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GCRDN: Global Context-Driven Residual Dense
Network for Remote Sensing Image Superresolution

Jialu Sui , Xianping Ma , Student Member, IEEE, Xiaokang Zhang , Member, IEEE,
and Man-On Pun , Senior Member, IEEE

Abstract—Superresolution (SR) of remote sensing images aims
to restore high-quality information from low-resolution images.
Recently, it has witnessed great strides with the rapid development
of deep learning (DL) techniques. Despite their good performance,
these DL-based models are often ineffective in balancing global and
local feature extraction. Moreover, they are usually hindered by the
poor image reconstruction capability of the decoder inside their SR
models. To cope with this problem, this work proposes a novel global
context-driven residual dense network (GCRDN) for satellite image
SR based on the encoder and decoder architecture. In particular,
the proposed encoder is endowed with nonlocal sparse attention
modules incorporated into the residual dense network to learn ro-
bust representations from global features. Furthermore, a decoder
equipped with back-sampling blocks is devised to fully exploit the
feature maps extracted from the encoder. Extensive experimental
comparisons based on two multisensor satellite remote sensing
datasets confirm that the proposed GCRDN achieves impressive
performance in terms of perceptual quality and fidelity.

Index Terms—Convolutional neural network (CNN), nonlocal
sparse attention, remote sensing images, superresolution (SR).

I. INTRODUCTION

SUPERRESOLUTION (SR) [1], [2] for remote sensing im-
ages aims to reconstruct a high-resolution (HR) image from

a low-resolution (LR) observation. It has been widely applied in
a wide range of tasks, including military [3], agriculture [4],
disaster prevention [5], and natural resource monitoring [6].
Specifically, the HR images generated by SR contain clear
spatial texture information of location and essential features of
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the landscape, and they have been applied in numerous remote
sensing vision tasks such as semantic segmentation [7], [8],
change detection [9], and object detection [10]. However, it
is still challenging to reconstruct fine-grained remote sensing
images due to their ultralong-range imaging nature, atmospheric
disruptions, and equipment noise [2], [11].

A large number of SR methods have been developed in the lit-
erature. Broadly speaking, these existing SR methods can be cat-
egorized into three approaches, namely interpolation-based [12],
[13], reconstructions-based [14], [15], and learning-based [16],
[17], [18], [19] approaches. The interpolation-based approach is
an elementary kind of the SR method that generates SR images
by increasing the pixel intensities on an up-sampled grid. In
contrast, the reconstruction-based SR approach usually relies
on explicit prior information to limit the range of potential
solutions, assuming that LR images result from HR images
after multiple degradations. As a result, the reconstruction-based
SR approach is more capable of producing flexible and precise
details. Finally, taking advantage of deep learning (DL) tech-
niques, the learning-based approach has demonstrated superior
performance by exploiting the statistical correlations between
the LR and its matching HR counterpart based on large training
sample sets [20]. More specifically, the DL-based SR models
are commonly developed upon the encoder–decoder structure
in which the encoder extracts representative feature maps from
the LR images, whereas the decoder reconstructs the HR images
from the feature maps. These DL-based models can be further
divided into three categories based on their baseline models,
namely convolutional neural network (CNN)-based, genera-
tive adversarial network (GAN)-based, and self-attention-based
models.

