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Remote Sensing Image Retrieval by Deep Attention
Hashing With Distance-Adaptive Ranking

Yichao Zhang ", Xiangtao Zheng

Abstract—With the joint advancement of numerous related fields
of remote sensing, the amount of remote sensing data is growing
exponentially. As an essential remote sensing Big Data manage-
ment technique, content-based remote sensing image retrieval has
attracted more and more attention. A novel deep attention hash-
ing with distance-adaptive ranking (DAH) is proposed for remote
sensing image retrieval in this article. First, a channel-spatial joint
attention mechanism is employed for feature extraction of remote
sensing images to make the proposed DAH method focus more
on the critical details of the remote sensing images and suppress
irrelevant regional responses. Second, a novel balanced pairwise
weighted loss function is proposed to enable discrete hash codes
to participate in neural network training, which contains pairwise
weighted similarity loss, classification loss, and quantization loss.
The pairwise weighted similarity loss is designed to decrease the
impact of the imbalance of positive and negative sample pairs.
The classification loss and quantization loss are added to the loss
function to decrease background interference and information loss
during the quantization phase, respectively. Finally, a distance-
adaptive ranking strategy with category-weighted Hamming dis-
tance is presented in the retrieval phase to utilize the category
probability information fully. Experiments on benchmark datasets
compared with state-of-the-art methods demonstrate the effective-
ness of the proposed DAH method.

Index Terms—Channel-spatial joint attention, deep hashing,
distance-adaptive ranking, remote sensing image retrieval.

1. INTRODUCTION

Earth observation, there has been a meteoric rise in the
volume of remote sensing data [1]. To manage large amounts of
remote sensing image data, content-based remote sensing image
retrieval (CBRSIR) have attracted considerable attention [2].
The main purpose of CBRSIR is to seek the desiring remote
sensing images from the massive remote sensing images, which
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is convenient for users to collect and manage specific remote
sensing images [3], [4].

Recently, hashing methods are widely used in CBRSIR tasks
due to low storage requirements and efficient retrieval compu-
tation [5]. In general, hashing method for remote sensing image
retrieval consists of three main parts: feature extraction, hash
code learning, and retrieval ranking.

1) Remote sensing image feature extraction is to extract
discriminative features of remote sensing images with
semantic information. In the initial periods of remote
sensing image feature extraction, the hand-crafted features
were the primary descriptions built by texture, color, or
shape of remote sensing images. Li et al. [6] proposed an
improved context-sensitive Bayesian network for remote
sensing image retrieval, which uses the surrounding fea-
tures in addition to its own relevant features to explore
the semantic information of the image. Sebai et al. [7]
proposed a dual-tree complex wavelet transform (DT-
CWT) for improving remote sensing image retrieval’s
performance, which processes different types of features
at the same time. Recently, feature extraction has pro-
gressed from hand-crafted feature extraction to deep fea-
ture extraction, which has improved discrimination [8],
[9]. Liu et al. [10] proposed a similarity-based Siamese
convolutional neural networks (SBS-CNN) for remote
sensing image retrieval, which implements unsupervised
training by deep transfer learning. Roy et al. [11] proposed
a deep metric-learning-based hashing for remote sensing
image retrieval, which utilized a pretrained convolutional
neural networks (CNNs) for intermediate feature extrac-
tion. Although remote sensing image feature extraction
makes rapid progress, it is still susceptible to background
information interference, and the extracted deep features
are difficult to focus on discriminative visual information.
This problem was not addressed very effectively in most
methods.

2) Hash code learning maps remote sensing images into bi-
nary hash codes for efficient retrieval and convenient stor-
age. Pairwise hash code learning has been demonstrated
to be an efficient method for learning hash codes [12],
[13]. Li et al. [12] proposed a pairwise hash code learning
framework for image retrieval, which uses image pairs
as input and learns hash code by pairwise label and loss
function. On the basis of [12], Li et al. [13] introduced
discrete hash code learning into the pairwise hashing
framework, which enables the discrete hash codes to
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Fig. 1. Problems faced by content-based remote sensing image retrieval.
(a) Main objects representing the semantic information of the images are not
prominent. (b) Locations of the objects are scattered. (c) Differences between
certain categories are small.

participate in training directly for reducing quantization
loss. Li et al. [14] proposed a supervised hashing net-
work for remote sensing image retrieval, which introduces
pairwise similarity measurement and binary quantization
loss in hash code learning of remote sensing images.
However, because of the randomness of sampling, the
number of positive and negative sample pairs is prone to
imbalance throughout the training process. This imbalance
that impacts the precision of this class of methods is always
ignored.

