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Abstract—Due to the physical boundaries, fusing low spatial
resolution hyperspectral (LrHSI) with high spatial resolution mul-
tispectral (HrMSI) images is a hot and promising area for ob-
taining hyperspectral that have high spatial-spectral resolution
images (HrHSI). Effectively formulating the fundamental features
of hyperspectral images (HSI), such as global spectral correlation,
nonlocal spatial correlation, as well spatial-spectral correlation,
is complex in HSI-MSI fusion. Moreover, the fusion process is
highly affected by the degradation systems, where these systems
are not known in real scenarios. To this end, in this article, we
proposed a model-guided deep unfolded fusion network with non-
local spatial-spectral priors (MGDuNLSS-net) that can maintain
the essential features of the HSIs and implicitly estimates the
degradation process in an adequate running time. Specifically, the
proposed method is designed based on subspace representation in
an iterative manner and unrolling its steps toward a deep net-
work as an end-to-end framework. This approach contains two
submodules, fusion [nonlocal spatial-spectral block (NLSSB)] and
imaging system submodules. The former submodule is proposed to
exploit the images’ intrinsic characteristics to improve the preser-
vation of spectral and spatial details. NLSSB contains two nonlocal
self-similarity (NLSS) layers embedded between two bidirectional
simple recurrent unit (BSRU) layers. The recurrent calculation, as
well as refined components to maintain the global spectral corre-
lation, are the light recurrence operation and highway network,
while 3-D convolutions in the BSRU can retain the spatial-spectral
correlation. The NLSS layer can efficiently and effectively model
long-range spatial contexts, which is designed based on criss-cross
attention. The later submodule is used to refine the prediction of
the degradation process at any iteration via backprojecting the
estimated fused image to the observed pair, which can ensure the
good performance of fusion. Compared with state-of-the-art fusion
approaches, three remote sensing datasets are used to validate the
proposed approach’s performance.

Manuscript received 13 March 2023; revised 25 April 2023; accepted 27 April
2023. Date of publication 2 May 2023; date of current version 24 May 2023.
This work was supported in part by the National Natural Science Foundation
of China under Grant 61571230, Grant 61871226, Grant 62001226, in part by
Natural Science Foundation of Jiangsu Province under Grant BK20200465, in
part by Jiangsu Provincial Social Developing Project under Grant BE2018727,
in part by the Fundamental Research Funds for the Central Universities under
Grant JSGP202204 and Grant 30920021134. (Corresponding authors: Jingxi-
ang Yang; Liang Xiao.)

Abdolraheem Khader and Jingxiang Yang are with the School of
Computer Science and Engineering, Nanjing University of Science and
Technology, Nanjing 210094, China (e-mail: abdolraheem@njust.edu.cn;
yang123jx@njust.edu.cn).

Liang Xiao is with the School of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China, and also with
the Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing
University of Science and Technology, Nanjing 210094, China (e-mail: xiao-
liang@mail.njust.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2023.3272370

Index Terms—Deep learning, global spectral correlation,
hyperspectral and multispectral images fusion, imaging systems,
subspace representation.

I. INTRODUCTION

DUE to the cost, physical limitation, and complexity con-
straints in remote sensing, obtained optic images with high

spectral resolution usually maintain a more subordinate spatial
resolution compared to images of lower spectral resolution [1],
[2]. The high-spatial-spectral resolution image has great impor-
tance in various applications, such as environment monitoring,
target tracking, and military investigation [3], [4], [5]. Therefore,
in seeking to achieve a high-spatial-spectral resolution image
using the available images, considerable strategies have been
developed to tackle this problem by fusing the high spectral
resolution image with a high spatial resolution image [6]. Unlike
single-image superresolution methods that optimize the relation-
ship between LrHSI and HrHSI [7], [8], image fusion methods
using two complementary images (LrHSI and HrMSI) are more
challenging and can lead to more satisfactory performance. The
image fusion problem is an ill-posed inverse task, where an
image that has a low spatial and high spectral resolution is further
improved in spatial resolution by utilizing a supplementary
image with low spectral and high spatial resolution, in which
both these images depict the identical view and are appropri-
ately coregistered [9], [10], [11]. The widespread image fusion
scheme is pansharpening [12], [13], [14]; herein, a multispec-
tral image (MSI) is improved by operating the high-resolution
wide-band panchromatic (PAN) image. An equivalent task is
improving a hyperspectral image (HSI) with either an MSI or
PAN [15]. When using the MSI to enhance the low-resolution
HSI, the problem is named hyperspectral and multispectral
image fusion, which is more challenging than the pansharpening
problem due to both MSI and HSI containing spectral and spatial
information that should be preserved [16], [17].

Hyperspectral (HS) and multispectral (MS) image fusion can
be either model based or learning based. The model-based
strategies of HS-MS image fusion are carried out by formu-
lating an optimization function that can be solved analytically
or iteratively. In this regard, the subspace representation model
is extensively utilized in the fusion problem due to the nature
of HS and MS images properties that can be represented in
low-rank matrices. However, based on the subspace model,
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the two observed images are factorized into their spectral
signatures and the coefficient (abundance) matrix, after then use
the estimated subspace of HSI and the abundance matrix of MSI
to reconstruct the high-resolution hyperspectral image (HrHSI).
Matrix and tensor factorization are appropriate techniques to
accomplish the fusion; thus, many studies are proposed based on
these techniques [16], [18], [19], [20], [21]. While model-based
approaches gained good performance in terms of quantitative
and qualitative metrics, they have serious shortcomings that can
limit their performance. Since these methods commonly work
in an iterative manner, time computation is one of the limitations
that model-based methods can face; furthermore, they have
many parameters that need to be accurately tuned, which is
another challenge. On the other hand, the model-based methods
rely significantly on the observation model, which is unknown
in real scenarios. Therefore, a few model-based approaches are
tried to estimate the imaging model [22] in two steps that can
increase the computation time; further, the imaging models are
learned from the observed pair images with no information from
the fused image.

Recently, deep learning attained impressive prosperity in
computer vision [23] and image processing [24]. Therefore,
many researchers proposed HSI-MSI fusion works based on
deep learning either in supervised [25], [26], [27] or unsu-
pervised methods [28]. The supervised deep HSI-MSI fusion
methods utilize the convolutional neural network (CNN) to
optimize the mapping function between the observed pairs and
the ground truth to estimate the HrHSI in a black-box fashion,
where the imaging models are enforced to estimate implicitly
with no supervision. Although good performance is attained by
these methods and reduces the computation time, the black-box
manner can bind their further improvement; additionally, the
simple convolution layer extracts the feature locally that limits
it from exploiting the important essential features of the HSI
like nonlocal spatial, global spectral, as well spatial-spectral
correlation. However, to elevate the limitations of the black-box
networks, various studies are proposed based on deep learning by
unfolding the variational model’s solution into CNN and intro-
ducing spatial and/or spectral attention modules, which makes
the network interpretable, has a physical meaning, and more
reliable to extract the intrinsic characteristics of the HSI [29],
[30], [31], [32]. Even though these methods obtained good
enhancement for deep learning networks, they either cannot fully
utilize the fundamental properties of the HSI or the predicted
fused image may not be projected back to estimate the original
observed pair to enhance the prediction of the imaging models.

