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LADSDIn: LiCSAR-Based Anomaly Detector of
Seismic Deformation in InSAR

Xianjian Shi and Bin Pan

Abstract—Manual analysis of LiCSAR deformation data in tec-
tonic zones and timely detection of pre-earthquake anomalous ac-
tivity are very time-consuming. To solve this problem, an LiCSAR-
based anomaly detector of seismic deformation in interferometric
synthetic aperture radar (LADSDIn) is constructed in this article.
LADSDIn can automatically detect and extract anomalous activity
and seismic deformation in tectonic zones. LADSDIn is modeled
by learning the spatiotemporal characteristics of MTInSAR time
series deformation data to detect abnormal deformation. The de-
tector considers transients that deviate from the “predicted” de-
formation, which are considered “anomalous.” For earthquake-
prone regions, “anomalies” with outlier characteristics in spatial
and temporal properties are usually the deformations caused by
seismic activities. We successfully applied LADSDIn to January
8, 2022, Menyuan Mw 6.7 earthquake in China, and LADSDIn
successfully detected the extent of ground deformation induced by
this seismic activity. The results show that the deformation range
of the ascending track is −350–87 mm, and the deformation range
of the descending track is−127–132 mm. The detector successfully
detected the “anomalous deformation” signs before the earthquake
(November 2021). In addition, LADSDIn supports parallel pro-
cessing in chunks to reduce computation time. The characteristics
of LADSDIn facilitate cluster deployment and use for automatic
detection and extraction of seismic deformation in global tectonic
zones. This work provides theoretical support for the automation
and refinement study of global seismic activity.

Index Terms—Automatic processing, deformation monitoring,
earthquake, interferometric synthetic aperture radar, Sentinel-1.

I. INTRODUCTION

GROUND deformation is the most direct apparent phe-
nomenon of earthquake occurrence, and it is essential data

for inversion of earthquake damage, epicenter mechanism, fault
structure, etc. [1], [2]. In recent years, differential interferometric
synthetic aperture radar (DInSAR) has been widely used in the
study of earthquakes [3]. Compared with traditional geodetic
methods, DInSAR technology has the features of all-weather,
all-day, and no ground control in monitoring ground deformation
[4], [5], [6].

Although DInSAR can effectively detect the slight deforma-
tion of the ground surface, the monitoring accuracy of DInSAR
is affected by interference loss of coherence and atmospheric
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delay, and the ground movement rate cannot exceed a cer-
tain threshold, so MTInSAR technology was born [7], [8].
MTInSAR is represented by persistent scatterer interferometric
synthetic aperture radar (PSInSAR) and small baseline subset
interferometric synthetic aperture radar (SBASInSAR) [9], [10].
PSInSAR performs phase modeling and deformation solving
based on a discrete point set of PS points composed of highly
coherent image elements. Ferretti et al. [11] used PSInSAR to
extract landslide deformation rates and verified its ability to
detect millimeter precision deformation. SBASInSAR improves
coherence and deformation detection accuracy by limiting in-
terference to spatial baselines using multiple master image
combinations [12]. The combined approach of SBASInSAR
can extract distributed point targets that remain coherent for
a certain period, further increasing the point density, which is
very suitable for natural ground deformation monitoring and
can achieve long time series and millimeter-scale deformation
monitoring at the regional scale [13].

However, the high price of commercial SAR data and the
severe scarcity of civilian SAR data have limited the application
of MTInSAR to seismic deformation studies for a long time [14].
The Sentienl-1 satellite launched by the European Space Agency
breaks the mold [15]. Part of the Copernicus Project, Sentienl-
1 consists of two satellites, each carrying a C-band synthetic
aperture radar with an average revisit period of 12 days, and
provides free all-weather, day, and night images of the Earth’s
surface to the general public [16].

As a game changer, the Sentienl-1 satellite has contributed
significantly to the development of the global SAR industry
[17], [18]. Sentinel-1 acquires up to 2000 SAR images daily,
with a data capacity of even 10 TB [19], [20]. In this context,
more and more scholars are using MTInSAR technology and
Sentienl-1 data to carry out high-precision seismic deformation
studies [21], [22], [23]. Due to the extensive range of ground
deformation information, good continuity, and high deformation
accuracy obtained by MTInSAR technology, the results of fault
geometry parameter inversion and sliding distribution inversion
are more comprehensive, detailed, and reliable [24], [25].

However, manual extraction of seismic deformation using
the MTInSAR technique and Sentienl-1 data is very time-
consuming [26]. During the deformation, decompression, coreg-
istration, inversion, interferogram generation, and interfero-
metric phase unwrapping occupy the entire processing time.
To address this problem, Lazecký et al. [19] produced and
made freely available the LiCSAR product based on super-
computer clusters, SBASInSAR technology, and automatic

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3741-8780
https://orcid.org/0000-0001-7513-6533
mailto:sxj_edu@yeah.net
mailto:sxj_edu@yeah.net
mailto:pb_edu@yeah.net


SHI AND PAN: LADSDIN: LICSAR-BASED ANOMALY DETECTOR OF SEISMIC DEFORMATION IN InSAR 4401

Fig. 1. Diagram of LiCSAR coverage range; the background image is a Google Earth image.

processing chains. LiCSAR is updated regularly, its products
include geocoded unwrapped interferograms and coherence es-
timates, and LiCSAR covers major tectonics and volcanoes
around the globe (see Fig. 1). Based on LiCSAR products,
researchers can quickly acquire global tectonic and volcanic
deformation [27]. MTInSAR has entered the era of Big Data
high-performance computing [28].