3) Retrieval ranking stage uses appropriate distance measure-
ments to access the similarity between the query image
and database, such as Hamming distance [15]. Bao and
Guo [16] implemented comparative experiments of eight
different similarity measurements for remote sensing im-
age retrieval. The hashing method retrieves the image with
the lowest Hamming distance relative to the query image,
which takes linear time [17]. The differences between
features are not only reflected in the differences in the
values of the feature vectors, but also in the overall cate-
gory differences. However, in the retrieval ranking phase
of most methods, the learned category information is not
fully utilized.

Moreover, for developing a deep hashing network that fulfills
the characteristics of remote sensing images, it is required to
address the issues that now plague content-based remote sensing
image retrieval.

1) Asshown in Fig. 1(a), the spatial proportion of the object
is small in some remote sensing images, and the object
features that represent the semantic information of remote
sensing images are not prominent and easily influenced
by irrelevant background information.

2) The positions of objects in some remote sensing images
are scattered, and it is difficult to concentrate on informa-
tion from several local regions simultaneously during the
feature extraction process, which weakens the semantic
expression of core features and hence affects retrieval
accuracy. This situation can be observed in Fig. 1(b).
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3) In the examples shown in Fig. 1(c), the remote sensing
image of “bridge” contains a vast region of the river, which
is readily affected by the remote sensing image of “river”
during retrieval. This interference also impairs retrieval
performance.

To address the problems and fit the characteristics of remote
sensing images mentioned previously, a novel deep attention
hashing with distance-adaptive ranking (DAH) is proposed for
remote sensing image retrieval. Attention mechanism can effec-
tively guide feature extraction to pay more attention to valuable
information [18]. To suppress unnecessary regional responses, a
channel-spatial joint attention mechanism is employed for rep-
resentative feature extraction from the complex remote sensing
images, which makes the proposed DAH focus more on the
important features of the remote sensing images and suppress
unnecessary regional responses. A balanced pairwise weighted
loss function is proposed for high-quality hash code learning.
For the problem of imbalance in the number of positive and
negative sample pairs in pairwise hash code learning, a pairwise
weighted similarity loss is employed in the loss function. The
classification loss and quantization loss are added to the loss
function to decrease background interference and information
loss in the quantization process. Finally, a distance-adaptive
ranking strategy is presented to utilize the category probability
information with Hamming distance, which further improves
the performance of the proposed DAH method in the retrieval
phase. Experiments on benchmark datasets compared with state-
of-the-art methods demonstrate the effectiveness of the proposed
method.

The remaining sections of this article are organized as follows.
Section II briefly reviews and summarizes related work. The pro-
posed DAH method is outlined in full in Section III. Section IV
shows the performance of the proposed DAH method on two
benchmark datasets and the analysis of the experimental results.
Finally, Section V concludes this article.

II. RELATED WORK

The objective of remote sensing image retrieval is to find
the needed remote sensing images amid huge quantities of
remote sensing image data, which are grouped as real-valued
and hashing method. The difference between processes of the
typical real-valued and hashing remote sensing image retrieval
method is shown in Fig. 2. The main difference is the feature
used to calculate the similarity between images. The real-valued
method uses real-valued features for retrieval. The hashing
method incorporates hash code learning into the workflow and
employs the learned hash codes for retrieval [19]. The benefit
of the hashing method is that the hash code requires less space
for storage, and it is more efficient to evaluate image similarity
using hash codes. This section will discuss the related work
in the aforementioned two categories: real-valued and hashing
method.

A. Real-Valued Method for Remote Sensing Image Retrieval

As mentioned before, real-valued method maps images to
real-valued features and then uses certain similarity measure-
ment to perform retrieval. Depending on whether or not the
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Fig. 2.
method for remote sensing image retrieval.

feature extraction method has a deep network structure, real-
valued methods can be further divided into two categories: real-
valued method without deep learning and real-valued method
with deep learning.

1) Real-Valued Method Without Deep Learning: As hand-
crafted features widely used in computer vision, texture, color,
and shape features are also used for low-level feature represen-
tation of remote sensing images. Wang et al. [20] proposed an
image scene semantic matching model for remote sensing image
retrieval, which utilizes multiple low-level information from
remote sensing images. Maet al. [21] designed a novel ensemble
neural networks (ENNs) with low-level feature extraction and
subfeature selection, which takes advantage of artificial neural
networks to combine low-level features better. Wang et al. [22]
proposed a graph-based method with a three-layer structure,
which combines the advantages of query expansion and the
integration of holistic and local information. Sukhia et al. [23]
proposed a remote sensing image retrieval method with a novel
local ternary pattern descriptor, which generates upper and lower
texture patches for the histogram representation. Byju et al. [24]
proposed a content-based remote sensing image retrieval system
utilizing a unique coarse-to-fine retrieval technique, which is
unsupervised and does not need complete image decoding.