Inspired by the success of model-based and deep learning-
based techniques, in this article, we proposed model-guided
deep unfolded fusion network with nonlocal spatial-spectral
priors (MGDuNLSS-Net) for HSI-MSI Fusion. We formulate
the fusion method in this article based on the subspace rep-
resentation model in an iterative fashion and unfold it toward
the network, which can be trained in an end-to-end model that
jointly estimates the observation systems and the target HrHSI.
The proposed technique includes two submodules: the imaging
system and the fusion sub-modules. In the proposed method,
instead of learning the degradation systems implicitly without

supervision, the imaging system module takes the fused image
at the previous stage and projects it back to the original HrMSI
and LrHSI. By this means, the imaging system module helps the
proposed MGDuNLSS-Net to supervise and perfectly predict
the degradation parameters, such as downsampling constraints
and the blur matrix. Furthermore, the fusion submodule in the
proposed method at any stage takes the errors between the orig-
inal observed pair and the estimated pair by the former module
and fuses them to enhance the fused image in the previous stage.
To fully utilize the crucial features of HSI for fusion, the pro-
posed fusion module is fashioned by a nonlocal spatial-spectral
block (NLSSB) that contains two nonlocal self-similarity layers
(NLSS) embedded between two bidirectional simple recurrent
unit layers (BSRU), where the critical characteristics of the
HSI such as the global spectral, nonlocal spatial, and spatial-
spectral correlations can be significantly exploited. Specifically,
the recurrent calculation and refined components to maintain the
global spectral correlation are the light recurrence and highway
network, while 3-D convolutions in the BSRU can retain the
spatial-spectral correlation. The NLSS layer can efficiently and
effectively model long-range spatial contexts. The contributions
of this article are listed below:

1) We proposed an end-to-end unfolded network (termed
MGDuNLSS-Net) with no hand-crafted parameters tun-
ing that can iteratively learn the imaging systems and
the targeted HrHSI. The proposed network is based on a
subspace representation model that makes it interpretable,
has a physical meaning, and is easy to train.

2) While the degradation model highly influences the fu-
sion process, and it is unknown, the proposed method
can supervise and correctly learn the degradation pro-
cess by its imaging system submodule, which projects
the fused image back to estimate the original LrHSI and
HrMSI.

3) We proposed a nonlocal spatial-spectral block to enhance
the fusion process by utilizing more robust features from
the fusion images that can consider the global spectral
correlation, which is calculated and refined by the light
recurrence and highway network in the BSRU layer, where
the spatial-spectral correlation is obtained by the NLSS
layer which ensures maintaining the long-range spatial
contexts. Moreover, the nonlocal spatial correlation can
be maintained by 3-D convolutions that existed in BSRU.

4) Extensive experiments using three remote sensing
databases (specifically, Pavia Center, Chikusei, and
Cuprite Mine) are conducted to verify the performance
of the proposed MGDuNLSS-Net.

The rest of this article is organized as the following. Section II
investigates previous studies briefly. The proposed method and
implementation details are stated in Section III. Section IV
represents the experiments and discussions. Finally, Section V
concludes the article.

II. RELATED WORKS

We briefly review the previous works in HSI-MSI fusion in
this section, which can be roughly grouped into model-based and
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learning-based methods. Then, considering latent HSI statistics,
several priors are used for fusion.

A. Model-Based HSI-MSI Fusion

HSI-MSI methods solve the fusion problem by formulating
an appropriate variational model and carefully choosing proper
prior to regularizing the optimization problem, where the degra-
dation systems should be known or appropriately computed
in advance. By utilizing the HSI’s low-rank property, in [18],
the authors incorporated sparse prior for approximate low-rank
tensor to exploit the latent features of HIS, where the fusion opti-
mization problem is dissolved by utilizing the alternating direc-
tion method of multipliers (ADMM). Guo et al. [33] enhanced
the spatial details preservation by integrating the total variation
(TV) with sparse coding priors and proposed 2D-CNBTD based
on a coupled nonnegative block-term tensor model. The nonlocal
structure tensor total variation regularization to improve the
extracting the nonlocal image self-similarity and local structural
image regularity of the images is used to enhance the fusion
result in [10]. On the other hand, numerous HSI-MSI fusion
techniques based on LMM are proposed that can use matrix
or tensor factorization techniques to solve the fusion problem.
In these approaches, the observed images are alternatively fac-
torized into the spectral basis and abundance matrix, where the
spectral signatures of LrHSI and the coefficient matrix of HrMSI
can obtain the fused image. For example, Yokoya et al. [34]
introduced coupled nonnegative matrix factorization (CNMF)
technique, which combines the sparsity of the coefficient matrix
and the nonnegativity constraints. To further enhance the spatial
resolution of the desired fused image, a nonlocal self-similarity
regularizer is combined with the sparse prior in a unified fusion
model, which alternatively and iteratively approximates the
dictionary and abundance matrix as stated in [35] and [36].
The subspace techniques for HSI-MSI fusion [22], [37], [38]
are developed based on the subspace, which differs from the
unmixing model by ignoring the nonnegativity of the dictionary
and the coefficient matrix and the sum-to-one constraint of the
coefficients matrix. Veganzones et al. [39] underlined that the
HrHSI is low rank locally and that each local region’s spectral
basis and coefficients are computed individually.

Contrary to the matrix factorization methods, the tensor fac-
torization techniques treat the HSI as a 3-D tensor. Borsoi
et al. [40] proposed a coupled tensor decomposition approach
using purely algebraic and optimization procedures to improve
the fusion method that considers the modifications in an ad-
ditive model confined in space and spectral range. The work
in [41] engaged the coupled Tucker decomposition, where the
fundamental global spatial-spectral information crosswise the
different modes are extracted by capturing the global interde-
pendencies. This method combines coupled Tucker factorization
and the local submanifold structures in a joined model. Ma
et al. [42] devised a fusion approach that joins sparse and smooth
regularizations on low-rank tensor decomposition using the
logarithmic sum function to eliminate superfluous information
in both spectral and spatial realms. Zhang et al. [43] devised two
graphs in spectral and spatial fields, the former derived from the

LrHSI image for spectral smoothness and the latter drawn for
the spatial consistency from the HrMSI image. Integrated all
regularizers finally reconstruct the fusion model in this work.
However, these model-based HSI-MSI methods are time con-
suming and rely heavily on the observation systems, which is
not available in reality. Moreover, the hand-crafted parameters
and choosing an appropriate prior are more challenges that these
techniques can face.

B. Learning-Based HSI-MSI Fusion

Considering deep learning, many researchers utilize the CNN
ability to extract features and learn the nonlinear maps between
the input and output to tackle the fusion task. However, the
deep learning-based techniques are constructed by staking many
convolutional layers in one branch that take the concatenated
LrHSI and HrMSI as input, and their output is the predicted fused
image [26], [44]. To enrich the network capability of feature
model, two-branches networks are investigated. For example,
Yang et al. [25] proposed a deep network with two branches
one to extract features from HrMSI, the second to take the
LrHSI and capture its features, and finally, the HrHSI is con-
structed from the features captured from these inputs. In [45],
an iterative refinement is proposed that takes the HrMSI and
LrHSI in two branches to refine the fused image iteratively.
Han et al. [46] considered that the LrHSI and HrMSI have
very diverse spatial structures and proposed a multiscale CNN
approach. This method has two branches, one to preserve the
spectral features and the second for maintaining the spatial
features, which progressively shrinks and expands the feature
size of the LrHSI and LrMSI, respectively.

Considering the benefits of the model-based and learning-
based strategies, many researchers tried to combine model based
with deep learning to enhance the performance of the deep
network in HSI-MSI fusion. Liu et al. [47] introduced a deep
HSI-MSI fusion approach based on unrolling the solution of
a subspace-based optimization model. The fusion problem in
this work is first solved by ADMM and then unrolling the
proposed algorithm’s steps toward the network, which makes the
proposed network more interpretable. The spatial-spectral dual-
optimization model-driven deep network is proposed in [48],
incorporating the spatial and spectral priors of the input LrHSI
and HrMSI in the proposed network. Wang et al. [49] devised
a deep HSI-MSI fusion method with interimage variability
that treat flexible image priors and interimage changeability of
images from various sensors. This method is formulated as a
posteriori model and uses CNN to learn the image’s priors. On
the other hand, the researchers tried to enhance the capability
of the deep methods by incorporating the attention mechanism.
For example, to address the challenge of complicated fusion of
three different data types, in [50], HyperNet is built based on a
uniform fusion technique. Specifically, multiple specially con-
structed multiscale-attention-enhance blocks that use multiscale
convolution to dynamically capture information from various
reception fields as well as two attention techniques to improve
the extraction ability of information lengthwise the spatial and
spectral domains, respectively, are used to extract the spatial



4610 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

details of the PAN and MSI. Based on a variational proba-
bilistic generative model, the RAFnet approach for recurrent
attention fusion is presented in [51] that utilizes two variational
autoencoders to ensure both spectral and spatial information
preservation. Hu et al. [52] introduced the Fusformer method that
increases the receptive field of the network by self-attention (SA)
mechanism to improve the extracting of global relationships in
features.