China is an earthquake-prone country with many seismic
zones and a high frequency of earthquakes. In total, 7% of
China’s territory endures 33% of the world’s strongest earth-
quakes on the mainland, making it one of the most earthquake-
prone countries in the world [29], [30], [31]. Although LiC-
SAR products cover the major seismic regions in China, man-
ual analysis of LiCSAR deformation data in tectonic zones
and timely detection of pre-earthquake anomalous activity are
time-consuming and require staff with expertise in seismic and
InSAR.

In this article, an LiCSAR-based anomaly detector of seismic
deformation in InSAR (LADSDIn) is constructed to automati-
cally detect and extract anomalous activity and seismic defor-
mation in tectonic zones. The main contributions of this article
are as follows.

1) A novel network architecture based on LiCSAR prod-
ucts and deep learning anomaly detection techniques is
modeled by learning the spatiotemporal characteristics of
MTInSAR time series deformation data to detect anoma-
lous deformations.

2) LADSDIn is an automatic, deep-learning anomaly de-
tector, and transient phenomena that deviate from the
“expected” deformation are considered “anomalies.” For
earthquake-prone regions, “anomalies” that exhibit outlier
characteristics in spatiotemporal properties are usually the
deformations caused by seismic activity.

3) We propose a novel seismic deformation extraction strat-
egy. The strategy first learns outlier features in time and
the space of seismic deformation data. Then, it separates
the seismic deformation from the background time series
based on the learned outlier features from the labeled
anomalies.

4) We successfully applied LADSDIn to the Mw 6.7 magni-
tude earthquake in Mengyuan, China, on January 8, 2022.
LADSDIn successfully resolved the extent of ground de-
formation caused by seismic activity. In addition, LADS-
DIn supports parallel processing in chunks to reduce com-
putation time. The characteristics of LADSDIn facilitate
cluster deployment and use for automatic detection and
extraction of seismic deformation in global tectonic zones.

II. MATERIALS AND METHODS

A. MTInSAR Deep Learning

Deep learning has been shown to be very effective in pattern
recognition and feature extraction from high-dimensional data
[32]. Traditional machine learning algorithms, such as support
vector machines and random forests, rely on manually crafted
features, require domain-specific knowledge, and are limited by
the complexity of the data [33]. In contrast, deep learning models
can automatically learn relevant features from the data and better
handle large amounts of data, especially nonlinear and complex
deformations, and these advantages can improve performance
and reduce the need for domain-specific knowledge [34].

Earthquakes are vibrations caused by the rapid release of
energy from the earth’s crust. During this process, the dislo-
cation and rupture of plates trigger ground deformation. Unlike
“normal” deformation, the ground deformation caused by earth-
quakes is transient, i.e., the seismic deformation exhibits outlier
characteristics in time. On the other hand, earthquake-induced
ground deformation is usually a sudden uplift or sudden sub-
sidence of a region, i.e., seismic deformation exhibits outlier
characteristics over a large spatial scale. The low number of
earthquakes in the long time series of deformation data makes
the earthquake deformation extraction study more suitable for
machine learning.

Based on the unique data structure of earthquakes, this article
uses long short-term memory (LSTM) to learn the data features
of MTInSAR to output “predicted” values, and deformations
that deviate from “predicted” will be marked as abnormal de-
formations. Finally, the seismic deformations are filtered from
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Fig. 2 General framework of LADSDIn.

the anomalous deformations based on the outlier characteristics
of the seismic data. Fig. 2 shows the general framework of
LADSDIn. The detector consists of the following three modules.

1) Data cleaning module. This module is used to uniformly
sample the LiCSAR deformation results and determine
whether there are missing values every 12 days while
interpolating the missing values using the K-nearest neigh-
bor (KNN) algorithm. Suppose an LiCSAR deformation
dataset is named D in the study area, which includes N
deformation maps. To improve the computational speed,
D is sampled uniformly, whereas regions with low coher-
ence, such as water bodies and vegetation, will be excluded

Dd = D(1 : t : end) (1)

where Dd denotes the deformation map after downsam-
pling, t is the sampling parameter, and t means that one
data point is retained for every t original data point in
each row/column. This article uses the KNN algorithm
for time series missing value checking (12-day interval)
and time series interpolation. KNN is a machine learning
algorithm that finds several historical data points with the
most similar data near the missing points and interpolates
the missing values. Compared with ordinary linear inter-
polation, the advantages of the KNN interpolation method
are simplicity and ease of use, fast model training time,
and good prediction results.

2) Anomalous deformation detection module. This module
uses the LSTM anomaly detection technique to model
the MTInSAR time series deformation data to screen
out anomalous deformation. LSTM is a special kind of

recurrent neural network [35] that solves the gradient
disappearance [36], [37] and gradient explosion problems
[38] during the training of long sequences. LSTM can
dynamically model time series data to achieve more ac-
curate predictions [39], [40]. If the training set of a pixel
on Dd is (Dt

1, D
t
2, . . . , D

t
j) and the corresponding LSTM

reconstruction set of that pixel is (R1, R2, . . . , Rj), the
reconstruction error at each moment can be expressed as
follows:

Er
j = Dt

j −Rj (2)

where Er
j , Dt

j , and Rj are the reconstruction error, MTInSAR
deformation, and reconstruction deformation of the pixel at the
moment j, respectively.

Since the standard deviation reflects the dispersion of a data
set, the standard deviation of the reconstruction error of the
training set will be used as an essential indicator for anomaly
detection

σ =

√∑j
i=1 (E

r
i − Er)

2

j
(3)

where σ is the standard deviation of the reconstruction error of
the training set, and Er is the average reconstruction error of the
training set.