The CNN was first introduced into SR as the baseline model to
map an LR image into the HR one in an end-to-end manner [21].
Along the same direction, Kim et al. [22] proposed very deep
superresolution (VDSR) by increasing the depth of the network
while utilizing the residual learning and gradient clipping to
improve the convergence performance of its deep networks.
Recently, Lim et al. [23] devised a more comprehensive net-
work named enhanced deep superresolution networks (EDSR)
by further enhancing the residual and dense blocks, whereas
the authors in [24], [25], [26], and [27] proposed to learn
complicated characteristics of ground objects before restoring
them into high-quality images in remote sensing. However, the
performance of these CNN-based models is handicapped by the
limited receptive field of the CNN, incurring insufficient global
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texture information extraction. On the other hand, GAN-based
models have been applied in SR to derive synthetic images of
distribution similar to that of the authentic images [28], which
results in comparable visual representation [29], [30], [31], [32],
[33]. However, these GAN-based models usually suffer from
artifacts in the resulting images and loss of high-resolution
details of ground objects. Finally, another line of work focuses
on the self-attention mechanism for SR, especially the newly
proposed transformer structure [34]. The vision transformer [35]
has become a popular choice for exploiting long-range contex-
tual information, benefiting from the multihead self-attention
mechanism. Furthermore, the Fusformer [36], especially de-
signed for remote sensing images, applied a pure transformer
architecture to address the global relationship modeling in fea-
ture maps. However, the self-attention-based methods may lead
to disturbance from high-frequency noise and loss of detailed
information.

In summary, due to the limitation of the receptive field, the
CNN-based encoder is ineffective in extracting global features
of remote sensing images. In contrast, as the self-attention-based
methods focus on calculating the correlation of all elements in
the feature maps, they are susceptible to unrelated and noisy
contents, thus leading to high computational costs and inaccu-
rate representation. Furthermore, most state-of-the-art methods
overlooked the information restoration capability of the decoder,
i.e., reconstructing high-quality HR images from abstract fea-
tures extracted by the encoder.

To remedy these issues, we propose a global context-driven
residual dense network (GCRDN) for SR. Specifically, nonlocal
sparse attention (NLSA) is first introduced into the residual
dense encoder block, which helps exploit the features generated
from the residual dense encoder block and effectively aggregate
enriched global information. Furthermore, the back-sampling
blocks are employed to construct the decoder in which the image
reconstruction error is fed back through successive up-sampling
and down-sampling blocks. The rich semantic features from the
encoder are repeatedly used for the final high-resolution image
generation, improving the utilization of semantic information
and HR image quality. The main contributions of this article are
summarized as follows.

1) A novel nonlocal sparse residual dense (NLRD) encoder
is proposed by incorporating NLSA into residual dense
networks to capture similar contextual information from
a global perspective. The NLRD Encoder is effective and
robust as it takes into account the global relationship such
as repeated textures in the remote sensing images.

2) The enriched features learned from the encoder are up-
sampled and down-sampled successively by the deep
back-sampling (DBP) decoder. The circulation of sam-
plings guides the finer reconstruction of the target images
while retaining detailed information.

3) Capitalizing on the proposed NLRD encoder and DBP
decoder, GCRDN is constructed by leveraging global
context extraction and continuous decoding strategy
for SR.

The rest of this article is organized as follows: Section II
provides a brief overview of different existing DL-based SR

models, whereas the architecture of GCRDN is described in
Section III. After that, Section IV provides in-depth experimen-
tal analyses on GCRDN and other state-of-the-art SR methods.
Finally, Section V concludes this article.

II. RELATED WORK

A. CNN-Based SR Framework

The conventional CNN-based encoder–decoder networks
have been widely applied in computer vision tasks for decades.
Motivated by the great success of classical models such as
VGG [37], ResNet [38], DenseNet [39], and MemNet [40]
in various practical applications, a number of pioneering SR
models have been developed including VDSR [22], RCAN [41],
RDN [42], PQA-CNN [43], EDSR [23], MSAN [44], RSI-
Net [45], and CTN [46]. These CNN-based SR models are
characterized by their convolutional layers for encoding and
decoding feature maps. Specifically, RCAN [41] provided a so-
lution for equal treatment of low-frequency and high-frequency
features across channels while channel attention was introduced
into the residual structure with long skip connections among sev-
eral residual groups. As a result, the high-frequency information
was assigned a higher attention weight than the low-frequency
information. This module is also applied in MSAN [44] to
perform multilevel feature extraction focusing on the complex
structure of remote sensing images. Moreover, PQA-CNN [43]
was proposed for SR of remote sensing images by adopting a per-
ceptual quality-assured framework with an uncertainty-driven
quantification model to meet the human perceptual requirement.
RDN [42] utilized a combination of dense and residual blocks
to fully extract the hierarchical features from the LR images.
Despite their many advantages, these CNN-based models mainly
focus on local information and cannot fully exploit long-range
contextual information due to their limited global feature ex-
traction capability. Moreover, another drawback of these CNN-
based models is that contextual and spatial information may
be lost in the decoding stage, limiting the recovery of the
high-resolution information [47].