However, the learning-based methods for HSI-MSI fusion in-
spired outstanding performance and significantly reduced com-
putation time. Moreover, the observation models can be learned
implicitly in the deep learning methods from the data with no
hand-crafted tuning of the parameters, contrary to model-based
methods. Although the advantages of the learning-based meth-
ods, there is still room for improvement that can be investigated.
The network architecture may be in a black-box manner or not
fully interpretable, and further, it possibly will not consider
important information such as the spectral-spatial correlation
due to the limited receptive field of the classic convolutional
layer. Furthermore, deep learning methods learn the degradation
models implicitly, which lacks supervision to guarantee good
estimation of estimated imaging models, which also can be
inspected more.

III. MODEL-GUIDED DEEP UNFOLDED FUSION NETWORK

WITH NONLOCAL SPATIAL-SPECTRAL PRIORS

A. Problem Formulation

The aim of fusing the observed pair of low-spatial resolution
hyperspectral image (LrHSI) and the high-spatial-resolution
multispectral image (HrMSI) is the achievement of a high-
spatial-resolution hyperspectral image (HrHSI). Let us assume
X ∈ RC×MN is target HrHSI, whereC is the numeral of spectral
bands while the spatial height and width are denoted by M and
N , respectively. Based on the latent low-rank property of HSIs, it
can be represented via the subspace representation model. The
subspace model has advantages such as efficient computation
time because the number of spectral bases is lesser than the
number of channels of the HSIs (K < C), it can fully achieve
significant correlations among the spectral channels, and its
semiunitary property. Thus, based on the subspace represen-
tation model, HrHSI can be expressed as the following:

X = DA (1)

whereD ∈ RC×K is the spectral signatures (spectral basis) with
K atoms, and A ∈ RK×MN is the abundance (fractional coef-
ficients) matrix that holds the sparse vectors of entire HrHSI’s
pixels. The subspace representation model omitted the sparsity
of the abundance matrix. By this means, each pixel in X is
believed as a linear combination between the spectral signatures
and the coefficients. Moreover, based on the subspace model,
the nonnegative restriction of D is ignored.

The spatial downsampled version of X can be regarded as
the LrHSI, denoted by Y ∈ RC×mn, where m (m < M) and
n (n < N) are the spatial height and width of the LrHSI,
respectively. Therefore, LrHSI can be carried out by the next

imaging model:

Y = DAB = DÃ (2)

where B ∈ RMN×mn denotes the degradation blur matrix con-
structed by the convolution of the sensor’s point spread function
(PSF) and the HrHSI spectral channels pursued by a down-
sampling operator, and Ã(Ã = AB) is a spatial downgraded
abundance matrix. Meantime, the HrMSI is a version of X
that spectrally downsampled; hence the HrMSI (denoted by
P ∈ Rc×MN ) can be achieved by the following imaging system:

P = RDA = D̃A (3)

where R ∈ Rc×C represents the spectral downsample matrix,
and D̃(D̃ = RD) is the spectral downsampled dictionary.

The HrHSI can be reconstructed from the HrMSI and HrHSI
by jointly using imaging models (2) and (3) to iteratively and
alternatively optimize the spectral basis and its interrelated
abundance and, finally, use (1). However, the next minimization
problem can be used to approximate the spectral signatures and
abundance matrix:

min
D,A

f1(Y,DAB) + f2(P,RDA) (4)

where the first term ensures spectral preservation in the estimated
spectral basis, and the second indicates spatial similarity to
the coefficients matrix. Furthermore, the optimization problem
(4) assumed that the spatial and spectral degradation models
(B and R) are available, which is not true in reality. Many
researchers implicitly learned the degradation models from the
training dataset to overcome the problem of unknown degrada-
tion models with no supervision [45]. Therefore, the degradation
operators can be learned as follows:

min
B,R

f
(
D̃AB,RDÃ

)
(5)

where f function impose data integrity. Based on the two op-
timization problems (4) and (5), the HrHSI is reconstructed by
solving the fusion problem in two steps, learning the imaging
model operators using (5) and then using the estimated imag-
ing models to solve (4). However, there are limitations to this
two-step method. The imaging model is exclusively estimated
using data from P and Y. In practicality, lacking knowledge
from X, the estimation of the imaging model could not be
correctly resolved. Another simple factorization approach uses
a prebuilt CNN like autoencoder to directly train a mapping
function between the two inputsP andY estimate the abundance
matrix A, which can be expressed as follows:

min
Θ

‖X− fΘ(P,Y)‖2F (6)

where Θ denotes the learning parameters of the CNN network.
Using autoencoder as an example CNN network, (6) assumes
the decoder weights as the spectral basis, while the output of
the encoder represents the abundance matrix. In this solution,
the spectral signatures extracted from Y and the coefficient
matrix extracted from P are used to produce the target HrHSI.
However, like the optimization problem (5), the obtained HrHSI
(X) from optimizing problem (6) might not be back-projected
to the observed pair P and Y. The preservation of the spectral
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and spatial information is therefore not assured. Moreover, most
networks are designed to omit unimportant data to determine
high-level visual characteristics, resulting in information loss
by default and making spectral and spatial preservation more
challenging.

B. Architecture of the Proposed Network

Although solving optimization problems (4) and (5) itera-
tively and alternatively gained good performance [22], it has
severe limitations, such as computation complexity and hand-
crafted tuning of the parameters. Therefore, deep learning can be
a brilliant choice for accomplishing the fusion problem. With the
revolution of deep learning and its success in image processing
and computer vision, many fusion strategies on the basis of deep
learning have been introduced lately. Even though these methods
achieve superior performance, the black-box fashion of these
methods makes their training process hard, and they have no
physical interpretation of their internal process.

Lately, an interpretable deep convolutional network with an
architecture based on the model-based algorithm steps can profit
from the merits of model-based and deep learning techniques.
Thereby, in this study, we design Model-Guided Deep Unfolded
Networks with Non-local Spatial-Spectral Priors (MGDuNLSS-
Net). The proposed network unified the two-step solution men-
tioned above in an end-to-end manner while the consistency
between the output and observed input pair is also incorporated.
In other words, the proposed method imposes data consistency.
The fusion and imaging models are expressed as follows:

Xout = fθ1(P,Y)

[Pout,Yout] = fθ2(Xout) (7)

where fθ1 denotes the fusion model and fθ2 is the learning
imaging model. θ1 and θ2 are the learnable parameters. The
proposed method is built on an iterative back-projection refining
process. Many image processing tasks, including image reverse
filtering [53], picture super-resolution [54], and denoising [55]
have exhibited similar concepts. Thereby, the proposed model
can be stated as follows:

X(t) = X(t−1) + fθ1

(
ΔP(t−1),ΔY(t−1)

up

)
(8)

where X(t) and X(t−1) represent the estimated HrHSI in the
current and previous iterations, respectively. ΔP(t−1) repre-
sents the map error between the observed P and the estimated
P(t−1).ΔY

(t−1)
up denotes the upsampled error between the back-

projectedY(t−1) in the preceding iteration and its corresponding
observed LrHSI Y. The following equation can obtain these
error maps:[

ΔY(t−1),ΔP(t−1)
]
= [Y,P]−

[
Y(t−1),P(t−1)

]
(9)

where Y(t−1) and P(t−1) can be obtained by fθ2 in (7). By this
means, the proposed method has two submodels, one for fusion
tasks and the second for learning imaging systems by projecting
the estimated fused HrHSI back to the observed pair LHSI and
HrMSI, which allows truthful approximation of the imaging
models, as can be seen in Fig. 1(a). These two submodels work

TABLE I
DETAILS OF SIMULATED LAYERS OF THE PROPOSED METHOD

iteratively and correct each other until convergence. First, to
drive the proposed method’s imaging model submodule, given
the estimated X at any iteration t, we can factorize it into A and
D. In this regard, thank the subspace representation model’s
semiunitary advantage, where DTD = I [19], [56], therefore,
the coefficients matrix can be obtained as follows:

A = DTX. (10)