Assuming that the validation set for a pixel on Dd is
(Dv

1 , D
v
2 , . . . , D

v
k) and the corresponding LSTM prediction set

for that pixel is (P1, P2, . . . , Pk), the detector will flag a pixel
with a prediction error above a threshold as an abnormal defor-
mation

|Ep
k | = |Dv

k − Pk| > σ ×Nm (4)
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where Ep
k , Dv

k , and Pk are the prediction error, deformation
verification value, and predicted deformation of the pixel at the
moment k, respectively, and Nm is a positive integer, which
needs to be set in advance by the user based on experience.

3) Seismic deformation detection module. Based on the out-
lier characteristics of seismic deformation in space and
time, this module checks the anomalous deformation in
time and space, respectively, to output the seismic defor-
mation that meets the outlier characteristics.

Assuming that the number of pixels with abnormal deforma-
tion at each moment of the validation set is (Ca

1 , C
a
2 , . . . , C

a
k ),

the moments that exceed the threshold of abnormal deformation
can be filtered out according to the following formula:

Ck ≥ Na =
As

Ap × t2
(5)

where Ck is the number of pixels with abnormal deformation at
the moment k, Na is the abnormal deformation threshold, As is
the area of seismic deformation (As needs to be set in advance
by the user based on experience), Ap is the area of pixels, and
the resolution of LiCSAR products is 100 × 100 m.

Next, the detector will perform further detection for moments
when the threshold is exceeded. Abnormally deformed pixels
on the deformation map will be marked as “1,” and customarily
deformed pixels will be marked as “0.” If the edges of the pixels
marked with “1” touch each other, these pixels are considered
by the detector to be connected, and the detector will consider
them to be part of the same object. The detector then counts the
number of “1” pixels in each object, and objects with more than
Na are considered by the detector to be “anomalies” caused by
seismic deformation. Finally, the actual seismic deformationDs

k

can be calculated by the following equation:

Ds
k = Dv

k − Pk. (6)

B. Study Area and Data Set

The phase gradient of the wrapped phase image is more
suitable for deformation detection because it is more accessible
[41]. However, seismic activity is characterized by uncertainty
and the distribution of anomalous pixels is also uncertain. In
most cases, it is difficult to distinguish between normal and
seismic-associated anomalous deformation signals, making the
detection of seismic activity even more challenging. Given that
seismic events are rare events in long time series, this arti-
cle outputs simulated deformation by learning the long-term
deformation trend of pixels. If the simulated trend deviates
from the actual deformation, the deformation will be judged
as anomalous by the detector. As the phase variation is periodic
with a period of 2π, the phase restarts and cycles every time
the variation exceeds 2π. To reduce the difficulty of model
learning and improve the stability of predictions, it is necessary
to extract accurate long-term deformation time series data from
the study area. Therefore, the unwrapped interferogram is used
for phase unwrapping, which corresponds the phase to linear
terrain information, thus solving the problem of 2π ambiguity.
As the unwrapping process introduces unwrapping errors, the

“normal” mode in this article is composed of seasonal defor-
mation, orbital error, atmospheric error, unwrapping error, and
other “disturbance” signals. Deformation that deviates from the
“normal” mode will be regarded as anomalous by the detector.

The LiCSAR product was created using SBASInSAR tech-
nology and Sentinel-1 SAR data. The LiCSAR online por-
tal (https://comet.nerc.ac.uk/comet-lics-portal/) provides un-
wrapped interferograms and coherence estimates. Researchers
can use scripts to automatically download unwrapped interfer-
ograms and convert unwrapped interferograms to deformations
[42]. In this article, the study area is the Mengyuan region of
China [see Fig. 3(a)]. The LiCSAR products of ascending and
descending tracks in this region are downloaded [see Fig. 3(b)].
The time frame for the ascending track is from January 31, 2017
to January 17, 2022 (152 moments) and the time frame for the
descending track is from March 25, 2017 to January 10, 2022
(147 moments). In this article, we construct an LSTM-based
neural network for LiCSAR to predict the deformation of image
elements [43]. The optimizer algorithm uses the Adaptive mo-
ment estimation (Adam) algorithm [44]. Compared with other
stochastic optimization methods, the Adam algorithm has the
advantages of low hardware resource consumption and the abil-
ity to calculate adaptive learning rates for different parameters.
Experiments have shown that the Adam algorithm’s overall
performance is excellent in many practical applications. The
network search algorithm is used to compute the optimal hyper-
parameters with the minimum mean square error loss function
as the optimization objective, given the number of network
layers K, the number of hidden layer nodes S, and epochs.
The maximum range of network layer maximum Kmax and
hidden layer node maximum Smax in network search needs
to be set by human experience based on the prediction effect.
According to the actual training situation, it is sufficient to find
the optimal parameters when Kmax and Smax are set to 5 and 30,
respectively. Epoch is not as large as possible but generally set to
50–200. The more diverse the data, the larger the corresponding
epoch. In this article, the epoch is 200.