More recently, GAN has been introduced in image restoration
by driving the synthesized results closer to the natural images
manifold and discriminating whether it is “real” enough for
human perception with the adversarial learning strategy [48].
SRGAN [28], ESRGAN [49], SWCGAN [30], EEGAN [29],
MAGAN [31], and CDGAN [32], have been developed for
SR. However, their performance is usually hindered by various
problems such as model collapse, unstable training, and gradient
vanishing during adversarial learning.

B. Self-Attention-Based Enhancement

The transformer was first proposed to model the long-range
dependencies in natural language processing before it was in-
troduced to the computer vision field with comparable per-
formance. As the core of the transformer, the self-attention
module has been proven to be more effective in arranging long-
distance information and attracted much attention. Methods
such as SwinIR [50], TranSMS [51], ESRT [52], NLSN [53],



SUI et al.: GCRDN: GLOBAL CONTEXT-DRIVEN RESIDUAL DENSE NETWORK 4459

Fig. 1. Framework of the proposed GCRDN. The red and orange lines in the DBP decoder indicate the connections in the down-sampling and up-sampling,
respectively. The Concat block concatenates all input matrices before the resulting vector is fed into a convolutional layer to restore the number of feature channels.

Fusformer [36], Interactformer [54], and TransENet [55] are
designed based on the self-attention mechanism. In particu-
lar, SwinIR [50] adopted a hierarchical transformer with a
shifted-window attention mechanism [56]. It consisted of sev-
eral residual swin transformer blocks to make the interactions
between image contents and attention weights. By restricting
self-attention computation in non-overlapping local windows,
the shifted windowing scheme obtained greater computational
efficiency on high-level vision tasks. Moreover, it has been
reported that the synergy of CNN and transformer outperforms
the pure transformer network. For instance, TranSMS [51] de-
veloped a dual-branch encoder built with a vision transformer
module and a dense convolutional module. These two branches
are used to capture contextual relationships in low-resolution
input features and localize high-resolution features, respectively.
Furthermore, it has been proposed to embed self-attention mod-
ules into the CNN to enhance global information recognition.
For instance, NLSN [53] improved the nonlocal sparse attention
by identifying the most informative locations that need attentions
while ignoring those unrelated regions. Despite that these meth-
ods can capture long-range context relationships, they suffer
from loss of detailed information in the representation learning
and image reconstruction processes. Compared with [53], we
combine NSLA with dense residual learning to improve feature
expression and introduce the back-sampling strategy to generate
finer reconstructed images.

III. METHODOLOGY

This section will provide an overview of the proposed method
before elaborating on the two essential components of the pro-
posed GCRDN.

A. Network Framework

As shown in Fig. 1, the proposed GCRDN consists of an
NLRD encoder and a DBP decoder. In the NLRD encoder, the

shallow convolutional features generated by the encoder head
are first fed into a series of nonlocal attentive residual dense
blocks (NARDBs). These NARDBs are utilized to preserve
the feed-forward nature of networks based on a contiguous
memory mechanism while extracting local-global contextual
features. After that, the multilevel features obtained by the
NLRD encoder are concatenated along the channel axis and
integrated by convolution operations. Furthermore, the encoded
feature maps are fed into the DBP decoder to reconstruct the
HR images through the continuous up- and down-sampling
processes, in which the encoded features are mapped to the
higher resolution feature maps and converted back to the lower
resolution repeatedly. Finally, all HR features generated in the
up-sampling processes are concatenated and converted into the
expected output size before being fed into the decoder tail for
SR image reconstruction with the convolution operations.

