain OCNN. Because the image segmentation algorithm
used in this paper is unsupervised, polygon building samples
are not required, making it extremely suitable for tasks with a
shortage of perfect and sufficient samples.

According to the fractal net evolution algorithm, the image
segmentation method used in this study is MRS, which is
highly integrated, easy to use, and has strong applicability [14].
The particular steps are depicted in Fig. 1. First, the original
remote sensing image is input into MRS to get the preliminary
segmentation result, which is the building region feature. The
building line feature map and the building region feature are
then simultaneously input for the second segmentation by MRS
with Vector constraints, i.e., the second MRS is a segmentation
of the line feature map, and the region feature is used as a
vector constraint to guide the segmentation process to stop
when the vector boundary is encountered. Therefore, the second
segmentation is an oversegmentation, which is performed only
inside the segmented object obtained for the first time. Fig. 4
shows a visual understanding of this process. The irregular solid
boxes signify image objects, while the gray boxes denote the
initial image objects. In contrast, the red, yellow, and blue boxes
represent the new image objects at the building edge pixels, the
interior building pixels, and the nonbuilding pixels, respectively,
after feature fusion. Finally, the image objects with smaller
areas are merged according to the regional color features and
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Fig. 4. Illustration of the region-line feature fusion process. Each small box represents a pixel, and different colors represent different objects. (a) Building region
features. (b) Building line features. (c) Region-line feature fusion results.

area threshold in order to reduce the number of small regions
generated by oversegmentation, and the feature fusion results are
obtained. After repeated experiments, the area threshold value
between 5 and 8 is commonly suitable.

D. OCNN Building Extraction

The idea of OCNN is to segment first and subsequently
categorize. In this study, AlexNet [58] deep learning convo-
lutional neural network is chosen to denote class features to
segmented objects. It is matured in the application of AlexNet
in the field of remote sensing for land cover classification as well
as functional area recognition [61]. Meanwhile, its efficiency and
accuracy could satisfy the requirements of the tasks in this study.
AlexNet consists of five convolutional layers, three maximum
pooling layers, and two fully connected layers. These structures
of AlexNet constitute the feature extractor, which extracts the
in-depth features of the input image. The Softmax function after
these structures is used as the classifier to classify the deep
components extracted by the network. To obtain deeper features
of remote sensing images, this study also expands the AlexNet
with channels so that it can input multiband remote sensing
images, which improves the network’s feature mining capability
and augments the network’s classification presentation.

OCNN considers the class of a point in the object as the
class of that object. The basis for using this approach is to
verify that the item has a high degree of uniformity. In complex
image sceneries, however, building image objects have spec-
tral properties similar to their surrounding nonbuilding image
objects. Therefore, the class of a single point within an object
is often challenging to precisely identify the class of the entire
object. Consequently, we introduce most voting algorithms [14]
to augment the classification correctness. The fundamental idea
of this algorithm is to allocate the class features with the most
number of points to the object according to the forecasted classes
of some random points within the object. Finally, achieve image
classification and reduce misclassification.

E. Evaluation Metric

In this study, four classical quantitative evaluation metrics are
used to assess the accuracy of the extracted buildings: precision
(P), recall (R), overall accuracy (OA), and F1 score. Precision

is the proportion of building pixels that are correctly predicted
as buildings to all pixels indicated as buildings. Recall, in this
study’s context, the building binary classification task refers to
the proportion of pixels that are accurately predicted as buildings
to all pixels that are buildings. The following equations are used
to estimate the precision and recall

P = TP/ (TP + FP) (1)

R = TP/ (TP + FN) (2)

where TP is true positive, demonstrating the number of pixels
that are buildings and correctly predicted as buildings. TN is
a true negative, indicating the number of pixels that are non-
buildings and correctly predicted as nonbuildings. FP refers to
false positives, representing the number of pixels that are really
nonbuildings but were wrongly forecasted to be buildings. FN
indicates a false negative, representing the number of pixels
that are actually buildings but were wrongly forecasted to be
nonbuildings. Overall accuracy refers to the proportion of pixels
that are correctly forecasted for all pixels. Equation (3) is the
calculation of OA. Equation (4) is the calculation of the F1 score,
from which it is found that the F1 score is a weighted average of
precision and recall. A higher F1 score shows better extraction
of the algorithm