The northeastern part of the Qinghai-Tibet Plateau is one of
China’s most seismically active regions. Many strong earth-
quakes have occurred in the northeastern part of the Qinghai-
Tibet Plateau throughout history, including the 8.5 magnitude
earthquake in the Haiyuan fault zone in 1920 and the 7.3 magni-
tude earthquake that occurred in the Lenglongling fault in 1954
[45], [46], [47]. Geomorphologically, the Menyuan area belongs
to the Qaidam Basin. The Qaidam Basin is geotectonically a part
of the Qinling Kunlun Qilian trough fold system and is a Miocene
depression basin. Since the Tertiary, the Qaidam Basin has been
slowly rising, forming a hilly belt composed mainly of Tertiary
and Lower and Middle Pleistocene sandstones. The southern
part of the Qaidam Basin, which has sunk sharply, is the leading
accumulation site of the Quaternary System, up to 1200 m thick,
forming a premountain inclined plain composed of the recent
flood, alluvial and lacustrine layers of the Upper Pleistocene.
The Mengyuan region has high internal stress accumulation and
high seismic hazards. An earthquake of magnitude Mw 6.7 hit
the Menyuan area on January 8, 2022 [see Fig. 3(c)], and thus
can be used to test LADSDIn.

https://comet.nerc.ac.uk/comet-lics-portal/
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Fig. 3. Overview of the study area. (a) Geographic location. (b) Topography. (c) Google Earth images.

III. RESULTS AND ANALYSIS

A. Abnormal Deformation Detection

Rouet-Leduc et al. [48] predicted the time series deformation
trend of InSAR, and their method is similar to the one in
this article in some aspects. Still, their model does not know
whether the deformation is abnormal. Based on CNN image
reconstruction, Deng et al. [45] detected the 2019 Turkey 5.7
magnitude earthquake. The core idea of Deng et al. is to encode
the normal input images and train the neural network to learn the
distribution patterns of the normal images. The method in this
article predicts the future direction of deformation by learning
the trend of long time series deformation of pixels, and the
deformation that deviates from the prediction is considered an
anomaly.

Regarding probability, the small number of earthquakes in
a long time series makes seismic detection more suitable for
time series anomaly detection. The method in this article does
not label the samples, and the anomalies are discriminated in
this article based on outlier features of seismic deformation in
time and space. This idea facilitates the extraction of seismic-
associated abnormal deformation signals.

The values Nm in (4) and As in (5) can be determined by
looking at historical earthquakes in the surrounding area. Taking
the 2021 Mw7.4 earthquake close to the study area as an exam-
ple, the deformation area of the epicenter is about 1800 km2,
the deformation of the epicenter is about 1 m, and the normal
deformation far from the epicenter is about 0.1 m. The deforma-
tion of the epicenter is about ten times the normal deformation
[49]. The deformation area of the epicenter of another 2020 Mw
6.6 earthquake is about 600 km2, and the deformation of the
epicenter is about 0.5 m. The normal deformation far from the
epicenter is about 0.1 m, and the epicenter deformation is about

TABLE I
BASIC INFORMATION ON THE DEFORMATION DATA OF THE ASCENDING AND

DESCENDING TRACKS

five times the normal deformation [50]. Since the earthquake to
be detected in this article is an Mw 6.7 earthquake, Nm in (4) is
set to 6, As in (5) is set to 600 km2, and the sampling parameter
t is set to 30 in this article.

The Mengyuan earthquake is divided into two comparison ex-
periments, one for the ascending track and one for the descending
track, and the parameters are the same for both experiments. In
the experiments, 85% of the time series deformation is selected
as the training set, and the rest of the data is used as the validation
set. The detector samples the ascending and descending tracks
separately and uniformly to obtain the time series deformation
of each image element. For each image element of the ascending
track, the deformations acquired during 2017-01-31 and 2021-
04-16 are used as the training set, and those obtained during
2021-04-28 and 2022-01-17 are used as the validation set. For
each image element of the descending track, the deformations
acquired during 2017-03-25 and 2021-04-21 are used as the
training set and those obtained during 2021-05-03 and 2022-01-
10 are used as the validation set. After the data cleaning module,
the time series deformation of 6520 ascending track pixels and
the time series deformation of 5494 descending track pixels were
successfully extracted (see Table I).
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Fig. 4. Anomalous deformation detection results for the validation set of the ascending track.

The deep learning anomaly detection technique is used to
detect the abnormal deformation of the cleaned data. The detec-
tion results are shown in Figs. 4 and 5. Blue indicates normal
deformation, and yellow indicates abnormal deformation. As
can be seen from Fig. 4, in the ascending track data, from
April 28, 2021 to November 18, 2021, the anomalous defor-
mation pixels in the study area show a sporadic distribution.
From November 30, 2021 to January 17, 2021, an increasing
number of anomalous deformation pixels began to be detected
in the epicenter area of the Mengyuan earthquake, and the total

number of anomalous deformation pixels reached the maximum
on January 17, 2021. It can be found that the evolution of the
anomalous deformation of the ascending track coincides with the
moment of the Menyuan earthquake (January 8, 2022). As can
be seen from Fig. 5, in the descending track data: due to the high
number of missing data from May 2021 to August 2021 and the
accumulation of errors caused by multiple KNN interpolations,
it can be found that the detection results of the descending track
data from May 2021 to August 2021 are significantly affected,
i.e., a large number of anomalous deformation pixels are detected
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Fig. 5. Anomalous deformation detection results for the validation set of the descending track.

on August 7, 2021. It was verified that no earthquake occurred at
these moments. It is thus clear that the anomalous deformation
detection results after multiple interpolations of KNN may not
be accurate. The KNN algorithm works by identifying k samples
in the time series dataset that are similar in time and then using
these samples to estimate the values of the missing data points.
Therefore the more consecutive missing values, the more the
KNN consecutive interpolated values may gradually deviate
from the actual values. Since five consecutive deformation maps
were missing between May 27, 2021 and August 7, 2021, all
five deformation maps within the red dashed line in Fig. 5
were automatically generated by KNN. In this case, the gap

between the KNN predicted and actual values will gradually
accumulate, leading to the detection of many anomalies on
August 7, 2021. The anomaly on August 7, 2021 is caused by
too many consecutive missing deformation maps and excessive
KNN interpolations from May 27, 2021 to August 7, 2021.
From December 17, 2021 to January 10, 2022, a similarly
large number of anomalous deformation pixels were detected
in the epicenter region of the Mengyuan earthquake, and the
anomalous deformation evolution changes in the descending
track data were consistent with the ascending track data.