2) Real-Valued Method With Deep Learning: Deep learning
models represented by CNNs are able to capture more funda-
mental features of images [25]. There have been many methods
to represent the visual content of remote sensing image images
with high-level features output from deep learning models.
Imbriaco et al. [26] designed a global descriptor for remote
sensing image retrieval, which combines local convolutional fea-
tures via the vector of locally aggregated descriptors (VLAD).
Chaudhuri et al. [27] proposed a Siamese graph convolution
network (SGCN) to better retrieve remote sensing image, which
learns features by measuring the pairwise similarity of graphs.
Fan et al. [28] proposed a novel distribution consistency loss
for remote sensing image retrieval method based on deep metric
learning, which leads the network to extract more meaningful
information quickly. Liu et al. [29] proposed an eagle-eyed
multitask CNN for center-metric learning, similarity distribution

Difference between processes of the typical real-valued and hashing method. (a) Real-valued method for remote sensing image retrieval. (b) Hashing

learning and aerial scene classification, which has ability to
distinguish subtle differences between remote sensing images.

B. Hashing Method for Remote Sensing Image Retrieval

Hashing method maps remote sensing images to hash code
and accesses the similarity between hash codes to perform
retrieval [30]. As the review of real-valued methods, hashing
methods are also divided into two categories: hashing method
without deep learning and hashing method with deep learning.

1) Hashing Method Without Deep Learning: In the initial
periods of hashing methods for remote sensing image retrieval,
hand-crafted features were widely utilized to extract features.
Demir and Bruzzone [31] leveraged two kernel-based hashing
methods on remote sensing image retrieval, which uses labeled
and unlabeled images for encoding hash code in kernel space,
respectively. Li and Ren [32] proposed a partial randomness
hashing (PRH) for remote sensing image retrieval, which makes
the learning of hash functions more efficient due to the random
parameters. Fernandez-Beltran et al. [33] proposed a novel
probabilistic latent Semantic hashing (pLSH) for hash function
construction of remote sensing images, which generates hash
code with hidden semantic information by probabilistic topic
model. Ye et al. [34] proposed a hashing retrieval framework for
remote sensing images, which maps multiple feature descriptors
into compact binary hash codes. Reato et al. [35] proposed
a primitive cluster sensitive hashing for unsupervised remote
sensing image retrieval, which employs multiple hash codes in
hash function construction and matching phase.

2) Hashing Method With Deep Learning: Due to the power-
ful feature extraction capabilities demonstrated by deep learn-
ing, more and more work applies it to hashing methods for
remote sensing image retrieval. Song et al. [36] proposed a
deep hashing CNN (DHCNN), which employs the CNN to
extract high-level features for remote sensing image retrieval.
Han et al. [37] proposed a cohesion intensive deep hash-
ing (CIDH) method with a residual hash net, which makes
hash codes more similar to each other within the same class.
Liu et al. [38] proposed a deep hashing model with generative
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Framework of the proposed DAH method. First, deep features are extracted from pairwise randomly sampled remote sensing images via five convolution

blocks and channel-spatial joint attention. Second, after reducing the dimension of the deep feature with the full-connected layer, the obtained continuous features
are quantized to the hash codes with the values of +1 and —1 via the hash layer. Finally, the loss function proposed in this article is employed to optimize the

discrete hash code.

adversarial networks (GAN), which designed a unique loss
function for the generator. Li et al. [39] proposed a quantized
deep learning to hash (QDLH) model, which reduces the com-
putational burden of deep hash code learning. Tang et al. [40]
proposed a novel deep hashing network, which implements the
hash code learning of remote sensing in a few-shot learning way.

III. PROPOSED METHOD

The proposed DAH method is divided into the following three
parts: 1) feature extraction with channel-spatial joint attention,
2) hash code learning with balanced pairwise weighted loss,
and 3) distance-adaptive ranking. The overall framework of the
proposed DAH method is shown in Fig. 3.

A. Channel-Spatial Joint Attention

The proposed DAH method employs a channel-spatial joint
attention mechanism to extract representative features from
the complicated remote sensing image information [41]. Both
channel attention and spatial attention are leveraged in a united
framework. The channel attention module produces the channel
attention map by compressing the spatial dimension of the
input features, which can explore the relative importance among
different channels. The spatial attention module produces the
spatial attention map by compressing the channel dimension of
the input features, which can explore the relative importance
among different spatial positions of the images [42]. Experi-
ments designed in [41] demonstrate that the connection with
channel attention first and then spatial attention works better.

