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Abstract—The convolutional neural network (CNN) has a poor
performance in nonuniform and edge regions due to the limitation
of fixed receptive field. At the same time, feature stacking of input
data can bring burden and overfitting to the network. To solve
these problems, this article proposes a reg-superpixel guided CNN
based on feature selection and receptive field reconstruction. First,
a feature selection method is designed, which uses polarimetric SAR
statistical distribution features to calculate distance and similarity,
and selects features that are easier to identify to avoid the negative
impact of low distinguishing features on classification. Second,
the reg-superpixel, which means regular superpixel, is used to
reconstruct the receptive field and represent the features of the
central pixel. The classification result of the central pixel is extended
to the whole superpixel during the test. This method can extend the
pixel-level CNN network to superpixel-level. Finally, by using edge
information of the small-scale superpixel and spatial information
of the large-scale superpixel to adjust receptive field of the central
pixel, the classification results with uniform smooth region and high
edge fitting can be generated. Experimental results with four state-
of-the-art methods on four datasets show that feature selection and
multiscale reg-superpixel network is effective for polarimetric SAR
classification problems.

Index Terms—Feature selection, image classification,
polarimetric decomposition, receptive field remodeling.

I. INTRODUCTION

POLARIMETRIC synthetic aperture radar (PolSAR), as an
advanced active microwave imaging technology, has been
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widely used in disaster monitoring, military reconnaissance,
agricultural evaluation, and other fields [1]. PolSAR can obtain
multiple channel scattering information, and extract important
features, such as volume scattering, even scattering, and surface
scattering [2]. These scattering features are also used to improve
the accuracy of image classification.

Remote sensing image interpretation methods include image
denoising [3], change detection [4], image segmentation [5], and
image classification. The semisupervised classification methods
for PolSAR images can be divided into the following two steps:
feature extraction and classifier design. Recently, many research
works used the polarimetric decomposition components as the
polarimetric features, which were generated by Pauli [6], Kro-
gager [7], Cloud [8], Yamaguchi [9], and other methods. But
using all these features affected the efficiency of the network,
and some of them also contained noise and redundant infor-
mation. Therefore, some methods used feature extraction or
feature fusion for dimension reduction. Ren et al. [10] proposed
a feature extraction method based on sparse subspace cluster-
ing, which constructed the projection matrix through subspace
clustering, and then used it to project features. Song et al.
[11] proposed a feature fusion method based on the CK-HDRF
model, which could well maintain the position of classification
edges. However, a drawback still existed in these methods that
the extracted features lose the original data distribution and even
some crucial information [12]. Therefore, other methods tended
to use feature selection for dimension reduction. Dong et al.
[13] proposed an attention-based polarimetric feature selection
network, which obtained the relationship between the polari-
metric features and ensure the effectiveness of classification.
Liu et al. [14] proposed a neural architecture search method
for polarimetric feature selection, which adaptively found the
importance of polarimetric features during network training by
using the new stem layer. Yang et al. [12] proposed a polarimetric
feature selection method based on convolutional neural network
(CNN), taking KLD distance as an evaluation to train CNN
network. However, this method requires more training samples,
which are usually limited in PolSAR data. In addition, Bai et al.
[15] used an improved sparse support vector machine to select
polarimetric features, and could automatically select a subset of
polarimetric features suitable for all classes. Banerjee et al. [16]
proposed a mutual information (MI) based polarimetric feature
selection method, which used the power of MI to select the
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best set of classification parameters. Hariharan et al. [17] pro-
posed a random forest (RF) based polarimetric feature selection
technique to identify features that vary significantly with crop
phenology. Huang et al. [18] proposed a multiview polarimetric
feature selection method, carried out sparse regularization of
the feature matrix, and built an optimization model to achieve
feature selection. Yang et al. [19] proposed a polarimetric feature
selection method, which used sparse variational autoencoder
reconstruction errors to evaluate feature representation ability.
However, none of these methods take into account the statistical
characteristics of PolSAR data. Therefore, in order to make
full use of limited samples and polarimetric information in
network learning, a feature selection method for PolSAR images
is needed.

In terms of classifiers design for PolSAR images, first, the
traditional algorithms represented by Wishart distribution [20]
and polarimetric K distribution [21] use polarimetric statistical
distribution to model PolSAR images. These methods have poor
fitting ability for more complex PolSAR images. Second, deep
learning methods represented by CNN also achieved good re-
sults. Zhou et al. [22] first applied CNN to PolSAR classification
task and achieved good classification results. On this basis,
Zhang et al. [23] proposed complex-valued convolutional neural
network (CV-CNN) according to the complex data features of the
coherence matrix. In addition, various CNN-derived networks
are also constantly proposed. Howard et al. [24] proposed a deep
separable convolution to reduce the number of parameters of
deep neural networks and construct lightweight deep neural net-
works. Huang et al. [25] proposed a densely connected structure
to reduce the loss of shallow features by directly connecting the
front and back layers. However, the network of CNN structure
is classified pixel by pixel and usually takes rectangular window
as input data. Therefore, classification errors are often generated
in the edge area and the homogeneous area with large noise.