The anomalous deformation pixels for each moment of the as-
cending and descending tracks are counted, and the statistics are
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Fig. 6. (a) Anomalous deformation counts for each moment of the validation set of the ascending track. (b) Anomalous deformation counts for each moment of
the validation set of the descending track. (c) Determination coefficient statistics for the training set of the ascending track. (d) Determination coefficient statistics
for the training set of the descending track.

shown in Fig. 6(a) and (b). Fig. 6(a) shows that the moment with
the most anomalous deformation pixels in the ascending track
is January 17, 2022 with 167 anomalous deformation pixels de-
tected by the detector. Fig. 6(b) shows that the moment with the
most strange anomalous deformation pixels in the descending
track is August 7, 2021 with 657 anomalous deformation pixels
detected by the detector. The detection results of the descending
track are too different from other moments. KNN time series
interpolation of random missing values is better than ordinary
linear interpolation, but KNN tends to introduce errors when
continuous missing is encountered. KNN fills in the missing
values by finding a few historical data points similar to the nearby
data. The difference between the predicted and actual values
of KNN accumulates with the increase of successive missing
values. Continuous interpolation causes the expected value to
deviate from the actual value gradually, and this “deviation” may
be flagged as an “anomaly” by the detector. Such “anomalies”
are not anomalous deformations but are caused by the continuous
absence of time series deformation maps. It is presumed that the
absence of data for May 2021 to August 2021 and the effect of
multiple KNN interpolations influenced the detection results for
this period.

Five consecutive deformation maps were missing from May
27, 2021 to August 7, 2021, and KNN automatically generated
these missing deformation maps in the subsequent processing.
Since KNN is predicted concerning the data before and after the
lost date, the more consecutive missing values in the time series,
the easier it is to gradually cause the expected value to deviate
from the actual value. For periods with too many consecutive
missing dates, skipping these times can be considered in subse-
quent studies to improve detector performance. In addition, the
coefficient of determination (R2) is used to evaluate the accuracy
of the LSTM training set. The value of R2 ranges from 0 to 1. The

closer R2 is to 1, the better the model’s accuracy. The statistical
results show that the average R2 of the ascending track data is
0.90 [see Fig. 6(c)], and the average R2 of the descending track
data is 0.93 [see Fig. 6(d)], indicating the modeling accuracy of
LSTM is good and can meet the application requirements.

B. Seismic Deformation Detection

The value As in (5) is estimated concerning historical earth-
quakes in the surrounding area: the seismic deformation area
of the 2020 Mw 6.6 earthquake is much larger than 600 km2

[50]. Since the quake to be detected in this article is an Mw
6.7 earthquake, setting As in (5) to 600 km2 is sufficient to
detect this earthquake. The resolution of the LiCSAR product
is 100 × 100 m, the sampling parameter t is 30, and the
abnormal deformation pixel threshold is 67, according to (5).
The abnormal pixel detection is performed for moments that
exceed the anomalous deformation pixel threshold, and the pixel
statistics of the maximum anomalous objects for each moment of
the validation set are shown in Fig. 7. The moments not involved
in anomalous pixel detection are set to 0. In the ascending track
data, the abnormal deformation on January 17, 2022 exceeds
the threshold [see Fig. 7(a)]. In the descending track data, there
are five moments when the anomalous deformation exceeds the
threshold, namely June 20, 2021, July 26, 2021, August 7, 2021,
December 29, 2021, and January 10, 2022 [see Fig. 7(b)]. From
the previous analysis, it is clear that the detection results from
May 2021 to August 2021 are erroneous detections caused by
more missing descending track data and multiple KNN inter-
polations, so the results for these dates are excluded. Fig. 8
gives the final seismic deformation extraction results for the
two tracks. The results show that the seismic deformation at
the epicenter was successfully detected for both tracks, with
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Fig. 7. Pixel statistics of the maximum anomalous objects at each moment of the validation set. (a) Ascending track. (b) Descending track.

Fig. 8. Seismic deformation extraction results (line-of-sight direction). (a) January 17, 2022 (ascending track). (b) November 29, 2021 (descending track). (c)
January 10, 2022 (descending track).

the deformation range of −350 to 87 mm for the ascending
track [see Fig. 8(a)] and −127 to 132 mm for the descending
track [see Fig. 8(c)]. Since the inhomogeneous deformation
of the ground surface in the epicenter before the earthquake
is already very obvious. It can be found that November 29,
2021 (descending track) is recognized by the detector as seismic
deformation [see Fig. 8(b)]. This phenomenon suggests that the
seismic deformation may have been dominated by horizontal
movement and showed pre-earthquake symptoms before the
eruption (November 2021). The above analysis concludes that
the Mw 6.7 magnitude earthquake that occurred in Mengyuan
on January 8, 2022 should be a strike-slip fault-type earthquake
with apparent precursors.