B. NLRD Encoder

The NLRD encoder aims to learn enriched local-global fea-
tures of remote sensing images. It consists of an encoder head,
several NARDBs and a feature fusion module. The encoder head
containing two convolutional layers is used to generate the shal-
low features of input images. These shallow features are then fed
into a series of NARDBs for multilevel representation learning.
After that, the feature fusion module composed of convolutional
layers is utilized to integrate the multilevel features to enhance
representative capabilities.

The architecture of the NARDB is depicted in Fig. 2. As the
core component of the NLRD encoder, the NARDB is developed
based on hierarchical dense residual learning and the NLSA
mechanism.

1) Dense Residual Learning: The dense residual learning in
the NARDB can be formulated as follows:

O = Conv([RJ ;RJ−1; · · · ;R1; I]) + I (1)
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Fig. 2. Architecture of the NARDBs.

Fig. 3. Process of the NLSA for each feature map.

where O and I are the output and input of the dense residual
learning, respectively. Furthermore, [·] stands for the concatena-
tion process, whereas Conv denotes a convolutional operation.
In addition, Rj represents the feature maps produced by the
jth convolutional layer followed by a ReLU activation function,
where j ∈ {1, . . . , J}. Notably, in dense residual learning, the
results generated by all convolutional blocks in the previous
stage will be connected with the next-stage blocks. After that,
an NLSA module is employed to capture global contextual
information based on the integrated local features.

2) Nonlocal Sparse Attention (NLSA): Motivated by the ob-
servation that remote sensing images typically exhibit repeated
patterns, such as vegetation, roads, wasteland, and mountains,
NLSA is utilized to capture the global contextual information
for better feature extraction. More specifically, NLSA is an
improved nonlocal attention operation that partitions the input
features into hash buckets to reduce the attention computation.

As shown in Fig. 3, the upper branch presents the first
step of NLSA. The feature maps are fed into the spherical
locality-sensitive hashing (LSH) algorithm [57] to obtain the
attention bucket, while in the bottom branch, for each query
p, the attention operation executes in its attention bucket as
the calculation range to generate the attention-weighted feature
values.

To capture global contextual information from all positions,
the input feature map of the NLSA X̃ ∈ RC×H×W , where
C, H , and W denote the feature dimension, the height and
width of the feature map, respectively, is first reshaped into a
feature sequence X′ ∈ RC×P where P = H ×W . Then, the
LSH partitions the features X′ into M hash buckets based on
the similarity of the angular distances between elements. Input
elements with high similarity are mapped into the same bucket.
More specifically, LSH first randomly rotates a cross-polytope

Fig. 4. Architectures of the (a) up-sampling and (b) down-sampling in the
DBP decoder.

inscribed into a hypersphere and projects the tensor onto the
hypersphere. After that, LSH chooses the closest polytope vertex
as a tensor’s hash code such that vectors of similar angular
distances fall into the same hash bucket. The application of
the attention bucket achieves high efficiency and robustness
by ignoring other noisy or less-correlated partitions. Denote by
A ∈ RM×C a rotation matrix, the resulting tensor after sampling
and rotation is given by

X = A · X′

||X′||2
(2)

and subsequently, the hash code at the location p, for p =
1, 2, . . . , P , is defined as

hash(xp) = arg max
m

([xp]m) (3)

where xp is the pth column of X and [·]m stands for the mth
entry of the enclosed vector.