OA = (TP + TN) / (TP + TN+ FP + FN) (3)

F1 = (2×P×R) / (P+R) . (4)

IV. EXPERIMENTS AND RESULTS

A. Study Area and Data

To confirm the proposed method’s strength, two images from
GF-2 and one image from Google Earth are used as the study
areas, which are selected from various regions and with multiple
types of complex image scenes. Study area A is located in
Guangping County, Hebei Province, China. The image was
taken on February 25, 2017. Fig. 5(a) indicates the actual color
composite image of study area A. Study area A is rural, where
buildings are generally small and easily confused with the com-
plex surroundings. Study area B is selected from the remote
sensing image of GF-2 in the suburb, which is located in Taipei
City, Taiwan. The image was taken on February 3, 2019. Fig. 5(b)
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Fig. 5. Remote sensing images of the study area with a resolution of 1 meter. (a) Study area A. (b) Study area B. (c) Study area C.

shows study area B’s actual color composite image. There are
many factory buildings in this area, with a wide variety of roofing
materials and colors. There are also a large number of residential
buildings in study area B. These residential buildings are small
and dense. It is often difficult to obtain satisfactory results from
conventional building extraction methods. To meet the demand
for high resolution in this experiment, the image’s multispectral
and panchromatic bands were fused to obtain HRS fused remote
sensing images with a resolution of 1 m. Study area C is situated
in Orange County, California, USA. The image was selected on
April 3, 2018. Study area C is a suburb with diverse and dense
buildings. Furthermore, Fig. 5(c) depicts study area C’s actual
color composite image. The size of study areas A, B, and C
are 1568 × 2000 pixels, 1568 × 1776 pixels, and 1294 × 1878
pixels, respectively.

In this study, various training samples should be constructed
for the two deep learning networks of the suggested method.
The task of the MA-DexiNed is to extract building edges.
For three different complex image scenes of the study area,
a quarter area of study area A (located in the top left corner
of the image), a quarter area of study area B (located in the
center of the image), and a quarter area of study area C (lo-
cated on the left side of the image) were selected for making
samples. The process started with outlining the building edges
using ArcGIS 10.2, then converting them into binary raster data
and cropping them randomly into square training samples of
304 × 304 pixels (settings for network input). Additionally,
data enhancement methods, including flip (horizontal/vertical),
rotation (90°/180°/270°), average blur, Gaussian blur, bilateral
blur, and adding random noise, were used to expand the number
of samples in the cropping process. Finally, the edge detection
dataset for each study area contains 6000 sets of images with
their corresponding binary labels.

The sample for the AlexNet is a dataset consisting of square
image blocks with the class attributes of their central pixels. We
employed the concept of uniform sampling to choose a suitable

TABLE I
NUMBER OF TRAINING SAMPLE POINTS IN THE STUDY AREA

number of building and nonbuilding sample sites for research
regions A, B, and C, making the sample more homogenous and
speeding up network convergence. Table I shows the specific
number of building and nonbuilding samples. These samples
were randomly categorized into training and validation datasets,
where 80% were selected as training datasets for training the
weights and biases of the network. In comparison, the other 20%
were used as validation datasets to adjust the hyperparameters of
the AlexNet and thus obtained the model with the best prediction
results.

To verify the efficiency of the suggested method, 1000 points
were randomly selected and allocated features for each of the
three study areas as a basis for accuracy verification.

B. Experiment Parameters

This experiment was conducted on Windows 10 OS, where
the CPU is 2.90GHz Core i7-10700, and the GPU is NVIDIA
GeForce RTX 3090. The MA-DexiNed and AlexNet were im-
plemented under Pytorch-GPU 1.9.1 and Tensorflow-GPU 1.3.0
deep learning platforms, respectively.

In the training process of MA-DexiNed, Adam was chosen
as the optimization algorithm for network weight update. The
batch size was set to 4, the initial learning rate was 0.0001,
and the total number of epochs was 50. SGD was chosen for
AlexNet to update the network weights. Considering the study
area’s variability in building sizes, we established the image
patch size of the input network to 45 × 45 pixels. The batch size



4430 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

and total epoch number were set to 10 and 100, respectively.
Experiments were established to have a learning rate of 0.001
in the first 50 epochs of training and 0.0001 in the last 50
epochs.