The comparison experiments of ascending and descending
tracks show that LADSDIn can effectively detect the seismic
deformation caused by the Mw 6.7 magnitude earthquake on
January 8, 2022 at the door source. The downward trajectory
leads to false detection from May 2021 to August 2021 due
to missing data at some moments. This problem can be solved
by increasing the time interval, e.g., the training interval of the
data is changed from 12 days to 48 days. The detector marks
November 29, 2021 (descending track) as a seismic deformation,
presumably due to the small value of As and the significant
value of t for the descending track in the experiment. The Mw
6.7 magnitude earthquake in Mengyuan on January 8, 2022
was a strike-slip fault-type earthquake with a significant degree
of slip at the epicenter before the earthquake, leading to easy

misinterpretation by detectors as seismic deformation. In addi-
tion, most earthquakes are usually transient, and the “abnormal”
deformation is more pronounced than the “normal” deformation,
so the accuracy of LADSDIn is theoretically better. Overall,
the seismic deformation extraction results of both track data
are promising, indicating that the seismic deformation detection
results of LADSDIn are accurate.

C. Analysis of Time Series Anomalous Activity of the
Mengyuan Earthquake

To study the evolution of the Mw 6.7 magnitude earthquake
in Mengyuan on January 8, 2022 and to further elaborate the
anomaly detection mechanism of LADSDIn for a single pixel,
the time series deformation of the pixel at the source [ascend-
ing track, the location of the earthquake source is shown in
Fig. 3(c)] is extracted and analyzed in this article. Fig. 9(a)
shows the results of comparing the training set deformation
and the reconstructed deformation. From Fig. 9(a), it can be
found that the random fluctuations eliminated to some extent
by the reconstructed deformation can extract the direction of
events with seasonal trends. The reconstructed deformation
obtained based on LSTM can appropriately represent seasonal
deformation’s peak and trough changes. Fig. 9(b) shows the
correlation between the training set deformation and the model
deformation. R2 reaches 0.91, indicating that the model has
good feature learning ability and can simulate the deformation
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Fig. 9. Time series anomalous activity analysis of pixels at the source. (a) Training set deformation and model deformation. (b) Correlation between training set
deformation and model deformation. (c) Reconstruction error of training set. (d) Standard deviation distribution of reconstruction error of training set. (e) Validation
set deformation and prediction deformation. (f) Standard deviation distribution of reconstruction error of validation set. (g) MTInSAR deformation and LSTM
deformation. (h) Reconstruction error of MTInSAR deformation and LSTM deformation.

trend of the study area more thoroughly. Fig. 9(c) shows the
reconstruction error of the training set. From Fig. 9(d), it can
be seen that the reconstruction error of this pixel is mainly
concentrated in -8 to 8 mm. Fig. 9(d) shows the training set’s
standard deviation distribution of the reconstruction error. The
mean reconstruction error is 0.43 mm with a standard deviation
of 2.95 mm, as shown in Fig. 9(d). According to (4), the abnormal
deformation threshold for this pixel is 17.7 mm. Fig. 9(d) shows
the validation set deformation and the predicted deformation. It
can be found that the deformation trends of the validation set
deformation and the predicted deformation are almost the same
for most of the time until the deviation of the predicted defor-
mation from the validation set deformation starts to increase
before the Mw 6.7 earthquake in Mengyuan on January 8, 2022
and then exceeds the threshold of “normal.” This phenomenon
occurs because the deformation results in the “normal” mode
extracted by MTInSAR containing actual deformation signals,
atmospheric ones, and other harmful signals [51], [52]. However,
the deformation results monitored by MTInSAR after an earth-
quake contain seismic deformation, actual deformation (usually

seasonal deformation [48]), atmospheric, and other harmful
signals. There are few dates of earthquake occurrence in the
long-range data, leading the detector to learn data features that
do not contain earthquake deformation [see Fig. 9(g)]. When an
earthquake occurs, the deviation of the validation set from the
predicted value increases dramatically [see Fig. 9(f) and (h)],
and this “anomaly” is the “seismic deformation” caused by the
earthquake. According to (6), the deformation at the source of
the earthquake is −128.98 mm. From the previous analysis, we
can see that the seismic deformation results in this article are
theoretically closer to the actual seismic deformation because the
predicted values of LSTM are subtracted, which is equivalent to
further excluding the deformation results in the “normal mode”
(actual deformation, atmospheric, and other harmful signals).

D. Analysis of the Performance and Applicability of the
Detector

The experiment used a laptop computer with an AMD Ryzen
7 5800H CPU, 16 GB of running memory, and an NVIDIA
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GeForce RTX 3050 Laptop GPU with 4 GB of video memory
as the test machine. LADSDIn supports parallel processing in
chunks (see Fig. 2). Since the memory capacity of the test ma-
chine is only 4 GB, each copy of data is divided equally into eight
data blocks to perform parallel processing. The test machine
took about 67 min to process the ascending track data (6520
pixels) and about 55 min to process the descending track data
(5494 pixels). The current mainstream deep-learning desktop
computers have 24 GB of video memory (e.g., RTX 3090).
Suppose LADSDIn can be deployed on a computer with 24 GB
of video memory. In that case, each copy of data can be further
divided into 48 data blocks to perform parallel processing, which
is expected to reduce the processing time by about six times.

Traditional seismic deformation extraction requires the man-
ual acquisition of the time and location of the earthquake in
advance, followed by processing and analysis of the SAR data,
a step that still takes a lot of time. LADSDIn relies on LiCSAR
Big Data products, which can detect abnormal deformation
in major tectonic zones worldwide and automatically identify
and extract seismic deformation. If LADSDIn is deployed on
a more powerful server, it may take only a few minutes to
examine a set of Sentienl-1 data covering an area of about
100 000 km2. LADSDIn learns the historical characteristics of
the data to predict the future, and patterns that deviate from the
“expected” are considered anomalies. This novel design model
allows LADSDIn to be applied to landslide, collapse, mining,
and other scenarios for anomalous deformation detection after
modification and parameter debugging.