Given a convolutional feature g € RHXWXC 44 input, the
maximum pooling and average pooling are performed on each
channel separately for the input feature block to obtain the
maximum pooling features g} and average pooling features
with a constant number of channels. The summed features

Avg
Yeh
Max

of g4** and gﬁlvg are scaled using a multilayer perceptron, and
the activation output is performed using the Sigmoid function
to obtain the channel attention feature map Ag,. The channel

attention map Ay, is computed as

g = Max™(g)
gan’® = Max™(g)
Ach = oc(Wa (W1 (g™ + gﬁhvg)) (D

where Max“h signifies the maximum pooling operation on each
channel, Avg®h denotes the average pooling operation on each
channel, W; and W, signify the weight parameters in the mul-
tilayer perceptron, and o(-) means Sigmoid function.

Then, the channel attention map A, is done the dot product
with the input features g to obtain the intermediate features gy,
as

2

The spatial attention module performs maximum pooling and
average pooling for all channel values at each spatial position of
the intermediate feature g, to obtain maximum pooling feature

. A .
gi\ga" and average pooling feature g . Then, the maximum
Max

pooling feature gg,** and average pooling feature gé}vg are con-
catenated in the channel dimension. A convolutional layer with
a convolutional kernel size of 1 is used for the dimensionality
reduction of the concatenated feature. The reduced-dimensional
features are calculated by the Sigmoid function to obtain the
spatial attention map Ag,. The calculation of Ay is

9eh = Ach 9.

g™ = Max® (gen)
958 = AVE™ (gen)

Ay = g(Conv(Cat(gsgax7 gs’}vg))) G)

where Max™ indicates the maximum pooling at each spatial
location, Avg®® means the mean pooling operation at each spatial
location, Conv(-) denotes the convolution operation, and Cat(-)
is the concatenate operation.

Finally, the spatial attention map A, is done with the dot
product with the intermediate feature g, to obtain the output
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features ggp:

9sp = Asp * Geh- “4)

B. Hash Code Learning With Balanced Pairwise Weighted
Loss

After acquiring the feature gy, from the attention block, the
hash feature h € R¥ can be obtained by fully connected layers,
where K denotes the hash code length. The hash feature b € R
can be expressed as follows:

h = tanh (F. (gsp)) )

where F represents the fully connected layer, the tanh activa-
tion function maps the vector value between —1 and 1.

Given a pair of remote sensing images x; and x;, s;; rep-
resents the similarity label between x; and x;. If the images x;
and x; belong to the same category, s;; = 1; otherwise, s;; = 0.
If two remote sensing images are from the same category, the
similarity between hash features h; and h; should be raised
consistently during the network training process, and vice versa.
The inner product can be used to measure the similarity between
two different hash features, which is written as I;; = (h;, h;).
The relationship between similarity labels and hash feature
similarity can be defined using the logistic regression model
in binary classification as follows:

{P(Sz’j =1] I’ij) = U(Iij) (6)
P(sij =0]1;) =1—0(l)

where o ([;;) = 1<‘r6+1‘1 The more similar the hash features, the
more likely they belong to the same category, and vice versa.
Equation (6) can be transformed as the cross-entropy loss with

maximum likelihood estimation as follows:

Liross =— Z [Sij log (o (1i5))+(1 — Sij) log (1 — o (1i5))]

SUEQ

= Z (log (1 + BI”) — Siinj) (7)

Sij eQ

where () represents the set of similarity labels, and the image
pairs are randomly sampled. However, the similar and dissim-
ilar pairs may be imbalanced, which will cause the neglect of
information from quantitatively inferior sample pairs. Inspired
by the motivation of Focal Loss [43], a weight coefficient w;; is
proposed to reduce this imbalance.

o flal/ 1.

v U9l 192,
where (2, represents the set of labels of similar samples, {25 rep-
resents the set of labels of dissimilar samples, and | - | represents

the number of elements in the set.
Equation (7) can be transformed as

L cross = Z Wy (log (1 + eI”) — Siinj) . 9

5i;€EQ

S¢j=1
Sij:O

(®)

The weighted cross-entropy loss is utilized to optimize the
similarity distance between hash features. The smaller the
distance of the hash codes between similar images, the greater
the distance of the hash codes between dissimilar images.
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The purpose of the hash layer is to make discrete hash codes
participate in the training process, directly train the classification
loss for the hash code, and further reduce the information loss
between the hash feature and the hash code. The hash features
of all remote sensing images in the training set are quantified
into hash codes using the Sign function

B = sign(H) (10)

where B denotes the hash code, and sign(+) represents the Sign
function that quantizes continuous features into a hash code
with values of +1 or —1. The quantization loss is constructed to
make the continuous features fit the hash code and reduce the
information loss in the quantization process.