In our proposed network, we simulate the multiplication
process by convolutional filters as stated in [57]; thereby, we
use a convolutional layer with filter size z × z and the number
of filters K that can estimate DT automatically as a trainable
operator through the learning process. Meanwhile, we can obtain
the spatial degraded coefficients matrix by applying the degra-
dation blur matrix B to the obtained A from (10), according
to the imaging model of (2). Similar to a layer used to simu-
late the transposed subspace, the degradation blur matrix B is
done by convolutional filters. This process can be expressed as
the following:

Ã = convz×z(A) (11)

where convz×z denotes a convolutional layer with kernel size
z × z. In this context, we imitate D and D̃ by two convolutional
operations of size z × z with C and c filters, respectively.
Table I shows the details of these simulated layers. In a few
words, the fused HrHSI at any iteration can be projected back to
its corresponding observed pairs after obtaining its coefficients
by (10), and the spatial downgraded abundance by (11), and fi-
nally, using (2) and (3) to predict LrHSI and HrMSI, respectively.
In this way, the proposed model can supervise the degradation
process. After obtaining P(t−1) and Y(t−1) by back-projection
of X(t−1) at iteration (t− 1)th, the error between the predicted
HrMSI, LrHSI, and its corresponding inputs can be calculated
using (9). Subsequently, the error maps are concatenated along
the channels dimension and feeding to the fusion model fθ1 .
Finally, the latest version of fused HrHSI (X(t)) at iteration t
can be estimated by adding the output of fθ1 and X(t−1) as
shown in (8). In the following section, we investigate the fusion
submodule of the proposed method.

The fusion submodule seeks to improve the fineness of
the predicted HrHSI made by the previous layer by fusing
the concatenated error between the observed pair and their
corresponding backprojected pair. However, given the concate-
nated features from the imaging submodule E ∈ RC+c×M×N ,
the fusion submodule fθ1 refine the fused HrHSI of the previous
layer without losing spatial and spectral fusion according to (8)
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Fig. 1. Illustration of (a) the overall structure of the proposed NLSS-DuNet method, (b) detailed processes in the imaging submodule, (c) calculate and concatenate
the error maps of the observed pair and the corresponding estimated pair, and (d) the nonlocal spatial-spectral block (NLSSB) for the fusion submodule. © denotes
the concatenation process and ⊕ is elementwise addition.

by using the output featuresEout. Three key aspects, global spec-
tral correlation, nonlocal self-similarity, and spatial-spectral cor-
relation, ensure good enhancement of the fused image X. How-
ever, we proposed a nonlocal spatial-spectral block (NLSSB)
that can fully exploit global spectral correlation, nonlocal self-
similarity, and spatial-spectral correlation, as shown in Fig. 1(d).
The proposed NLSSB is designed based on a bidirectional
simple recurrent unit and a nonlocal self-similarity that can
extract and reconstruct the features in different aspects. As can be
seen in Fig. 1(d), the architecture of the proposed NLSSB com-
prises two bidirectional simple recurrent unit layers (BSRU) to
guarantee global spectral and spatial-spectral correlation priors.
Furthermore, we offer nonlocal self-similarity (NLSS) blocks in
the proposed NLSSB to ensure long-range spatial dependencies.
However, we embed two NLSS layers between the two BSRU
layers. Finally, a convolutional layer ends the proposed NLSSB
to make the output feature Eout has bands number as same as
the target HrHSI. In the subsequent two sections, we introduce
the specifics of the suggested bidirectional simple recurrent unit
(BSRU) and nonlocal self-similarity (NLSS).

1) Bidirectional Simple Recurrent Unit (BSRU): HSI’s can
be considered a collection of gray images ordered sequentially,
with highly spectrally correlated bands. With the success of
recurrent neural networks (RNN), it can be instrumental in
modeling the prior for sequential data. Therefore, we incorporate

the bidirectional simple recurrent unit (BSRU) in the proposed
fusion submodule block to take advantage of the global spectral
correlation prior to the HSI. However the simple recurrent
unit (SRU) is a simple recurrent unit with significant parallel
processing and capability for sequence representation, which
can be expressed as the following:

qi = σ(WqEi + uq � si−1 + bq)

si = qi � si−1 + (1− qi)� (WEi)

ri = σ(WrEi + ur � si−1 + br)

hi = ri � si + (1− ri)� Ei (12)

where qi and ri are vectors resulting in the update and reset
gates, respectively. si and si−1 are interior state vectors for
the current and previous time. At the same time, the output is
denoted by hi and � is elementwise multiplication. Wq,W,Wr

are parameter matrices and uq, ur, bq , and br are parameter
vectors to be learned during training. σ is the logistic sigmoid
function restraining the outputs for taking values ranging from
0 to 1.

In general, SRU contains two submodules [58]. The first
submodule is light recurrence, which takes the input Ei and
creates the current interior state si that symbolizes the sequential
information by performing a linear interpolation between the
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preceding interior state si−1 and the present observation WEi,
where the forget gate qi controls the weightiness. The current
internal state si weighted by the reset gate and the input Ei are
averaged by the second submodule (highway network) using a
skip connection. However, to estimate the spectral correlation of
HSI by using SRU where its input is one band from the HSI, the
spectral correlation statistics can be exploded from the first band
to the ith band by si. The spectral correlation can be computed
by averaging the correlation features in the former i− 1 channels
and present WEi using the update gate qi. At the same time, the
way that controls the merge of the spectral statistics enclosed
in the recent channel with the spectral correlation statistics in
preceding channels is done by using ri. Visibly, we can consider
that the SRU is appropriate for capturing the global spectral
correlation among the different channels of HSI’s based on the
investigation mentioned above.

Based on simple recurrent unit, the network can just process
HSIs with a limited geographic dimension after it has been
trained due to the elementwise multiplication between uq and ur

with si−1 that their spatial size and feature dimension are same.
Therefore, to overcome this limitation and make the network
has fewer training parameters, we can remove these vectors
since pointwise multiplication terms have little effect on the
capability for representation, as stated in [58]. Furthermore, to
improve the capability of representation, we as well do an extra
transformation on Ei using Wh rather than directly fusing with
it as in SRU. However, after removing bias too, the SRU can be
modified and reformulated as follows:

qi = σ(WqEi)

si = qi � si−1 + (1− qi)� (WsEi)

ri = σ(WrEi)

hi = ri � si + (1− ri)� (WhEi). (13)

In (13), the sequential information is calculated using an
update gate in the light recurrence as in SRU, while the reset gate
is for various purposes that can be regarded as the improvement
of the light recurrence, creating the sequential representation
more truthful. As stated in [59], we express the update and reset
gates as follows:

Q = σ(Wq ∗ E)

R = σ(Wr ∗ E) (14)

where E ∈ RLin×C+c×Min×Nin and ∗ denote the input features
and convolutional operator, respectively. Wq and Wr represent
3-D convolutions of size 3× 3× 3. To extract local spatial-
spectral correlation efficiently, we introduce 3-D convolution to
produce Es and Eh, this process is expressed as the following:

Es = tanh(Ws ∗ E)

Eh = tanh(Wh ∗ E) (15)

where tanh is the nonlinear activation function. Moreover, in
each iteration, from i = 1 to the band’s number, we take the ith
band form Q, R, Es, and Eh then the feature map is computed

Fig. 2. Whole design of the SRU layer in the proposed network. © denotes
concatenation, � represent subtraction, ⊕ is elementwise addition, and ⊗ is
multiplication.

as follows:

Si = Qi � Si−1 + (1−Qi)� Ei
s

hi = Ri � Si + (1−Ri)� Ei
h. (16)

Eventually,E ′ features map can be achieved by concatenating
all hi, where i = 1 to C. Fig. 2 illustrates the detailed operations
of the modified SRU, which we can in an arbitrary way, call it
SRU.

However, it is visible that we can see (16) computes the
global spectral information for an ith band only governed by
the information from 1st to (i− 1)th bands with no care of the
information from the (i+ 1)th to the Cth bands. Therefore, to
capture more accurate global spectral information that considers
all HSI bands of the HSIs, we introduce the bidirectional SRU
(BSRU) block in our proposed NLSSB. The BSRU calculates
the global spectral information for the ith band in opposite
directions from the 1st to (i− 1)th bands and from Cth to
(i+ 1)th bands, then we add them to each other. Moreover, we
use two BSRUs as the first layer of the proposed NLSSB and
the last layer, which can reconstruct the output features.