C. Results

1) Building Line Feature Extraction Results: The MA-
DexiNed was trained using the building edge dataset. Following
the completion of the training, the remote sensing images from
the research region were fed into the model with the lowest
training loss and best confirmation effect to obtain the edge
detection results. Fig. 6 depicts the edge probability maps of
study areas A, B, and C, respectively. The detection of high-rise
buildings is poor in the marked blue areas of Fig. 6(a), because
there are no edge samples of high-rise buildings in the edge
detection dataset of study area A. Comparing Fig. 6(a1)–(a4)
with Fig. 6(A1)–(A4), the detection results are consistent with
the manual annotation; however, there is also the phenomenon
that the edges of neighboring buildings stick together. The edge
detection impact of study areas B and C is similar to that of study
area A.

In this study, the edge thinning connection algorithm, ac-
cording to rule judgment, was used to thin the edge probability
map and connect the edge breakpoints. Fig. 7 shows the com-
parison before and after the algorithm processing. Although
the improved MA-DexiNed in this study has obtained finer
building edges, the broken building edges and the edge adhesion
of neighboring buildings still exist. The marked areas in the
figure depict that the algorithm has a more noticeable impact in
processing building edge thinning, edge breakpoints connection,
and edge adhesion separation.

2) Region-Line Feature Fusion Results: In this study, the
building line features obtained by edge detection were combined
with the building region features obtained by MRS to achieve
more accurate building extraction results at the edges. Numerous
attempts found that all study areas could obtain better build-
ing segmentation results with a scale parameter of 35. Fig. 8
compares the segmentation results before and after the fusion
of building features with the same scale parameter. From the
marked red areas in the figure, it can be discovered that the
method separates the building from its surrounding background
with similar spectral characteristics while keeping the original
MRS results.

3) OCNN Extraction Results: The building dataset was man-
ually labeled and cropped to a uniform size. Subsequently, it was
fed into the AlexNet for deep feature extraction. Simultaneously,
five random points were generated for each segmented object
using the random point generation algorithm. Five random
points are sufficient to represent the segmented object. Be-
cause the segmentation unit is already sufficiently homogeneous
internally, the error tolerance of the algorithm is substantially
enhanced. Following the same preprocessing operation as the
training sample points, the random points were fed into the
model with low training loss and validation loss simultane-
ously for the prediction. Furthermore, the model generated ran-
dom points with class properties. Finally, the extraction results

Fig. 6. Building edge detection results. (a)–(c) Edge detection results in study
areas A, B, and C. 1–4 subregions and ground truths of different study areas are
highlighted and enlarged on the right side.

were obtained by feeding these random locations through the
majority voting method. Building extraction findings for the
three research regions are shown in Fig. 9. It is discovered in
this study that the proposed technique performs better in terms
of accuracy and edge integrity of the building edges.

D. Accuracy Evaluation Result

Table II presents the accuracy evaluation results of building
extraction for the three study areas. It is discovered from the
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Fig. 7. Comparison of results before and after algorithm processing. (a), (c), and (e) Edge detection results in study areas A, B, and C. (b), (d), and (f) Algorithm
processing results in study areas A, B, and C.

Fig. 8. Comparison of results before and after fusion of study area. (a), (c), and (e) Before fusion of study areas A, B, and C. (b), (d), and (f) After fusion of
study areas A, B, and C.

table that the precision of all study areas is above 90%; however,
the recall is around 80%. The reasons for the low recall are
as follows: First, the low recall is a frequent phenomenon for
small building recognition in complex image scenes, even when
buildings are recognized in complex image scenes using visual
interpretation; second, the method proposed in this study obtains
more precise segmentation by combining the building region-
line features. Therefore, the building line features influence the

accuracy. However, in this experiment, the selected edge detec-
tion sample production area does not cover a wide enough area,
and there are very few high-rise buildings in study area A. This
phenomenon leads to insufficient high-rise building samples in
the edge detection dataset and poor sample representativeness.
So there is a problem of missed detection, which is the main
reason for the low recall of the algorithm. The total accuracy of
the three study areas is also approximately 90%, especially the
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Fig. 9. Building extraction results for the study area. (a) Study area A; (b) study
area B; (c) study area C. 1–4 subregions of different study areas are highlighted
and enlarged in the lower right corner.