As a result, the locations of the same hash code are put into
the same bucket. For the feature xp at the location p, its bucket
index set can be obtained by

Gp = {q|hash(xq) = hash(xp)}. (4)

Note that Gp indexes the locations highly related to the loca-
tion p. Using Gp, we can further compute the NLSA output rp
as follows:

rp =
∑

q∈Gp

αp,q · trans(xq) (5)

where trans(·) is a feature transformation function, while αp,q

is a weighting coefficient defined as

αp,q =
s(xp,xq)∑

g∈Gp
s(xp,xg)

(6)

with s(·, ·) being the feature similarity.
Since the input feature map X ∈ RM×P contains P

locations, the set Gp indexes |Gp| nonzero elements in
[s(xp,x1), . . . , s(xp,xP )] ∈ RP , where | · | stands for the car-
dinality of the enclosed set. Since Gp contains the pixel locations
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TABLE I
QUANTITATIVE EXPERIMENTAL RESULTS ON THE DATASETS

TABLE II
ABLATION STUDY ON THE OLI2MSI AND ALSAT DATASET FOR NLSA AND

BACK-SAMPLING

TABLE III
ABLATION STUDY ON THE OLI2MSI AND ALSAT DATASET FOR DENSE

CONNECTIONS

the query should attend to, the sparsity constraint can be con-
ducted on the NLSA by reducing the number of nonzero entries
to the designated chunk size K, i.e., the size of the attention
bucket.

Finally, the outputs of all NARDBs are integrated before being
fed into the decoder:

Eoutput = Conv([NT ;NT−1; · · · ;N1]) +N0 (7)

where Eoutput, Nt, and N0 are the outputs of the NLRD en-
coder, the tth NARDB, and the encoder head, respectively, for
t = 1, 2, . . . , T . Furthermore, Conv stands for the convolutional
operation.

C. DBP Decoder

In sharp contrast to most existing decoders in the encoder–
decoder frameworks that directly reconstruct the HR images
through progressive convolution and up-sampling in a feed-
forward manner, we exploit a DBP decoder to preserve HR
components in image reconstructions following an approach

similar to [58]. Specifically, the DBP Decoder concentrates on
boosting feature sampling at various depths while propagating
the reconstruction errors across various stages. As a result, the
DBP decoder can learn from different up- and down-sampling
operators while retaining the details of HR components. The
circulation and interlayer dense connections of up- and down-
sampling alleviate the vanishing gradient problem and improve
the feature reuse for obtaining better results. Moreover, the
up-sampling module takes all down-sampled features as input,
while the down-sampling module processes those feature maps
produced in each up-sampling unit. In this error feedback strat-
egy, the sampling features in the early stages can guide and
constrain the feature expression in the later stages. Without
loss of generality, the following discussions will focus on the
(n+ 1)th up-sampling and down-sampling operations.

1) Up-Sampling: We denote by {Ln, . . . , L0} the outputs of
the first n down-sampling blocks. The (n+ 1)th up-sampling
process is shown in Fig. 4(a) in which the LR feature maps
{Ln, . . . , L0} are first concatenated before being fed into con-
volution layers. The resulting feature maps denoted as L′

n can
be expressed as

L′
n = Conv ([Ln;Ln−1; · · · ;L1;L0]) . (8)

L′
n is then first upscaled before being downscaled. After that,

the difference between L′
n and its downscaled counterpart is

upscaled. Finally, the outputs from both upscale operations are
added together to generate the up-sampling output Hn+1 as
follows:

Hn+1 = DC (L′
n − Conv (DC(L′

n))) + DC(L′
n) (9)

where DC(·) stands for the deconvolution-based upscale
operation.

2) Down-Sampling: As presented in Fig. 4(b), the (n+ 1)th
down-sampling process is a reverse operation of the up-sampling
process. The HR features {Hn+1, . . . , H1} are first concate-
nated before being fed into convolution layers. The resulting
feature maps denoted as H ′

n+1 can be expressed as

H ′
n+1 = Conv([Hn+1;Hn; · · · ;H1]). (10)
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Fig. 5. Visual comparisons on the OLI2MSI dataset. (a) LR. (b) HR. (c) RDN. (d) NLSN. (e) RCAN. (f) DBPN. (g) EDRN. (h) EFDN. (i) EDSR. (j) ESRT.
(k) TranSMS. (l) SRGAN. (m) ESRGAN. (n) GCRDN.