2) Nonlocal Self-Similarity (NLSS): We assume the HSIs are
gray images linked together, with a global spectral correlation
that can be good information for image recovery in the last
section. From the spatial point of view, we can regard the HSI
as a repeated small batch across all spatial dimensions. There-
fore, nonlocal self-similarity prior is favorable for extracting
contextual information, which enhances image recovery. That
context information inside HSIs cannot be adequately utilized
by the classic convolution network, which can only capture the
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Fig. 3. Nonlocal self-similarity (NLSS).

local context information. However, we embed the nonlocal
self-similarity (NLSS) layer in the proposed network, which can
utilize the long-range relationships between pixels to their max-
imum potential for better image enhancement. Various nonlocal
prior are proposed models in the literature to utilize the similarity
between the pixels in different regions. The nonlocal module
proposed in [60] extracts the spatial correlation by computing
the distance between each pixel, which is computationally com-
plicated and memory-intensive. Criss-cross attention [61] is less
computationally and memory-intensive because it substitutes the
typical densely linked graph with numerous subsequent sparsely
connected networks. The criss-cross attention module aims
to improve the pixelwise representative capacity by gathering
context information in both vertical and horizontal directions.
Significantly different features receive lower attention weights
in the recurrent criss-cross attention module, whereas similar
features receive higher attention weights. To this end, we use
criss-cross attention to design the NLSS layer in the proposed
method.

The proposed NLSS layer is designed based on the criss-
cross attention module. However, the NLSS produces a new
output feature map for any given input feature map, where
the output combines contextual data for every pixel along its
criss-cross pathway. In this way, only contextual data in the
horizontal and vertical dimensions are included in the output
feature map, with ignore the pixels not in the same line vertically
or horizontally of the pixel, making it insufficient to capture
the nonlocal contextual features through all image’s pixels.
Therefore, the output feature is passed into the NLSS layer
once more and generates the feature map with more affluent
and denser context information. Consequently, each pixel in the
second output collects contextual information from all pixels.
Briefly, the nonlocal self-similarity feature is generated by two
NLSS layers, as depicted in Fig. 1(d).

As shown in Fig. 3, three convolutions layers are used
to products query, key, and value for the input feature E′ ∈
RL×C+c×M×N as the following:

Q = conv(E ′)

K = conv(E ′)

V = conv(E ′) (17)

where Q ∈ RL′×C+c×M×N , K ∈ RL′×C+c×M×N , and V ∈
RL×C+c×M×N represent the query, key, and value, respectively,
L′ < L to reduce the computation complexity. After the con-
volutions operation, the query, key, and value are divided into
bands to get {Qi,Ki, Vi}, where i depicts the number of bands.
Furthermore, the horizontal attention map Ah,i can be achieved
by the affinity process based on Qi and Vi as follows:

{de,i}j = Qe,i{ΩT
e,i}j

Ah,i = Softmax(Dh,i) (18)

where e represents the location in feature maps, while the jth
element extracted from K through the same column with loca-
tion e is denoted by {ΩT

e,i}j . de,i is the relationship betweenQe,i

and Ωe, where Dh,i = {de,i1. . .de,iM}. The vertical correlation
map Av,i can be achieved with steps as in (18). Finally, the
accumulation process on {Ah,i, Av,i} and Vi, this process can
be formulated as the following:

Oh,ie = Ah,iΦie

Ov,ie = Av,iΦie

Oi = Oh,i +Ov,i (19)

where Oi represents the output, Φi denotes the collections
obtained from Vi, which is in the exact row or column as the
location e. After that, we concatenate all {Oi}, i = 1. . .C to
obtain the output O with the same number of bands as the input.
Eventually, the output featureE′′ is obtained by utilizing the skip
connections between the input and the output as the following:

E ′′ = O + E ′. (20)

Fig. 3. shows the detailed operations of the NLSS layer. How-
ever, we utilize NLSS in the proposed nonlocal spatial-spectral
block by embedding two NLSS layers. In this regard, the two
NLSS layers are embedded between the two bidirectional simple
recurrent unit layers, as seen in Fig. 1(d).

Finally, as shown in Fig. 1(a), the introduced network gen-
erates fused HrHSI at each iteration and enhances it in the
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next iteration. However, these different versions of the output
fused image have a piece of complementary information that
can enhance the final fused image. Therefore, the final fused
HrHSI can be achieved by the following process:

Xout = conv
(

cat
(
X(1),X(2), . . .,X(T )

))
(21)

where cat represents the concatenation process and conv is a
convolutional layer with filter size 3× 3 and the number of
features C.

C. Loss Function

The proposed model-guided deep unfolded networks with
non-local spatial-spectral priors (MGDuNLSS-Net) need to
train in an end-to-end fashion. Therefore, given the learnable
parameters of the proposed that denoted Θ and the training
samples X(i), Y(i), and P(i); where i = 1, 2, . . ., I represents
the number of training batches, the proposed network’s loss
function may indeed be expressed as follows:

L(Θ) =
1

I

∑
i

∥∥∥MGDuNLSS-NetΘ(P
(i),Y(i))−X(i)

∥∥∥
1

(22)
where ‖.‖1 denotes L1 loss function, and Θ is the trainable
parameters of MGDuNLSS-Net.

IV. EXPERIMENTAL RESULTS

In this part, the effectiveness of our proposed MGDuNLSS-
Net is verified by comprehensive experiments on three bench-
marks remote sensing HSI databases and compares its perfor-
mance with different last state-of-the-art HrMSI-LrHSI fusion
methods. Moreover, we examine and demonstrate the com-
putation time of the proposed network compared to previous
comparison works.

A. Experimental Datasets

Three benchmarks of remote sensing datasets, namely, Pavia
Center [62], Chikusei [63], and Cuprite Mine [64] datasets, are
utilized to validate the proposed technique. A brief description
and the setting of these databases are given below.

1) Pavia Center Dataset: This dataset is taken by ROSIS
sensor for the period of a flight campaign over the urban area of
Pavia, Northern Italy. 1096× 715 pixels are the spatial size of
this HSI, with 102 spectral channels. The spectral band domain
is 430 to 860 nm, while 1.3 m is its geometric resolution. After
removing the bands with low SNR, 93 spectral bands are pre-
served for our experiment. We cropped 250× 250 pixels for the
testing dataset, and nonoverlapping residual pixels are employed
for training and validation. The original HSI is used as reference;
however, to simulate the LrHSI from the reference dataset, we
apply the Gaussian filter of size 7× 7 using standard deviation
2 and downsampled both vertical and horizontal dimensions by
5 pixels. Meanwhile, the HrMSI is simulated by an IKONOS-
like reflectance spectral response. Both LrHSI and HrMSI are
corrupted by 30 dB and 35 dB i.i.d Gaussian noise, respectively.
For training, we divided the training image into batches with the

size of 40× 40× 3, 8× 8× 93, and 40× 40× 93 for LrHSI,
HrMSI, and HrHSI, respectively.

2) Chikusei Dataset: Headwall Hyperspec-VNIR-C imag-
ing sensor observed the Chikusei HSI over urban and agricultural
zones in Chikusei with spatial size 2517× 2332 pixels and 128
spectral bands. The spectral bands span the wavelength range
from 363 to 1018 nm. For convenience, we clipped 2048× 2048
pixels for the experiment. Then we take 512× 512 pixels for
testing and the remaining pixels for training and validation.
While the original HSI is saved as a reference HSI for train-
ing and testing, Gaussian filter of size 7× 7 with a standard
deviation of 2 is used to simulate the LrHSI and subsampling
every 8 pixels in the spatial dimensions. Moreover, the IKONOS
satellite spectral response function is applied to generate the
HrMSI. After then, we added an i.i.d Gaussian noise (35 and
30 dB) to HrMSI and LrHSI, respectively. As well we train the
network in small blocks of size 64× 64× 3, 8× 8× 128, and
64× 64× 128, for HrMSI, LrHSI, and HrHSI, respectively.