E. Supplementary Experiments

The Delingha region experienced an earthquake of magnitude
Mw 5.6 on January 23, 2022 [see Fig. 3(c)] and thus can
be used to test LADSDIn further. This article uses scripts to
automatically download and generate LiCSAR descending track
deformation maps for the Delingha region [42]. The time range
of LiCSAR descending track deformation maps is January 12,
2019 to January 2, with 90 deformation maps. The data for May
12, 2019, May 24, 2019, July 23, 2019, and July 24, 2021 are
missing, so the missing deformation maps are automatically
generated using KNN. Experimentally, 85% of the data were
selected as the training set, and the remaining data were used as
the validation set. Namely, the deformation maps from January
12, 2019 to August 17, 2021 were used as the training set,
and the deformation maps from August 29, 2021 to February
1, 2022 were used as the validation set. Zhao et al. [53] showed
that the epicenter deformation area of the Mw 5.8 earthquake
was 2–4 km2, the epicenter deformation was about 0.3 m, and
the normal deformation away from the epicenter was about
0.1 m. The epicenter deformation was nearly three times the
normal deformation. In this section, we want to detect seismic
deformation in the Delingha region greater than Mw 5.6, so we
set σ in (4) to 3, b inAs to 2 km2, the sampling parameter t to 10,
and the abnormal deformation pixel threshold is 20 according
to (5). The configuration environment of the test machine is the
same as the previous experiment.

After the data cleaning module, the temporal deformation
of 5021 pixels was successfully extracted. The results of the

detection in the Delingha region are given in Fig. 10, where the
detector took about 49 min to process the descending orbit data
(5021 pixels). As Fig. 10(a), the detector successfully detected
the seismic deformation of the Mw 5.6 earthquake in the Del-
ingha region after January 23, 2022 (February 1, 2022) and the
seismic-associated abnormal deformation signals (September
22, 2021 to November 21, 2021). Fig. 10(b) shows the coefficient
of determination statistics for the training set of the Delingha
experiment. The average R2 of the descending track data reaches
0.78, indicating that the modeling accuracy of LADSDIn is well.
In addition, by comparing Figs. 10(a), (c), and (d), a higher num-
ber of anomalous deformation pixels were detected in the study
area around October 4, 2021, and these anomalous deformation
pixels mostly showed a sporadic distribution. On October 4,
2021, the detector detected 100 anomalous deformation pixels
from the study area [see Fig. 10(c)]. It detected a large area
of abnormal deformation in the northeastern part of the study
area [see Fig. 10(a)], probably caused by the pre-earthquake
plate motion and the influence of lake water. On July 9, 2021,
the anomalous deformation pixels in the study area stabilized
until an Mw 5.6 earthquake occurred in the Delingha region on
January 23, 2022 [see Fig. 10(d)].

The earthquake of Mw 5.6 magnitude in Delingha occurred
on January 23, 2022. Supplementary experiments showed that
the detector successfully detected the seismic-associated abnor-
mal deformation signals before the earthquake and the seismic
deformation after the quake. The analysis in this section demon-
strates that LADSDIn can be successfully applied to another
earthquake.

IV. DISCUSSION

The calculation of seismic deformation fields using DInSAR
is a post-earthquake, passive, seismic event-related method.
When an earthquake occurs, professional seismic stations use
water level meters, seismometers, electromagnetic wave meters,
and other equipment to discover the location of the earthquake
source. Based on the source location information released by
seismic stations, researchers use DInSAR technology and SAR
images taken by satellites after the earthquake to calculate the
ground deformation at the source. Then, researchers estimate
and analyze the geometric parameters of the earthquake based
on the ground deformation. Therefore, the calculation of ground
deformation using DInSAR is usually a post-earthquake effort.
Moreover, the DInSAR method is more challenging to achieve
the work of abnormal deformation detection before an earth-
quake without manual operation.

The method in this article is an active, automatic learning,
event-independent anomaly detection. The way in this article
can automatically detect anomalous deformation and seismic-
associated abnormal deformation signals of LiCSAR data in the
tectonic zone. LiCSAR products are produced using SBASIn-
SAR technology and Sentinel-1 SAR data. The products include
geocoded unwrapped interferograms and coherence estimates,
and researchers can use scripts to automatically download un-
wrapped interferograms and convert unwrapped interferograms
to deformation maps. The advent of LiCSAR Big Data (see
Fig. 1) allows us to quickly understand the deformation trends
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Fig. 10. LADSDIn-based detection results for the Delingha area. (a) Anomalous deformation detection results of the validation set. (b) Determination coefficient
statistics of the training set. (c) Anomalous deformation counts for each moment of the validation set. (d) Pixel statistics of the maximum anomalous objects at
each moment of the validation set.

in the study area by analyzing historical data. Based on the
LiCSAR product, LADSDIn predicts future deformations by
learning the deformation characteristics of a long time series
of each image element in the study area, and deformations
that deviate from the “prediction” are considered abnormal
by the detector. Finally, based on the spatial anomalies of
seismic deformation, this article uses the “connection” method
to detect anomalous elements on a single deformation map
and determine whether they are seismic-associated abnormal
deformation signals. Therefore, the novelties of this article are
the automatic detection of anomalous deformation, automatic
detection of seismic-associated abnormal deformation signals,
and automatic separation of seismic deformation. Moreover, the
focus of this article is more on preseismic data analysis.