TABLE II
ACCURACY EVALUATION RESULT OF BUILDING EXTRACTION

OA of study area C reaches 97.50%. Additionally, the F1 score
reaches 0.95, demonstrating that this study’s proposed method
can accurately extract the buildings in complex image scenes.

V. DISCUSSION

A. Efficiency of MA-DexiNed for Building Edge Detection

The MA-DexiNed proposed in this study is enhanced for the
problem of easy missed and false detection of small objects. In
this section, to verify the effectiveness of MA-DexiNed, it is
compared with RCF and DexiNed. The edge detection results
of RCF, DexiNed, and MA-DexiNed are shown in Fig. 10,
respectively. For the fairness of the experiment, the training and
testing datasets used for all the above networks are the same.

The experimental results show that the proposed method in
this study can obtain clearer, more refined, and precise building
edge features compared with RCF and DexiNed. Among them,

Fig. 10. Comparison of building edge detection results. (a) Remote sensing
images. (b) RCF. (c) DexiNed. (d) MA-DexiNed.

comparing the edge detection findings of RCF with other net-
works, it is discovered that RCF tends to induce the phenomenon
of blurred edges and incomplete edges in the face of small and
dense rural buildings. Because the structure of RCF is relatively
simple and weak in detecting small or complex objects, DexiNed
can obtain clearer building edges than RCF. However, the build-
ing edges it extracts are substantially broken and omitted. How-
ever, because of the dense multilayer structure, the combination
of long and short hopping connections and its particular upsam-
pling module make DexiNed perform well in small target edge
detection tasks. Furthermore, MA-DexiNed inserts the CBAM
module into the network, adjusts the downsampling module,
and increases the network’s channels. This makes the network
more capable of feature extraction and selection. Therefore,
comparing the detection results, the proposed network in this
study can obtain more accurate and complete building edge
features, significantly reducing the missed detection rate of small
or complex buildings.

B. Effectiveness of Region-Line Feature Fusion for Building
Extraction

With the emergence of deep learning, there are an increasing
number of situations of merging classic segmentation methods
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TABLE III
ACCURACY EVALUATION RESULTS OF DIFFERENT METHODS

with deep learning approaches, all of which have produced
reasonably decent results. In this section, the proposed method
in this study is compared with the many mature methods, which
are SEEDS-CNN [37], SLIC-CNN [37], SLICO-CNN [38], and
MRS-CNN [38]. Among them, SEEDS, SLIC, SLICO, and
MRS are the more applied image segmentation methods. Addi-
tionally, RCF-MRS-CNN and DexiNed-MRS-CNN are added,
adopting RCF and DexiNed rather than MA-DexiNed in the line
feature extraction module.

Table III shows the accuracy evaluation results obtained from
the above seven methods in the building extraction experi-
ments in study areas A, B, and C, respectively. In the accuracy
evaluation results of study area A, the precision of the proposed
method is 92.00%, the recall is 80.50%, the OA is 94.80%,
and the F1 score is 0.86, which is significantly higher than the
other methods. Similarly, the accuracy of the proposed method
is higher than the other methods in both study areas, B and
C. Study Area A is the most rural of the three study regions,
with short, decrepit dwellings. Manual interpretation is also
difficult to differentiate. Therefore, the buildings in study area
A are the most challenging to extract. The proposed method
in this study is dedicated to solving the problem of harrowing
building extraction in complex image scenes, so the method is
more applicable to complex image scenes than simple image
scenes. This is why the most noticeable index improvement is
observed in the study area A. Additionally, the enhancement of
P is higher than that of R in the three study areas. This is caused
by the object-based image segmentation method. Because the
misclassification caused by a single image segmentation is usu-
ally that the segmented object is larger than the actual building,
this makes CNN misclassify nonbuildings into buildings more
frequently than buildings into nonbuildings when performing

the classification. Therefore, the approach enhancement in this
study leads to a considerable reduction in the misclassification
of non-buildings as buildings. Thus, it leads to a significantly
higher enhancement of P than R.