1 5
Lq= N Z i — bi||3
=1

where IV represents the number of images in the training set.

The classification loss can be used to judge whether the
generated hash code can better distinguish different types of
data, which is constructed using the linear Softmax classification
function as

Y

0

1 N C e ]Tbn
Lejass = _N ZZl{yn :j}logw
n=1j=1 i=1¢"

where 6 denotes the parameter in the linear classifier and C
denotes the number of categories in the remote sensing image.
When the values of y™ and j are equal, the value of 1{y" = j}
is 1, otherwise it is O.

The overall loss function is

12)

Liotat = Lay—cross + an + ﬁLclas& (13)

C. Distance-Adaptive Ranking

A query set of remote sensing images is denoted as () =
{g; };-V:ql, where N, represents the number of query images and

the corresponding hash code is denoted as B, = {bg}jv:ql In
the retrieval stage, the original Hamming distance is generally
used to measure the similarity between the images from the
database and the query image, and the retrieved images are
ranked according to the corresponding Hamming distance. The
original Hamming distance formula between hash codes is

Dy (4) = 5 (K = (#,5:)) (14)
where K denotes the hash code length.

To make better use of the model’s learned category infor-
mation and to reduce the distance between images with the
same potential category, a distance-adaptive ranking strategy
is proposed in the retrieval stage. In the distance-adaptive rank-
ing strategy, the Hamming distance is replaced with a novel
category-weighted distance. The calculation of the category-
weighted distance is shown in Fig. 4. After the prediction of
the linear Softmax classifier, the most probable category C; of
the query image ¢; is obtained. The predicted probability of
the image z; from the retrieval database on the most probable
category C; of the query image is denoted as p;. The category
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probability weight W, can be described as

W, = el Pi. (15)

When image z; in the retrieval database has a larger proba-
bility value in the potential category C, of the query image ¢;,
the adaptive weight for the Hamming distance is reduced, and
vice versa. The Hamming distance with the category probability
weight is

D (b4,b;) = We x Dy, (b%,b;) . (16)

It makes images with the same potential category as the query
image closer together, thus ranking higher.

IV. EXPERIMENTS
A. Implementation Settings

The proposed DAH method is implemented by the Py-
Torch deep learning framework with GeForce GTX TITAN X.
Stochastic Gradient Descent is employed to update the param-
eters throughout the training phase. The learning rate is set to
0.01, the momentum to 0.9, and the weight decay to 0.0005. The
size of each training batch is set to 36, and the total number of
epochs is set to 30.

B. Datasets

To evaluate the performance of the proposed DAH method
and other comparative methods, experiments are conducted on
two popular remote sensing image datasets: AID and PatternNet.

1) AID Remote Sensing Image Dataset [44]: AID remote
sensing image dataset contains 30 categories, including airports,
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farms, roads, rivers, etc. The number of images in each category
ranges from 220 to 420, with 10 000 remote sensing images.

2) PatternNet Remote Sensing Image Dataset [45]: Pattern-
Net remote sensing image dataset contains 38 categories, and
each category contains 800 remote sensing images, a total of
30 400 images. The spatial resolution of the images is between
0.062 and 4.693 m, and the categories cover football fields, golf
courses, airports, parks, etc.

For the aforementioned datasets, 80% of the remote sensing
images of each category are randomly sampled as the training
set, and the reminder 20% are used as the testing set.

C. Quantitative Evaluation Metrics

Two quantitative evaluation metrics are utilized in the exper-
iments to evaluate the performance of remote sensing image
retrieval.

1) Mean Average Precision (mAP): mAP is used to assess
overall retrieval performance. The greater the mAP value, the
higher the retrieval performance.

2) Average Normalized Modified Retrieval Rank: ANMRR
is to measure the ranking of the correct images in the retrieval
results. The lower the ANMRR, the higher the correct image
ranks and the better the retrieval performance.

D. Ablation Analysis

To verify the effectiveness of each part, the ablation analysis is
implemented on the AID and PatternNet datasets. DAH-A repre-
sents a variation of DAH without the attention mechanism mod-
ule, and DAH-D is another version without distance-adaptive
ranking. The ablation experimental results on the AID dataset are
shown in Table 1. The bolded font indicates the optimal results
of the two metrics for different hash code lengths.

As can be seen from Table I, when the length of the hash
codes is short, the retrieval performance by using the attention
module is relatively improved. For example, with the 16-bit hash
code, using the attention module improves the mAP by nearly
6% compared with the version without the attention module.
However, with the increase of hash code length, the mAP will
decrease by about 1% to 2%, and the value of ANMRR gets
bigger when the attention module is not used. In the retrieval
phase, if only the original Hamming distance is used to measure
the image similarity, the mAP will decrease about 2% to 3%.