In the area where the ground deformation shows periodic
changes [see Fig. 2(c)], the seismic deformation extracted by
the method in this article will be theoretically closer to the
actual seismic deformation than the DInSAR deformation. The
DInSAR method is based on the deformation field calculated
from two SAR images taken by the satellite before and after
the earthquake. This way ignores the deformation trend of the
study area itself. As Fig. 2(c), since the ground deformation of
the pixel shows periodic changes, if there is no earthquake, we
can predict the latest deformation trend based on the historical
deformation. However, due to an earthquake’s occurrence, the
earthquake’s ground deformation masks the pixel’s deformation
trend, resulting in the seismic deformation calculated by DIn-
SAR being smaller than the actual seismic deformation. If we
use (6) for the calculation, the above problem can be somewhat
avoided.

The time of the Mengyuan earthquake is January 8, 2022.
The detection results in this article show that the detector
successfully detected seismic-associated abnormal deformation

signals before the quake. This work may help the automation
and refinement study of seismic activities in China. Mengyuan
Mw 6.7 earthquake on January 8, 2022, severely damaged some
sections of the Lanzhou–Xinjiang high-speed railway, damaging
several tunnels and bridges and interrupting high-speed rail-
way traffic. According to the automatic detection results of
the detector (see Figs. 4 and 5), it can be found that seismic-
associated abnormal deformation signals have been detected
in the gate–source region from November 30, 2021. China is
an earthquake-prone country with many seismic zones and a
high frequency of earthquakes. However, the current research
on earthquake precursors is still unclear, and further research is
necessary for ground deformation as the most direct and obvious
phenomenon of earthquake occurrence. Therefore, this article’s
method and detection results may provide sample references for
automated and refined studies of seismic activity. In addition, the
method in this article not only extracts the historical deformation
of the long time series in the study area but also detects the
abnormal changes in the historical deformation. The above work
can be more convenient for researchers further to analyze the
surface activity characteristics before the earthquake.

The local SBAS InSAR method can be used to obtain defor-
mation maps of time series based on unwrapped interferograms
and detecting abnormal deformation, but acquiring unwrapped
interferograms requires time and effort. LiCSAR is a product
processed by a supercomputer, which contains unwrapped in-
terferograms and can help researchers save time by eliminating
the need for orbital correction, image registration, interferogram
generation, interferogram filtering, and interferogram unwrap-
ping, allowing them to focus more on the application of research.

LiCSAR products cover China’s major seismic structural
regions, providing convenience for the rapid application of the
method proposed in this article in seismic structural regions.
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Therefore, it is recommended to prioritize the use of methods
based on LiCSAR products, which can quickly obtain long time
series deformation data. By studying the deformation maps of
long time series, pre-earthquake surface activity anomalies can
be detected and further separate real earthquake deformation.

For the full process localization scenario of extracting point
targets with large abnormal changes quickly, in future research,
it may be useful to consider combining SBAS InSAR with other
alternative algorithms. By analyzing the phase changes of inter-
ferogram pairs paired at different times, abnormal information
can be extracted.

V. CONCLUSION

Manual analysis of LiCSAR deformation data in tectonic
zones and timely detection of pre-earthquake anomalous activity
are very time-consuming. To solve this problem, a (LADSDIn)
is constructed in this article. The detector predicts future defor-
mations by systematically learning the historical characteristics
of the data. Pixels deviating from the “predicted” deformation
are considered “abnormal” deformations. The detector learns the
unique numerical characteristics of the seismic deformation to
determine whether the pixels of the “anomalous deformation”
match the seismic characteristics and then separates the seis-
mic deformation. LADSDIn consists of three main modules,
i.e., data cleaning module, anomalous deformation detection
module, and seismic deformation detection module. The data
cleaning module is used to uniformly sample the LiCSAR
deformation results and determine whether there are missing
values every 12 days while interpolating the missing values
using the KNN algorithm. The anomalous deformation detection
module uses the LSTM anomaly detection technique to model
the MTInSAR time series deformation data and determine the
anomalous deformation by calculating the reconstruction error.
The seismic deformation detection module improves the accu-
racy of seismic deformation detection by examining anomalous
deformation pixels in time and space based on the temporal and
spatial outlier characteristics of seismic deformation and then
finding the natural anomalies caused by seismic deformation.

January 8, 2022, the Mengyuan earthquake in China shows
that seismic-associated abnormal deformation signals were
identified. The results show that the deformation range of the
ascending track is −350 to 87 mm, and the deformation range
of the descending track is −127 to 132 mm. The detector
successfully detected the “anomalous deformation” signs before
the earthquake (November 2021). The comparison analysis indi-
cates that the seismic deformation may be dominated by horizon-
tal movement, so it is speculated that the Mw 6.7 earthquake that
occurred in Mengyuan on January 8, 2022 should be a slip-fault
type earthquake with obvious ground deformation precursors.

Compared with traditional seismic deformation calculation
methods, the seismic deformation results in this article are
theoretically closer to the actual seismic deformation because
the predicted values of LSTM are subtracted, which is equivalent
to further excluding the deformation results in “normal mode”
(actual deformation, atmospheric, and other harmful signals). In
addition, LADSDIn supports parallel processing in chunks, and
it may take only a few minutes to analyze a set of Sentienl-1

data covering an area of about 100 000 km2 if LADSDIn is
deployed on a more powerful server. This work is significant for
the application and study of the refinement of solid earth and
natural hazards.

Since LADSDIn learns historical data characteristics to make
predictions, patterns that deviate from “expectations” are con-
sidered anomalies. This novel design model allows LADSDIn
to be applied to landslide, collapse, mining, and other scenarios
for anomalous deformation detection after modification and
parameter debugging.
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