The methods based on superpixel can solve this problem well.
The method based on superpixel [26] can take into account the
background information and local structure, and also reduce
the demand for training samples. Cheng et al. [27] proposed
a method based on multiscale superpixel graph convolution
network (MSSP-GCN), which used graph convolution network
to classify small scale superpixels and used large scale super-
pixels to modify the classification results. In order to reduce
classification errors, Guo et al. [28] proposed the concept of
fuzzy superpixels, which were divided into mixed superpixels
and pure superpixels, and the generation of mixed superpixels
was reduced as much as possible during clustering. On this basis,
Guo et al. [29] proposed an adaptive fuzzy superpixel generation
method in order to reduce the influence of the proportion of
undetermined pixels on the generation effect of fuzzy super-
pixels. Meanwhile, Guo et al. [30] applied fuzzy superpixels
to network learning to achieve more accurate classification. In
addition, Qin et al. [31] used a regularized superpixel input into
the trained CV-CNN network to reduce the running time, but the
improvement of classification accuracy is very limited because
the training data is still pixel-level data.

The abovementioned classification networks based on su-
perpixel have achieved good results on PolSAR images.

However, due to its poor structural flexibility and scalability,
the superpixel-based GCN network is difficult to train for the
features of PolSAR data. Although CNN structure network has
high flexibility, it is difficult to classify superpixels without fixed
shape. To solve these problems, this article proposes a method
based on feature selection and multiscale reg-superpixel network
(FS-MSRSnet). First, three PolSAR decomposition methods are
used to extract the decomposition features. And the supervised
feature selection method Pol-ReliefF combining polarization
distance and ratio dissimilarity is designed. According to the
special statistical features of PolSAR, the polarimetric statistical
distance is used to calculate the distance, and the average ratio is
used to calculate the dissimilarity between samples. In this arti-
cle, a small number of samples are selected as training samples of
Pol-ReliefF. Second, in order to make the receptive field of CNN
not contain heterogeneous regions, the reg-superpixel guided
dense connection subnetwork (RSDSnet) is implemented. The
reg-superpixel is a superpixel with the consistent shape and size
generated by the regularization method. It is used to input the
CNN structure network RSDSnet that only accepts Euclidean
structure data, and adjust the receptive field. In RSDSnet, dense
connections are also realized through regularized feature map,
and then the classification results are extended to the whole
superpixel. Finally, in order to make full use of different scale
superpixel information, a branch is added to RSDSnet to form
multiscale reg-superpixel network (MSRSnet). MSRSnet is
fused in the output layer to obtain the central pixel classification
result that integrates the information of the two scales. The main
contributions of the proposed FS-MSRSnet are as follows.

1) The Pol-ReliefF method for feature selection is proposed.
This method makes full use of the limited training set,
reduces the influence of weak discriminative features on
network learning, and avoids the overfitting phenomenon
to improve the network efficiency.

2) Reg-superpixel is used to reshape the receptive field
and realize the superpixel-level CNN structure network
RSDSnet. The classification accuracy is greatly improved
by using the features of high edge fit and homogenous
region of the superpixel.

3) MSRSnet is formed by adding superpixels of two scales
on the basis of 2). It can combine the spatial context
information of large-scale superpixel with the details and
edge information of small-scale superpixel at the same
time to improve the classification accuracy of superpixels.

The rest of this article is organized as follows. The Sec-
tion II introduces the proposed FS-MSRSnet method in detail.
In Section III, parameter analysis, experimental results analysis,
and ablation experiment are carried out. Finally, Section IV
concludes this article.

II. METHODOLOGY

In order to effectively use the decomposition features of
PolSAR images and the advantages of homogeneity in the
superpixel region to improve the classification accuracy, this
article proposes a reg-superpixel guided CNN based on feature
selection and receptive field reconstruction, as shown in Fig. 1.
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Fig. 1. Structure of PolSAR classification network FS-MSRSnet.

The overall structure of the proposed FS-MSRSnet consists of
three parts. Polarimetric feature selection method Pol-ReliefF,
reg-superpixel dense connected subnetwork based on receptive
field reconstruction (RSDSnet), and multiscale reg-superpixel
network (MSRSnet). The specific structure is shown in the
blue dashed box. First, the traditional incoherent decomposition
method is used to decompose the features of PolSAR images,
and then the Pol-ReliefF method is used to select features by
combining the features of the coherence matrix. Second, the
superpixels of two scales are used to segment the image, and the
superpixels of the sampling points are extracted and combined
with the selected features. Then, regularization method is used
to generate reg-superpixel, which is used to reconstruct the
receptive field and input into RSDSnet network. Finally, the
regularized superpixels of both sizes are input into RSDSnet
network and fused on the output layer to obtain the classification
results of small-scale superpixels.