The ablation experimental results on the PatternNet dataset are
shown in Table II. The bolded font indicates the optimal results
of the two metrics for different hash code lengths. Similar to the
results of the ablation experiments conducted on the AID dataset,
a more significant improvement in the mAP can be achieved
when using the attention module in the case of lower length
hash codes. The mAP decreases by about 2% to 4% without
using the attention module. In the retrieval phase, if the category
information is not used as the weight of Hamming distance, the
mAP decreases by about 1%, and the value of ANMRR gets
bigger. The aforementioned ablation experiments demonstrate
the effectiveness of each module of the proposed DAH model.

E. Comparative Experimental Results on Benchmark Datasets

To verify the effectiveness of the proposed DAH method,
five deep hashing retrieval models are selected for comparative
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TABLE I
ABLATION EXPERIMENTS ON AID DATASET

Methods MAP(%) ANMRR(%)
16bit  32bit  48bit  64bit | 16bit 32bit 48bit 64bit
DAH-A 7647 8531 8695 86.83 | 12.69 7.61 6.72 6.72
DAH-D 80.81 83.87 8558 8564 | 990 8.07 6.86 6.82
DAH 82.26 86.10 87.38 87.80 | 928 735 641 6.24
The significance of bold values is optimal experimental result.
TABLE I
ABLATION EXPERIMENTS ON PATTERNNET DATASET
MAP(%) ANMRR (%)
Methods e —37bic 480t 64bit | 1601t 32bit  48bit  64bit
DAH-A 9147 9278 96.17 95.67 | 537 4.82 258 299
DAH-D 9554 9341 96.79 97.64 | 277 419 204 1.52
DAH 96.12 94.09 97.28 9796 | 247 393 181 1.39
The significance of bold values is optimal experimental result.
TABLE III
COMPARATIVE EXPERIMENTAL RESULTS ON THE AID DATASET
mAP(%) ANMRR (%)
Methods 16bit  32bit _ 48bit  64bit | 16bit  32bit _ 48bit _ 64bit
DHN [46] 5998 66.81 67.48 66.82 | 22.75 19.04 18.72 19.03
DPSH [12] 5773 7223 72.80 73.22 | 25.80 17.44 17.08 16.96
HashNet [47] 6594 7637 77.65 78.13 | 1992 14.01 13.30 12.99
DSDH [13] 5547 6642 69.77 7137 | 2893 22.12 19.37 18.47
GreedyHash [48] 75.19 81.73 83.26 84.61 | 1543 10.56 3.56 792
DHNNs-L2 [14]  78.28 82.61 83.36 84.21 | 10.57 9.17 8.92 8.73
DAH 82.26 86.10 87.38 87.80 | 928 735 641 6.24

The significance of bold values is optimal experimental result.

experiments: deep hashing network (DHN) [46], deep pairwise
supervised hashing (DPSH) [12], HashNet [47], deep supervised
discrete hashing (DSDH) [13], GreedyHash [48], and deep
hashing neural networks (DHNNSs) [14]. Both the proposed
DAH method and comparative methods use pairwise similarity
to extract deep features and learn hash code. And they are both
hashing-based image retrieval methods. However, the proposed
DAH method employs a channel-spatial joint attention mod-
ule in the process of remote sensing image feature extraction,
and incorporates the category probabilistic information into
the calculation of the Hamming distance by distance-adaptive
ranking to further enhance the retrieval performance. In addition,
the proposed DAH method considers the imbalance of sample
pairs in the pairwise hash code learning phase and balanced
pairwise weighted loss is designed to reduce this imbalance.
The open-source codes of DHN, DPSH, HashNet, and DSDH
methods are used for comparative experiments on the AID
and PatternNet datasets. The reproduction code of DHNNs-
L2 method is also implemented on the AID and PatternNet
datasets.

1) Comparative Experimental Results on AID Dataset: The
comparative experimental results on the AID dataset are shown
in Table III. The bolded font indicates the optimal results of
the two metrics for different hash code lengths. As can be

seen from Table III, the proposed DAH method outperforms
other hashing image retrieval methods (DHN, DPSH, HashNet,
DSDH, and DHNNS-L2) in terms of retrieval performance. For
example, the proposed DAH method improves the mAP from
DHN (66.82%), DPSH (73.22%), HashNet (78.13%), DSDH
(71.37%), GreedyHash (84.61%) and DHNNs-L2 (84.21%) to
87.80% with 64-bit hash code. Moreover, the ANMRR of the
proposed DAH method is reduced from 7.92% to 6.24% com-
pared to the DHNNs-L2 method, which was the best performer
among comparative methods.