Fig. 11 compares the local findings of building extraction
by the above seven methods in the three study areas. From
the marked red areas in the figure, it is discovered that the
technique with region-line feature fusion can extract the build-
ing units with more accurate edges. Simultaneously, the other
methods are more obvious misclassification and omission in the
corresponding marked areas.

The advantages and disadvantages of different methods are
observed by combining the accuracy evaluation results and
the visual effect of building extraction. First, by comparing
the SEEDS-CNN, SLIC-CNN, SLICO-CNN, and MRS-CNN
methods, it is found that the precision of the above methods is
generally low in study area A. Because the buildings in study
area A are much more difficult to extract than in study areas
B and C, obtaining more desirable extraction results without
region-line feature fusion is difficult, which the details in Fig. 11
can also confirm. However, the accuracies of the MRS-CNN
method in study areas B and C are significantly higher than
other methods. Furthermore, because SEEDS, SLIC, and SLICO
are three superpixel segmentation algorithms, the size of seg-
mented objects obtained by these algorithms is closer to the
size requirement of the receptive field of the CNN. However,
this makes the superpixel segmentation highly susceptible to
confusing superpixels, and the edge accuracy of their segmented
objects is significantly lower than that of the MRS. Therefore,
MRS can obtain more accurate image segmentation results
than other methods without region-line feature fusion. Second,
when MRS-CNN, RCF-MRS-CNN, DexiNed-MRS-CNN, and
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Fig. 11. Comparison of extraction results by different methods. (a) Manual annotation. (b) SEEDS-CNN. (c) SLIC-CNN. (d) SLICO-CNN. (e) MRS-CNN.
(f) RCF-MRS-CNN. (g) DexiNed-MRS-CNN. (h) Proposed method. The pink area in the figure shows the buildings extracted by the above methods.

the suggested approach are compared, it is discovered that the
region-line feature fusion method can significantly increase the
accuracy of building extraction, demonstrating the efficacy of
the innovative feature fusion method described in this work.
Because the essence of the region-line feature fusion is to
perform the oversegmentation based on the initial segmentation
result obtained by MRS. This oversegmentation is specifically
for the building edges. In other words, this method can separate
the edges from the confused segmentation objects at the edges of
the buildings. Therefore, this method achieves the effect of
optimizing edge segmentation. In addition, in our three study
areas, the former two have imperfect samples (only discontinu-
ous edges are available). Thanks to the advantages of the unsu-
pervised MRS, our method can still achieve excellent building
extraction results in such cases. Finally, comparing RCF-MRS-
CNN, DexiNed-MRS-CNN, and the proposed method in this
study, it is found that the accuracies of the proposed method in
the three study areas are significantly higher than the other two
methods, which again verifies the efficacy of the MA-DexiNed
in the task of edge feature extraction.

C. Suitability of the Proposed Method for Building Extraction
for Complex Image Scenes

Compared to complex image scenes, buildings in simple
image scenes have more precise building contours, usually of a

single type. Therefore, extracting structures from complex im-
age scenes is much more challenging than simple image scenes.
To verify the method’s suitability in this study for different
scenes, in this subsection, the ISPRS Potsdam dataset is used to
compare study areas A, B, and C. The ISPRS Potsdam dataset
is one of the datasets of the ISPRS [62] 2D Semantic Labeling
Challenge, which was taken in Potsdam, Germany, with a resolu-
tion of 0.05 m and four bands, including NIR. This dataset is of a
very high resolution and sparse building distribution, presenting
a typical simple image scene. The comparative experiment uses
the same data pre-processing as in study areas A, B, and C to
generate the same amount of samples.