3) Cuprite Mine: This dataset is observed by the AVIRIS
over Nevada, United States. The spatial resolution of Cuprite
Mine HSI is 512× 512with 224 spectral bands. With an interval
of 10, the spectral bands covered wavelengths ranging from
400 to 2500 nm. After taking out the channels with low SNR
and water absorptions (1,2, 105–115, 150–170, 223–224), 188
spectral channels remain for our experiment. 256× 256 pixels
are selected for testing, and then we train the proposed network
on the remainder pixels. The LrHSI is generated by applying a
7× 7Gaussian kernel with std 2 and downsampled by factor 4 in
both spatial directions. The six bands that matched the visible
and mid-infrared range spectral bands of the USGS/NASA
Landsat7 satellite (480, 560, 660, 830, 1650, and 2220 nm) are
used directly to simulate the HrMSI. An i.i.d Gaussian noise
(30 and 35 dB) is used to corrupt the simulated LrHSI and
HrMSI, respectively. The training blocks size of 32× 32× 6,
8× 8× 188, and 32× 32× 188 for HrMSI, LrHSI, and HrHSI,
respectively.

B. Comparison Methods

Seven state-of-the-art fusion techniques are used in the com-
parison with our proposed method to examine the performance
of the proposed technique further. Hyperspectral subspace-based
regularized fusion (HySure) method [22], coupled sparse tensor
factorization (CSTF) method [65], coupled nonnegative matrix
factorization (CNMF) method [34], coupled spectral unmixing
(CSU) method [66], regularizing HSI and MSI fusion by CNN
denoiser (CNN-Fus) method [56], deep spatiospectral atten-
tion CNNs (HSRNet) method [67], and multihierarchical cross
transformer for hyperspectral and multispectral image fusion
(MCT-NET) method [68]. The former four methods are model-
driven with no training, and the later three methods are based
on deep learning techniques, which need to train them using the
training data. The implementation codes of all these methods
are provided by the authors and are publicly available. For a fair
comparison, we use the testing dataset for these methods as the
same as in the proposed method, and they are evaluated with the
same metrics.
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Fig. 4. PSNR and SSIM curves are functions of the number of layers for
Chikusei dataset.

Fig. 5. Average PSNR, SSIM, and loss function curves are functions of the
proposed method’s epochs for the training datasets.

C. Quality Measurement Metrics

Given the predicted fused (Xout) and target ground-truth (X)
images, the five quantitative criteria used to validate the effec-
tiveness of the performance of the MGDuNLSS-Net approach
are listed below:

1) Peak Signal-to-Noise Ratio (PSNR): The PSNR is utilized
to measure how similar the predicted fused image and the ref-
erence image are, and this metric can be formulated as follows:

PSNR(X,Xout) =
1

C

C∑
t=i

PSNR
(
X(i),X

(i)
out

)
. (23)

With the increasing of PSNR value, the quality of the recon-
structed image is better, and ∞ is the optimum value of PSNR.

2) Universal Image Quality Index (UIQI): The best value of
UIQI is one, which is calculated on a sliding window and then
takes the mean across whole windows and all spectral channels.
The UIQI of two windows x and xout can be calculated as the

TABLE II
INFLUENCE OF DIFFERENT INITIALIZATION OF MGDUNLSS-NET TESTED ON

PAVIA CENTER DATASET [62]

TABLE III
QUANTITATIVE PERFORMANCE MEASUREMENTS (PSNR (DB), SAM, ERGAS,
UIQI, AND SSIM) OF THE PROPOSED MGDUNLSS-NET IN COMPARISON WITH

STATE-OF-THE-METHODS (HYSURE, CNMF, CSTF, CSU, HSRNET,
MCT-NET, CNN-FUS) ON THE PAVIA CENTER DATASET

TABLE IV
QUANTITATIVE PERFORMANCE MEASUREMENTS (PSNR (DB), SAM, ERGAS,
UIQI, AND SSIM) OF THE PROPOSED MGDUNLSS-NET IN COMPARISON WITH

STATE-OF-THE-METHODS (HYSURE, CNMF, CSTF, CSU, HSRNET,
MCT-NET, CNN-FUS) ON THE CHIKUSEI DATASET

following:

UIQI(x, xout) =
4μxμxout

μ2
x + μ2

xout

σ2
x,xout

σ2
x + σ2

xout

(24)

where μ and σ represent the mean and standard variance, re-
spectively. σ2

x,xout
is the covariances between x and xout.

3) Relative Dimension Global Error in Synthesis (ERGAS):
An overall measure of the predicted image’s quality is calculated
via a global index, and its best value is zero. The formula of
ERGAS is written as the following:

ERGAS(X,Xout) =
100

d

√√√√ 1

C

C∑
i=1

MSE(X(i),X
(i)
out)

μ(X
(i)
out)

2 (25)

where μ denotes the mean value of X(i)
out.

4) Structural Similarity Index (SSIM): The SSIM is a per-
ceptual metric that determines how much the fusion process has
degraded the quality of the estimated fused image. The SSIM of
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Fig. 6. Pseudocolor of the outcomes of the different experiments on the Pavia Center dataset. The obtained fused image has a spatial size of 250× 250 (a) Fused
image of HySure [22]. (b) Fused image of CNMF [34]. (c) Fused image of CSTF [65]. (d) Fused image of CSU [66]. (e) Fused image of HSRNet [67]. (f) Fused
image of MCT-NET [68]. (g) Fused image of CNN-Fus [56]. (h) Fused image of MGDuNLSS-Net.

the overall bands can be expressed as

SSIM(X,Xout) =
1

C

C∑
i=1

SSIM
(
X(i),X

(i)
out

)
. (26)

A higher value means better spatial features maintenance of the
reconstructed image. One is the optimal value of SSIM.

5) Spectral Angle Mapper (SAM): SAM is used to calculate
the spectral angle mapper among two vectors, which is the
absolute value of the spectral angle (degree) between them.
The optimum assessment amount of SAM is zero; therefore,
there will not be any spectral distortion. The following equation
formulates this process:

SAM(X,Xout) =
1

N

N∑
i=1

arcos
X

(i)
out

T
X(i)∥∥∥X(i)

out

∥∥∥
2

∥∥X(i)
∥∥
2

. (27)

D. Implementation Details

For the implementation of the proposed MGDuNLSS-Net
method, which is an end-to-end network with learnable param-
eters that need to be initialized first, we used xavier_normal to
initialize all learnable parameters. Although the random (from a
uniform distribution on the interval [0,1]) and zero initializations
of X(0), P(0), and Y(0) have no big difference, zero initiation
still work better for the proposed method, therefore, X(0), P(0),
and Y(0) are simply initialized by zero (please refer to Table II).
The loss function is optimized by the ADAM optimizer with a
momentum equal to 0.999, where a learning rate is initialized
by 10−3 and halved every five epochs. The number of layers of
the proposed MGDuNLSS-Net is set to five layers according to

Fig. 4, which can balance performance and computational cost,
while 16 is the number of mini-batch during the training process.
According to Fig. 5, which displays the PSNR and SSIM as a
function of training epochs, we set the number of training epochs
equal to 100. Pytorch 1.12 is used to implement all experiments
with NVIDIA GeForce RTX 3090.

E. Experimental Results

The comparison of performance using the Pavia Center
dataset: Table III demonstrates the quantitative outcomes of the
testing images in terms of PSNR (dB), SAM, ERGAS, UIQI,
and SSIM, where the optimum score are typed in bold among
the compression methods for clarity. This table demonstrates
how, across all assessment metrics, our proposed MGDuNLSS-
Net approach may significantly outperform other competing
approaches with a minor variance between the reference im-
age and the fused outcome. It is appealed that our techniques
can better retain spectral and spatial data. According to this
table, the proposed method obtained a minimum ERGAS value,
meaning it has the slightest dynamic variation and shift of the
fused image compared to its corresponding reference image.
Furthermore, the fused method of the proposed method has
the optimal spectral distribution of intensities compared to the
other methods according to the obtained SAM values of different
approaches. The proposed MGDuNLSS-Net method has better
details preservation of the spatial structure as stated by the SSIM.