To comprehensively reflect the performance of the proposed
DAH method, some other comparative results on AID dataset
are shown in Fig. 5. Fig. 5(a) represents the precision of the
retrieval results within 2 with Hamming distance using hash
codes of different lengths. It can be observed from Fig. 5(a) that
the proposed DAH method performs optimally in this evaluation
metric for hash code lengths of 16, 32, 48, and 64. When 64-bit
hash codes are used, the samples are retrieved that their distance
from the query image are less than the Hamming distance thresh-
olds (0—64). These retrieved samples are used to calculate recall
and mAP. The recall curve with different Hamming distance
thresholds (0-64) is shown in Fig. 5(b). The mAP with different
Hamming distance thresholds (0—64) is shown in Fig. 5(c). The
recall of DAH is not the highest at the short Hamming distance
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lengths. (b) Recall curve with different Hamming distance thresholds (0—-64) when 64-bit hash codes are used for retrieval. (¢) mAP with different Hamming
distance thresholds (0—64) when 64-bit hash codes are used for retrieval.

TABLE 1V
COMPARATIVE EXPERIMENTAL RESULTS ON THE PATTERNNET DATASET
MAP(%) ANMRR(%)
Methods 16bit  32bit  48Dbit  64bit | 16bit  32bit _ 48bit _ 64bit
DHN [46] 7802 8638 8755 87.93 | 13.72 830 748 728
DPSH [12] 86.48 87.28 9645 9646 | 778 826 199  1.99
HashNet [47] 7341 91.88 93.60 94.02 | 1611 508 4.04  3.78
DSDH [13] 4488 6280 71.54 7327 | 3852 2421 1814 17.14
GreedyHash [48] 8536 92.84 9375 9478 | 883 472 404 3.56
DHNNs-L2 [14]  89.35 91.62 9273 9321 | 529 452 439 418
DAH 96.12 94.09 97.28 97.96 | 247 393 181 139

The significance of bold values is optimal experimental result.

threshold, as shown in Fig. 5(b). However, the DAH outperforms
other methods during the increase of the Hamming distance
threshold, indicating that the DAH is more sensitive to hard
positive samples. According to the comparative results on the
AID dataset, the proposed method can better extract the hash
code with discrimination and filter out worthless background
and noise information in remote sensing images with greater
noise and fewer prominent objects.

2) Comparative Experimental Results on PatternNet
Dataset: Table IV provides the mAP and ANMRR results of the
comparative results on the PatternNet dataset. The bolded font
indicates the optimal results of the two metrics for different hash
code lengths. Similar to the experiments on AID dataset, the pro-
posed DAH method leads other comparative hashing methods
on the retrieval performance, as can be observed in Table IV. For
example, using 64-bit hash code, the proposed DAH method
increases the mAP from DHN (87.93%), DPSH (96.46%),
HashNet (94.02%), DSDH (73.27%), GreedyHash (94.78%),
and DHNNs-L2 (93.21%) to 97.96%. Furthermore, compared
to the DHNNs-L2 method, which was the top performer among
the comparable methods, the ANMRR of the proposed DAH
method is lowered from 1.99% to 1.39%. The performance
improvement of the proposed DAH method on the PatternNet
dataset is more significant than that on the AID dataset.

The comparative results on PatternNet dataset are shown
in Fig. 6. Fig. 6(a) represents the precision of the retrieval
results within 2 with Hamming distance using hash codes of

different lengths. Fig. 6(a) shows that the proposed DAH method
performs best in this evaluation metric for hash code lengths
of 16, 32, and 48. The recall curve with different Hamming
distance thresholds (0—64) is shown in Fig. 6(b). The mAP
with different Hamming distance thresholds (0-64) is shown
in Fig. 6(c). The recall of DAH is not the highest at the short
Hamming distance threshold, as shown in Fig. 6(b). However, in
combination with Fig. 6(c), the proposed DAH method is almost
leading in the corresponding mAP with all Hamming distance
thresholds. Overall, the proposed DAH method performs the
best compared to other hashing-based retrieval methods. This
is because the proposed DAH method implements a channel-
spatial joint attention module in the process of remote sensing
image feature extraction, and includes category probabilistic
information into the computation of Hamming distance via the
distance-adaptive ranking to improve model’s understanding of
images and retrieval performance. The comparative experimen-
tal results on the AID and PatternNet datasets demonstrate the
effectiveness and advancement of the proposed DAH method
even further.