TABLE IV
CLASSIFICATION OF THE COMPARED METHODS

Similarly, H ′
n+1 is then first downscaled before being upscaled.

After that, the difference between H ′
n+1 and its upscaled coun-

terpart is downscaled. Finally, the outputs from both downscale
operations are added together to generate the n+ 1 down-
sampled output Ln+1 as follows:

Ln+1=Conv
(
H ′

n+1−DC(Conv
(
H ′

n+1

)
)
)
+Conv

(
H ′

n+1

)
.

(11)

Finally, the decoder tail Dtail with two convolutional layers
gathers all the up-sampled results to compute the final HR
images as

D = Dtail (Conv([HU ;HU−1; · · · ;H1])) (12)

where U is the total number of the up-sampling blocks.

IV. EXPERIMENTS

A. Datasets and Metrics

In this section, two remote sensing datasets, i.e.,
OLI2MSI [59] and Alsat [60] are employed to evaluate
the proposed model. The OLI2MSI dataset comprises
Landsat8-OLI and Sentinel2-MSI images with 5225 and
100 pairs of images for training and testing, respectively.
Furthermore, Landsat8-OLI images with a spatial resolution
of 30 m serve as the LR input and Sentinel2-MSI images with
a spatial resolution of 10 m are regarded as the HR ground
truth. The Alsat dataset contains 2182 training samples and
three subdatasets for testing, namely scenes of “agriculture,”
“urban,” and “special” structures, with 56, 282, and 239 image
pairs, respectively. Two widely used metrics, i.e., peak signal to
noise ratio (PSNR) and structural similarity (SSIM), are used
to quantitatively evaluate the SR performance.
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Fig. 6. Visual comparisons on Alsat “urban” set. (a) LR. (b) HR. (c) RDN. (d) NLSN. (e) RCAN. (f) DBPN. (g) EDRN. (h) EFDN. (i) EDSR. (j) ESRT.
(k) TranSMS. (l) SRGAN. (m) ESRGAN. (n) GCRDN.

B. Implementation Details

In the proposed network, 16 NARDBs are adopted in the
encoder with 3× 3 convolution for feature extraction and 1× 1
for feature fusion. We use padding operators for all convolutional
layers. The chunk size K in the NLSA is set to 144 in OLI2MSI
and 25 in Alsat. The total number of up-sampling processes is
set to U = 6, i.e., six up-sampling operations are utilized in the
decoder. The network is trained using the L1 loss with a batch
size of 16 and a learning rate of 10−4. All images are cropped
into patches of 32× 32LR inputs and 96× 96HR outputs in the
OLI2MSI dataset. Similarly, 32× 32 and 128× 128 patches are
generated for the training and testing on the Alsat dataset. All
experiments are implemented with PyTorch on a single NVIDIA
GeForce RTX 3090 GPU with 24 G RAM.

C. Comparisons With Advanced SR Models

To demonstrate the effectiveness of the proposed GCRDN,
we compare it against 11 different state-of-the-art models,
including RCAN [41], RDN [42], EDSR [23], EFDN [61],
DBPN [58], EDRN [47], TranSMS [51], NLSN [53], ESRT [52],
SRGAN [28], and ESRGAN [49].

1) OLI2MSI SR: As shown in Table I, the proposed GCRDN
achieved the best performance among all the methods under
evaluation. In particular, GCRDN equipped with the NLRD
encoder and the DBP decoder demonstrated noticeable improve-
ments as compared to our baseline RDN, achieving 0.12 dB and