Moreover, the visual comparison of the outcome images and
the corresponding error maps of the competing approaches for
the testing images are shown in Figs. 6 and 7. Fig. 6 describes
the pseudocolor (bands 30 for red, 20 for green, and 5 for
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Fig. 7. Absolute errors map of the fusion results from Pavia Center database shown in Fig. 6. (a) HySure [22]. (b) CNMF [34]. (c) CSTF [65]. (d) CSU [66].
(e) HSRNet [67]. (f) MCT-NET [68]. (g) CNN-Fus [56]. (h) MGDuNLSS-Net.

blue) of the obtained fused images of different methods and the
corresponding reference of the testing image from this dataset.
To better show the difference between these fused images
from the different approaches, the absolute error maps between
the outcomes fused images and the reference are depicted in
Fig. 7. To clarify the variance of the different methods more, the
meaningful region of error images for the various techniques are
zoomed and marked in a red box. It is obvious from the red boxes
of the error maps that the proposed MGDuNLSS-Net approach
achieves better in terms of less distortion and reconstructing
the detailed structures than other comparison approaches, which
confirms the value of the SSIM obtained by various comparison
methods.

The comparison of performance using the Chikusei dataset:
The objective outcomes of the testing image of this database
in terms of PSNR (dB), SAM, ERGAS, UIQI, and SSIM are
displayed in Table IV, with the optimum value written in bold.
In this table, the proposed MGDuNLSS-Net has the maximum
results in terms of PSNR, UIQI, and SSIM and minimum results
in terms of SAM and ERGAS. According to these quantitative
metrics, the proposed MGDuNLSS-Net attained better spatial
structure preservation between the output and the reference
image, lesser spectral distortion, least change, and dynamic shift
compared to the previous works tested in this article. Fig. 8
depicts the visual result of the obtained fused image for the
different methods and the reference of the testing data, displayed
in false color by bands 90, 70, and 40 for red, green, and
blue, respectively. This figure demonstrates that the proposed
approach’s result among the other approaches is closest to the
reference image with better reconstructing spatial structures

TABLE V
QUANTITATIVE PERFORMANCE MEASUREMENTS (PSNR (DB), SAM, ERGAS,
UIQI, AND SSIM) OF THE PROPOSED MGDUNLSS-NET IN COMPARISON WITH

STATE-OF-THE-METHODS (HYSURE, CNMF, CSTF, CSU, HSRNET,
MCT-NET, CNN-FUS) ON THE CUPRITE MINE DATASET

details. In order to reconnoiter the difference more visually, we
showed the absolute error maps between the obtained outcome
images from all approaches and the reference image in Fig. 9. It
is evident that the error map between the fused image obtained
by the proposed and the reference is the least fused error at
both the smooth areas and edges of the image, which means is
impeccably consolidates the quantitative measurements shown
in Table IV.

The comparison of performance using the Cuprite Mine
dataset: In order to validate the robustness of the proposed
MGDuNLSS-Net’s performance, we tested and investigated its
performance on the Cuprite Mine database, which has the lowest
number of training samples compared to the Pavia Center and
Chikusei databases. Table V shows the numerical metrics in
terms of PSNR (dB), SAM, ERAS, UIQI, and SSIM. Still, the
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Fig. 8. Pseudocolor of the outcomes of the different experiments on the Chikusei dataset. The obtained fused image has a spatial size of 512× 512. (a) Fused
image of HySure [22]. (b) Fused image of CNMF [34]. (c) Fused image of CSTF [65]. (d) Fused image of CSU [66]. (e) Fused image of HSRNet [67]. (f) Fused
image of MCT-NET [68]. (g) Fused image of CNN-Fus [56]. (h) Fused image of MGDuNLSS-Net.

Fig. 9. Absolute errors map of the fusion results from Chikusei database shown in Fig. 8. (a) HySure [22]. (b) CNMF [34]. (c) CSTF [65]. (d) CSU [66]. (e)
HSRNet [67]. (f) MCT-NET [68]. (g) CNN-Fus [56]. (h) MGDuNLSS-Net.
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Fig. 10. Pseudocolor of the outcomes of the different experiments on the Cuprite Mine dataset. The obtained fused image has a spatial size of 256× 256. (a)
Fused image of HySure [22]. (b) Fused image of CNMF [34]. (c) Fused image of CSTF [65]. (d) Fused image of CSU [66]. (e) Fused image of HSRNet [67]. (f)
Fused image of MCT-NET [68]. (g) Fused image of CNN-Fus [56]. (h) Fused image of MGDuNLSS-Net.

Fig. 11. Absolute errors map of the fusion results from Cuprite Mine database shown in Fig. 10. (a) HySure [22]. (b) CNMF [34]. (c) CSTF [65]. (d) CSU [66].
(e) HSRNet [67]. (f) MCT-NET [68]. (g) CNN-Fus [56]. (h) MGDuNLSS-Net.

proposed method in this article has the best evaluation values
among the quantitative measurements, with the lowest PSNR,
SAM, and ERGAS and higher values in terms of UIQI and
SSIM compared to other comparison techniques. To explore the
performance of the proposed MGDuNLSS-Net and compari-
son approaches, we showed the fused images gained by these
methods in Fig. 10. The RGB images of the fused images and the

ground truth image shown in Fig. 10 are contained bands 70, 60,
and 30 for red, green, and blue, respectively. To demonstrate the
difference in the visual results, the errors between these achieved
images and the reference shown in Fig. 11. Obviously, it can
be seen from the marked error images that the obtained image
of the proposed MGDuNLSS-Net approach is closest to the
reference image than the other testing approaches, and it attains
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Fig. 12. Average PSNR curves as functions of all bands for the HSI recon-
structed by the test methods. (a) Pavia Center dataset. (b) Chikusei dataset.
(c) Cuprite Mine dataset.

Fig. 13. Spectral signature of single-pixel for the test methods compared with
the reference. (a) Pixel (125, 175) of testing HSI image from the Pavia Center
dataset. (b) Pixel (83, 423) of the testing HSI image from the Chikusei dataset.
(c) Pixel (142, 102) of test HSI image from the Cuprite Mine dataset.

minimum restoration error at both the smooth areas edges of the
testing image. This means that the proposed MGDuNLSS-Net
method can more satisfactorily reconstruct the spatial details
with better spectral maintenance than the other comparison
methods.

Moreover, to further compare the fusion quality, we validate
the performance of the proposed MGDuNLSS-Net method in
terms of PSNR over all bands of the three testing datasets.

Fig. 14. Pseudocolor of the testing data of the real dataset Hyperion-Sentinel.
(a) 210× 210 pixels of LrHSI (bands 20, 5, 3). (b) 630× 630 pixels of HrMSI
(bands 3, 2, 1).

TABLE VI
ABLATION STUDY OF THE EFFECTIVENESS OF DIFFERENT ARCHITECTURES IN

MGDUNLSS-NET

Fig. 12 shows the PSNR (dB) value of the introduced tech-
nique with compare to the other testing techniques. It can be
seen clearly that the proposed MGDuNLSS-Net outperformed
the other comparison in most of the spectral bands across
three databases. Furthermore, the spectral response attained by
the different methods is validated in terms of pixel values of
the fused images compared to the values of pixels from the
ground truth. To this end, we select the pixels (125, 175), (83,
423), and (142, 102) from the testing part of the Pavia Center,
Chikusei, and Cuprite Mine datasets, respectively, and displayed
their values in Fig. 13. The curves of these pixel values show that
the proposed method has similar and closed pixel values to the
reference pixels compared to the other methods, which proves
the MGDuNLSS-Net method’s performance in this aspect.