In Fig. 12, the figures of the first two lines are respectively
from study areas A and B, and the figures of the last two lines are
from the ISPRS Potsdam dataset. However, comparing the build-
ing extraction results of different methods in various scenes, it
can be discovered that the proposed method in this study has
more obvious advancement than the ISPRS Potsdam dataset
regarding edge accuracy and completeness in study areas A and
B. It can also be found in Table IV that the precision of the sug-
gested method in study areas A, B, and C is generally improved
by more than 10% compared to other methods, and different
accuracy indicators also have more substantial improvement. In
contrast, this proposed method does not outperform the former
when it meets ISPRS Potsdam dataset covered by simple scenes.
Its accuracy improvement is limited, implying the superiority of
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Fig. 12. Comparison of extraction results of different image scenes. (a) Manual
annotation. (b) MRS-CNN. (c) DexiNed-MRS-CNN. (d) Proposed method. The
pink area in the figure shows the buildings extracted by the above methods.

the proposed method over the traditional methods when applied
to complex scenes. However, the advancements MA-DexiNed
in this study have stronger feature mining ability, which makes
the network more suitable for complex image scenes than other
networks. Nevertheless, the proposed method combines the
line features obtained by MA-DexiNed and the region features
obtained by MRS so that the confused segmentation objects
that often occur when applied to complex image scenes can
be precisely segmented. Therefore, it is appreciable that this
study’s proposed building extraction method is more suitable
for complex image scenes.

D. Limitations of the Proposed Method

This method also has certain limitations. For example, the
MA-DexiNed can obtain more accurate and thinning edge fea-
tures; however, it is still incapable of absolutely preventing
missed detection and false detection. This is related to the
network’s performance and the small coverage area of the edge
detection samples adopted in this method.

Simultaneously, although the proposed framework has a good
extraction effect on building edges, the time cost of this method is
high. Because the proposed framework cascades several differ-
ent remote sensing image processing algorithms, including edge
detection, postprocessing algorithms, image segmentation, and
OCNN, some of which involve specifically complex processing
or even professional software to complete, makes the end-to-end
method integration is fraught with difficulties. In addition, the
data used in the experiments are all off-nadir images, so there
are many shadows and occlusions in the images.

TABLE IV
COMPARISON OF ACCURACY EVALUATION RESULTS OF DIFFERENT IMAGE

SCENES

VI. CONCLUSION

With the emerging development of domestic HRS satellite
technology, the interest in building extraction is growing. How-
ever, buildings in complex image scenes extracted by most
existing methods are inaccurate. This study provides an ap-
proach that combines region-line feature fusion with OCNN to
extract structures in complicated visual situations by cascading
a deep learning edge detection network with OCNN. The experi-
mental results demonstrate that the proposed method can extract
accurate and complete edges of buildings. At the same time, the
technique performs more prominently in complex image scenes.
Therefore, it is more applicable to complex image scenes than
simple ones.

The significant contributions of this study include the follow-
ing.

1) A new edge detection network named MA-DexiNed for
building edge extraction in complex image scenes is pro-
posed. The experimental results of building edge extrac-
tion demonstrate that the network can obtain good detec-
tion results regarding building edge accuracy and small
buildings detection.

2) A novel edge thinning connection algorithm according
to the rule judgment is proposed, which experimentally
verified the merits of thinning the edge probability maps
and maintaining contiguous line features of buildings.

3) For the complex image scene building extraction
task, a novel method is proposed to fuse supervised
segmentation-based building edge line features with unsu-
pervised segmentation-based building region features and
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combine them with OCNN. This method improves the
accuracy of image segmentation and provides a new idea
for accurately extracting buildings from complex image
scenes or in the case of imperfect samples.

However, the suggested technique in this study concentrates
on the accuracy and completeness of building edges, and it does
not consider the entire process’s overhead regarding time and
cost. Therefore, the essential research focus for the future is how
to increase the method’s automation and lower the time cost.
To overcome this issue, alternative, well-designed approaches
can be used instead of MRS to create an end-to-end building
extraction network structure with a high degree of integration.
Additionally, it should be noted that we only apply the method
to the binary classification task of buildings. Due to the edge
detection network, the current method can only enhance the
edges of one type of object in one classification task. It is
also challenging to break through this limitation to achieve fast
multiclassification. However, it is possible to attempt to de-
sign multilayer edge detection networks to achieve hierarchical
extraction of the edges of various objects to achieve the effect of
enhancement of every edge in the whole image. This can provide
novel ideas for land cover classification with high accuracy.
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