F. Analysis of Retrieval Results

Fig. 7 shows the top ten retrieval results by the proposed DAH
method with 64-bit hash code on AID dataset. The five query
examples shown in Fig. 7 are belong to five categories, namely
beach, playground, airport, forest, and desert. The images on
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Fig.7. Top ten retrieval results by the proposed DAH method on AID dataset.
Incorrect retrieval results are marked with red boxes.

the left are the query images, the corresponding top ten retrieval
results are shown on the right. The retrieval results whose
boundaries are colored red indicate incorrect results. There are
no inaccurate results among the top ten image retrieval results
for the “beach,” “forest,” and “desert” categories. The retrieval
results of the query image from “airport” have one error result
from the category “center.” The objects of “center’” and “airport™
have high similarity in color and shape. The retrieval results of
the query image from “playground” have two incorrect results

from the category “stadium.” The playground is also included
in the remote sensing images of the “stadium,” which cause
the model to make mistakes. However, this demonstrates that
the proposed DAH method retrieves remote sensing images
based on the essential visual information in images. Overall, the
proposed DAH method has a satisfactory retrieval performance.

G. Further Analysis

1) Selection of Attention Module: In order to discuss the
performance of different attention modules, the Squeeze-and-
Excitation (SE) attention module [49] based on channel attention
was used to compare with the attention mechanism used in this
article on PatternNet Dataset. Table V shows the performance
of different attention modules on PatternNet Dataset. DAH+SE
represents a variant of DAH that the attention mechanism is re-
placed with SE. As can be seen from Table V, the channel-spatial
joint attention used in this article has a certain advantage over
the SE attention mechanism in the retrieval performance.

2) Analysis of Hyperparameter: To analyze the selection of
weights for the loss terms, a hyperparameter analysis experiment
is implemented. Two hyperparameters « and [ in the loss
function are utilized for hash code learning. L., _coss SEIVES as
the core of the loss function and is used to generate hash codes
in a pairwise hash code learning manner. The hyperparameter
o represents the contribution of quantization loss L. The hy-
perparameter /3 determines the contribution of classification loss
L1, This experiment modifies one of the two hyperparameters
while leaving the other alone. The value of « or /3 is fixed to 1,
and the value of § or «v is set to 0, 0.1, 1, and 2, respectively.
The hyperparameter experiments results are shown in Fig. 8.
From the experimental results, it can be seen that the retrieval
performance is optimal when hyperparameters « and 3 are both
set to 1. v or 3 is set to O corresponds to removing the quan-
tization loss or classification loss term from the loss function,
respectively. It can be seen that the contributions of the two loss
terms are similar, with the classification loss slightly higher than
the quantization loss in terms of contribution.

3) Analysis of Running Efficiency and Time Complexity: The
theoretical inference time complexity of the proposed frame-
work can be approximated as O(N? . K), where N is the
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TABLE V
PERFORMANCE OF DIFFERENT ATTENTION MODULES ON PATTERNNET DATASET
MAP(%) ANMRR(%)
Methods  — et 48bit  64bit | 16bit  32bit  48bit 64bit
DAH+SE 9426 9531 9566 9672 | 3.08 275 224 198
DAH  96.12 94.09 9728 97.96 | 247 393 181 1.39

The significance of bold values is optimal experimental result.
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Fig. 8.  Analysis of hyperparameter.
TABLE VI
RUNNING EFFICIENCY AND TIME COMPLEXITY OF THE PROPOSED
DAH METHOD

Inference time complexity
O(N? . K)

Running time
0.932 ms

DAH

number of images in the remote sensing dataset and K is the
length of the hash code [50]. To test the running efficiency,
the proposed DAH method is implemented on a server with
GeForce GTX TITAN X and measured the single query runtime.
The single query runtime refers to the time it takes to compare
a single query to all images in the test set of the PatternNet
dataset. The results of single query runtime and the inference
time complexity of the proposed DAH method are reported in
Table VI.

V. CONCLUSION

To address the problems of inadequate feature expression
and interference by background information, a novel DAH is
proposed for remote sensing image retrieval. First, a channel-
spatial joint attention module is exploited to direct the network
to pay greater attention to meaningful visual information, which
reduces interference from irrelevant information. Second, a
novel balanced pairwise weighted loss function is proposed
by combing pairwise weighted similarity loss, classification
loss, and quantization loss. Finally, a distance-adaptive ranking
method is proposed further to enhance the retrieval precision
in the retrieval phase. The experimental results prove the effec-
tiveness and advancement of the proposed DAH method. In the
future, more efficient methods for learning hash codes will be

explored to enable faster and more accurate retrieval of remote
sensing images. Additionally, multilabel remote sensing image
retrieval methods will be studied that are tailored to remote
sensing images with multiple semantic information.
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