F. Ablation Analysis

Through an ablation study, this section investigates the
effect and importance of the bidirectional simple recurrent
unit (BSRU) and the nonlocal self-similarity (NLSS) layers of
the proposed MGDuNLSS-Net on Pavia center dataset with
scale = 5. In this regard, we trained the proposed network in
three different architectures. The first architecture includes only
two nonlocal self-similarity (NLSS) layers in the fusion submod-
ule, while in the second version, we built the fusion submod-
ule by two bidirectional simple recurrent unit layers (BSRU)
and removed the NLSS layers. Finally, the proposed method
is trained in which the fusion submodule contains two NLSS
blocks inserted between two BSRU layers. The quantitative re-
sults of these three different architectures are shown in Table VI,
demonstrating the role of the proposed components of the fusion
submodule (NLSS and BSRU).
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TABLE VII
TIME EFFICIENCY OF PAVIA CENTER, CHIKUSEI, AND CUPRITE MINE DATASETS, RESPECTIVELY, AND GENERAL COMPARISON OF THE TESTING METHODS, BOLD

TYPING MEANS BETTER

Fig. 15. Pseudocolor contains bands (R: 20, G: 5, and B: 3) of the outcomes of the different experiments on real datasets Hyperion-Sentinel. The obtained fused
image has a spatial size of 630× 630, where the Geometric resolution is 10 m. (a) Original LrHSI. (b) Original HrMSI. (c) Fused image of CNMF [34]. (d) Fused
image of CSTF [65]. (e) Fused image of CSU [66]. (f) Fused image of HSRNet [67]. (g) Fused image of MCT-NET [68]. (h) Fused image of CNN-Fus [56]. (i)
Fused image of MGDuNLSS-Net.

Fig. 16. Pseudocolor of the testing data of the real dataset WV2. (a) 90× 90
pixels of LrMSI (bands 5, 3, 2). (b) 360× 360 pixels of HrRGB.

G. Time Complexity of the Different Tested Methods

To compare the effectiveness of the testing approaches in
terms of computational complexity, the running time of the
different testing methods on the Pavia Center, Chikusei, and
Cuprite Mine datasets is stated in Table VII. As shown in this
table, the proposed MGDuNLSS-Net has efficient computation
time. Specifically, HySure, CNMF, CSTF, and CSU are model-
based methods that they need many iterations to converge.
Therefore, the computation complexity mainly comes from
the iteration need for these approaches. For CNN-Fus, while

it benefits from model-based and deep learning but still has
the model-based part needs iterations to complete the fusion
process. In a few words, the CNN-Fus approach is not an
end-to-end deep-learning framework. Although the proposed
method is formulated in model-based problems, the model is
fully unfolded toward a deep learning model that can be trained
and tested in an end-to-end network. The speed benefit of
the proposed MGDuNLSS-Net method fundamentally comes
from deep learning and the subspace representation. While the
comparison methods HSRNet and MCT-NET are end-to-end
deep networks and with no iteration, still have a higher compu-
tation time in comparison to our proposed MGDuNLSS-Net.
On the other hand, the observation model can highly influ-
ence the efficiency of the fusion process. While these models
are not available in real scenarios, the testing methods CSTF,
CSU, and CNN-Fus are used predefined degradation matrices,
while the HySure, CNMF, HSRNet, and MCT-NET estimate
the observation models with no supervision. To enhance the
fusion outcomes, the proposed MGDuNLSS-Net supervises the
prediction of the degradation process by projecting the estimated
HrHSI at any iteration back to the original LrHSI and HrMSI and
considering their error in the fusion process. Table VII reported
a general and running time comparison of testing methods,
including the proposed method.
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Fig. 17. Pseudocolor contains bands (R: 5, G: 3, and B: 2) of the outcomes of the different experiments on real datasets WV2. The obtained fused image has a
spatial size of 360× 360. (a) Original LrMSI. (b) Fused image of CNMF [34]. (c) Fused image of CSTF [65]. (d) Fused image of CSU [66]. (e) Fused image of
HSRNet [67]. (f) Fused image of MCT-NET [68]. (g) Fused image of CNN-Fus [56]. (h) Fused image of MGDuNLSS-Net.

H. Experiment With Real-Life Datasets

In this section, we studied the performance of the proposed
approach and the various comparison approaches by validating
their effectiveness on real HSI-MSI datasets. In this regard, the
hyperspectral and multispectral images taken by the Hyperion
sensor toted by the Earth Observing-1 satellite (EO-1) and
Sentinel-2 satellite, respectively, are utilized in our experiment.
The spectral bands of the HSI span the wavelength domain
from 400 to 2500 nm, comprising 242 channels, where 30 m
is the Geometric resolution of this HSI with a spatial size of
2350× 990. Nevertheless, 89 bands of the HSI are employed
for the experiment after discarding the bands with low SNR and
water absorption bands. On the other hand, the MSI contains 13
channels with 7050× 2970 pixels as the spatial size. Therefore,
the spatial resolution of this MSI is 10 m. However, four chan-
nels, including 490, 560, 665, and 842 nm, are selected as HrMSI
in this experiment. Seeking convenience, we selected 630× 630
and 210× 210 pixels from the MSI and HSI, respectively, as the
test set, which is shown in Fig. 14.

While the proposed approach is a supervised learning ap-
proach that requires ground truth of the desired HSI at the train-
ing stage, which does not exist in reality, we simulated the train-
ing dataset from the remainder of pixels after the testing image
was taken. The training dataset is obtained using Wald’s proto-
col, where the spectral response function (SRF) and point spread
function (PSF) matrices are created by following the strategy
employed in [22]. In this context, the training samples of LrHSI,
HrMSI, and HrHSI are partitioned into small blocks with a size
of 5× 5× 89, 15× 15× 4, and 15× 15× 89, respectively.
Fig. 15 demonstrates the false-color RGB images obtained by
the proposed approach, and the comparison approaches CNMF,
CSTF, CSU, HSRNet, (MCT-NET), and CNN-Fus; herein, we

ignore the outcome of HySure, which has the worst performance
compared to the testing techniques on the synthesized datasets.
The obtained results of the different methods tended to spectral
distortion due to the HSI of Hyperion and MSI of S2 being
collected at different times (around a month), where their end-
members are changed through this month. However, according
to Fig. 15, the proposed MGDuNLSS-Net approach achieved
the best outcome, which is nearest to the HrMSI compared to
the other testing approaches.

Moreover, the real MSI dataset WV21 is used to further verify
the proposed method’s performance. The LrMSI of this database
has eight spectral channels. In this regard, the spatial resolution
of LrMSI is improved by fusing the LrMSI and HrRGB im-
ages that are contained in this real dataset to acquire HrMSI.
Experimentally speaking, we cropped 90× 90 and 360× 360
pixels from the LrMSI and HrRGB as testing data, as can be seen
in Fig. 16, and the remaining pixels are preserved for training
purposes. The training pixels are allocated into small batches
with the size of 16× 16× 3, 4× 4× 8, and 16× 16× 8 for
HrRGB, LrMSI, and HrMSI, respectively.

Fig. 17 depicts the results of the testing methods except for
the HySure result, as we did in the first real dataset, includ-
ing the proposed method. As can be seen from Fig. 17, the
obtained results of CSTF, CSU, and MCT-NET are prone to
spectral distortion, where CSU and MCT-NET are excessively
bright, whereas CSTF has much texture artifact. As a result, the
achieved image of CNMF is blurred with low spatial details.
However, the best results are achieved by HSRNet, CNN-Fus,

1https://www.harrisgeospatial.com/Data-Imagery/Satellite-
Imagery/HighResolution/WorldView-2
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and the proposed method, although the results of HSRNet and
CNN-Fus are susceptible to being blurred and bright.

V. CONCLUSION

In this article, we propose an efficient and effective model-
guided deep unfolded fusion network with non-local spatial-
spectral priors for hyperspectral and multispectral image fusion.
The proposed method’s architecture, which is an end-to-end
network comprises two submodule. The first one is the fusion
submodule, designed by the nonlocal spatial-spectral block
(NLSSB) to ensure the full exploitation of the crucial features
of the HSIs. NLSSB can successfully model the intrinsic char-
acteristics of HSIs, such as global spectral, nonlocal spatial, and
spatial-spectral correlation. Moreover, to further improve the
performance of the fusion process that impressively be affected
by an unknown degradation system, the proposed method esti-
mates and keeps refining the imaging system at all iterations by
backprojection of the obtained fused image at any iteration to
the inputs pairs LrHSI and HrMSI that ensure good prediction of
the degradation. For future work, the proposed approach can be
enhanced by integrating and studying some other priors, such
as sparse prior and total variation, or by further investigating
the imaging system to ensure the estimation of the degradation
model better.
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