0.0024 improvement in terms of PSNR and SSIM, respectively.
This suggests that the proposed GCRDN is more effective in
extracting texture information such as the mountains and roads
and generating HR images. Furthermore, inspection of Table I
suggests that the proposed GCRDN considerably outperformed
the self-attention-based and CNN-based models. This is because
that the CNN-based models lacked global features while the
self-attention-based models were incapable of effectively uti-
lizing suitable local features. Furthermore, these models also
suffered from the weak image reconstruction capability of the
decoder. In contrast, the proposed GCRDN benefits from effec-
tive feature extraction by leveraging the synergy of the nonlocal
attention modules and the back-sampling strategy. Finally, the
GAN-based models, e.g., SRGAN and ESRGAN showed worse
performances as compared to the CNN-based and self-attention-
based models, which indicated that these GAN-based models
were less effective for this remote sensing dataset. Fig. 5 shows
visual comparisons of images obtained with all methods under
evaluation. As presented in Fig. 5, the outline of the roads
restored by the proposed GCRDN is more precise and coher-
ent than the others, demonstrating better texture information
extraction and reconstruction of the proposed GCRDN.

In summary, the experimental results and visual comparisons
discussed previously confirmed that the proposed GCRDN out-
performed CNN-based and self-attention models by effectively
exploiting global-local information in the encoder and making
better feature representation in the decoder.
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Fig. 7. Visual comparisons on Alsat “agriculture” set. (a) LR. (b) HR. (c) RDN. (d) NLSN. (e) RCAN. (f) DBPN. (g) EDRN. (h) EFDN. (i) EDSR. (j) ESRT.
(k) TranSMS. (l) SRGAN. (m) ESRGAN. (n) GCRDN.

2) Alsat SR: For the Alsat dataset, inspection on Table I
revealed that the proposed GCRDN achieved the best results
among all methods on the collection of three subdatasets. In
particular, GCRDN demonstrated 0.06 dB and 0.0079 improve-
ment in terms of PSNR and SSIM, respectively, as compared
to our baseline, RDN. Table I further illustrates the perfor-
mance of all methods in various scenes. It is observed that the
proposed GCRDN showed impressive performance in “agri-
culture,” “special,” and “urban” scenes. Indeed, the proposed
GCRDN achieved the best performance in “agriculture” and
“special” test sets because the images of “agriculture” and
“special” scenes possess simple and repetitive patterns that can
be easily captured and exploited by GCRDN. In “urban” scenes,
despite that the performance of GCRDN is worse than that
of RCAN in PSNR and that of ESRGAN in SSIM, GCRDN
also generated SR images with a high perceptual quality in
such a complicated situation. Visual comparisons on the re-
sults generated by all methods under consideration in “urban,”
“agriculture,” and “special” scenes are shown in Figs. 6–8, re-
spectively. Clearly, the proposed GRRDN generated clearer SR
images with more detailed information and texture. The results
from CNN-based methods, especially DBPN, are generally very
smooth but blurry. For those GAN-based methods, they have
many artifacts, which is highly undesirable in the remote sensing
field. In general, SR images provided by the proposed model

were visually closest to the HR images while ensuring high
fidelity.

D. Ablation Study

Table II presents the ablation investigation on the effect of
NLSA and back-sampling. To demonstrate the effect of NLSA
and back-sampling, we trained and tested the models by remov-
ing the NLSA and replacing the back-sampling decoder with a
simple up-sampling decoder on the OLI2MSI and Alsat dataset.
The result demonstrates that the NLSA benefited the feature ex-
traction of the residual dense blocks with 0.033 dB and 0.0004 in
OLI2MSI and 0.022 dB and 0.0063 in Alsat improvement in
terms of PSNR and SSIM, respectively. The enhancement of the
decoder resulted in an improvement of 0.062 dB and 0.0013 in
OLI2MSI and 0.040 dB and 0.0081 in Alsat in terms of PSNR
and SSIM, proving its superior performance. The experiment
results confirmed the benefits of the two proposed NLSA and
back-sampling in the basic residual dense network.

Furthermore, as shown in Table III, we conduct additional
experiments to evaluate the influence of the dense connections
in the NARD encoder and DBP Decoder. The dense connections
improve the feature extraction and expression performance with
0.029 dB and 0.0050 in the encoder and 0.234 dB and 0.0011 in
the decoder in OLI2MSI and Alsat, respectively. Moreover, the
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Fig. 8. Visual comparisons on Alsat “special” set. (a) LR. (b) HR. (c) RDN. (d) NLSN. (e) RCAN. (f) DBPN. (g) EDRN. (h) EFDN. (i) EDSR. (j) ESRT.
(k) TranSMS. (l) SRGAN. (m) ESRGAN. (n) GCRDN.

last column demonstrates that combining the dense connections
in the encoder and decoder could make further improvements.

E. Parameter Analysis

In this section, we investigate the impact of parameter settings
on the performance of the proposed GCRDN.

1) Size of Attention Bucket: The sparsity of NLSA is con-
trolled by the size of the attention bucket (chunk size) K. The-
oretically, a smaller chunk size can lead to SR images of higher
quality under the condition that most correlated elements are
identified. We evaluated chunk sizes of {4, 25, 100, 144, 225}.
From Fig. 9(a), it is observed that the PSNR and SSIM per-
formance was insensitive to the chuck size with the largest
deviation of 0.007 dB for PSNR and 0.0001 in SSIM across
different chunk sizes evaluated, demonstrating the stability of
our proposed GCRDN.

2) Stages of Up/Down-Sampling: In this test, we investigated
the influence of the stage number of up- and down-sampling
operations, i.e.,U − 1 in the DBP Decoder on feature expression
performance. We trained and tested the proposed GCRDN with
{2, 4, 5, 6, 8} stages of up- and down-samplings. As shown in
Fig. 9(b), the SSIM and PSNR performances were not very
sensitive to the stage number of up/down-samplings with the
largest deviation of 0.061 dB for PSNR and 0.0014 in SSIM
across different stage numbers evaluated. Furthermore, four and

five stages of up- and down-samplings produced the best SSIM
and PSNR, respectively.

F. Visual Activation Maps

Fig. 10 compares the activation maps of the RDN encoder,
the RDN decoder, the NLRD encoder, and the DBP decoder
using two images. For both images, the activation maps of the
NLRD Encoder clearly showed more apparent details than those
from RDN, indicating that NLRD achieved effective feature
extraction with edge enhancement. Using the same encoder, the
DBP decoder demonstrated more effective high-resolution in-
formation reconstruction with more evident textures than RDN,
especially on those blur boundary lines. The activation maps
of the NLRD encoder and the DBP decoder confirmed that the
proposed GCRDN could restore high-frequency details while
alleviating the blurring artifacts, resulting in sharp and natural
edges.

G. Computational Complexity Analysis

Finally, we compare the computational complexity of all
methods under evaluation in terms of model complexity, mem-
ory, parameters, and inference speed. In particular, we divided
the models into three categories, namely the CNN-based, the
self-attention-based, and the GAN-based methods. As shown in
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Fig. 9. Experimental comparisons on OLI2MSI with different (a) chunk sizes
and (b) numbers of pairs of up-sampling and down-sampling.

Fig. 10. Visual inspection of the activation maps of (a) RDN encoder,
(b) RDN decoder, (c) NLRD encoder, and (d) DBP decoder. Note that the visual
activation maps of the DBP decoder were generated with the RDN encoder.

Table IV, the proposed GCRDN has an inference speed compa-
rable to that of other models while requiring higher complexity
and memory.

V. CONCLUSION

In this article, a novel SR method named GCRDN has been
proposed by exploiting an NLRD encoder and a DBP decoder to
perform effective feature extraction and expression for remote
sensing image SR. The NLRD encoder is designed to extract
distinct global contextual features whereas the DBP decoder
bridges the gap between the enriched features and the final
high-quality reconstructed images by the circulation samplings
structures. As a result, the proposed GCRDN can effectively
characterize the complex content of remote sensing images and
restore accurate high-resolution images. Extensive comparative
experiments on OLI2MSI and Alsat datasets have confirmed the
superior performance of the proposed GCRDN. In the future,
we will introduce the diffusion model to further improve the
texture reconstruction capability of our model. Moreover, we
will extend our model to other image restoration tasks, such as
image denoising and cloud removal.
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