A. Pol-ReliefF for Polarimetric Feature Selection

PolSAR is different from optical image and ordinary SAR
image because of its unique radar signal receiving and transmit-
ting mode. Polarimetric scattering matrixS is needed to describe
the polarization information of different channels. However,
due to the imaging features of PolSAR, one pixel contains
information of multiple scattering centers, so only using the
polarimetric scattering matrix S is not enough to support the
network for learning. In order to analyze this kind of statistical
scattering in more detail, the polarimetric covariance matrix
C [27], or polarimetric coherence matrix T [22] is usually
used instead of the original data. On this basis, some scholars
also added some polarimetric decomposition features to make
better use of the physical scattering features of polarization
data.

However, although the abovementioned features can make full
use of the limited PolSAR data and extract polarimetric scatter-
ing information more comprehensively, high-dimensional data
imposes a burden on network training, reduces the learning effi-
ciency, and is prone to overfitting. Therefore, a feature selection
method is needed to select features with strong separateness
to reduce the negative impact of weak distinguishing features
on network learning. Based on this, a Pol-ReliefF method is
proposed.

Before that, the feature construction process is as follows.
The original data of fully polarized SAR are the polarization
scattering matrix S, which is a complex matrix as follows:

S =

[
SHH SHV

SVH SVV

]
(1)

where SHH represents that both transmitting and receiving are
horizontally polarized electromagnetic waves, SHV represents
transmitting horizontally polarized electromagnetic waves and
receiving vertically polarized electromagnetic waves, the SVH,
SVV are similar. When the single station SAR satisfies the
reciprocity theorem,SHV =SVH, at this momentS is a symmetric
matrix. In this article, the polarization coherence matrix T is
used to analyze the image, which can be expressed as

T = KpK
∗
p
T =

⎡
⎣T11 T ∗12 T ∗13
T ∗21 T22 T ∗23
T ∗31 T ∗32 T33

⎤
⎦ (2)

where Kp = 1/
√
2[SHH + SVVSHH − SVV2SHV]

T is the vec-
torization of scattering matrixS, and 〈∗〉 is the complex number.
In the polarization coherence matrix, T11, T22, and T33 are real
numbers and the remaining terms are complex numbers. Since
the real number network is used in this article, the complex terms
of the original polarization coherence matrix can be divided
into real and imaginary parts as different input features. For
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TABLE I
FOUR TYPES OF FEATURES USED IN FS-MSRSNET

example, T ∗12 can be split into T real
12 and T imag

12 . And according
to the reciprocity theorem Tij = Tji, i, j = 1, 2, 3. Therefore,
after deleting some identical features, the final features of each
sample can be written as the following vector:

F0=
[
T11 T real

12 T real
13 T22 T real

23 T33 T imag
12 T imag

13 T imag
23

]
.

(3)
The polarization coherence matrix T can well describe the

statistical scattering features of PolSAR images. However, for
PolSAR data with limited labeled samples, only using T input
network for learning is equivalent to ignoring part of the phys-
ical scattering features implied by fully polarized data. These
physical information need to be obtained by polarization feature
composition of T. The four types of features used in this article
are shown in Table I.

The polarization scattering matrix S of the original PolSAR
image is decomposed into coherence matrix T, and three dif-
ferent decomposition features are added. In the second row of
the Table I, Cloude decomposition is used, which is a classi-
cal incoherent polarization feature composition method. It can
extract the scattering entropy H , scattering anisotropy A, and
average angle α of the target from the coherence matrix. Yam-
aguchi decomposition in the third row of the Table I provides
a four-component scattering model, which can well distinguish
different ground object types, such as volume scattering Pv ,
double-bounce scattering Pd, surface scattering Ps, and cross-
polarized scattering Pc. Finally, SPAN describes a roll-invariant
feature, and the abovementioned contents are shown in formula
(4) to form the final original 17-dimensional feature

F =
[
F0 H A alpha Pc Ps Pd Pv SPAN

]
. (4)

In order to make full use of the limited training samples of
PolSAR images to select more separated features, this article
proposes a Pol-ReliefF method for polarimetric data, and the
details are as follows.

Suppose that some samples are selected from all samples of
PolSAR data as the training set Q. In order to ensure the balance
of training samples,m samples are randomly sampled from each
class of the training set Q = {Xc

i} as the central sample set
Cen = {Xc

j} for feature selection, c = 1,..., C. Where c is the
number of classes, i is the number of samples of each class in
training set, i= 1,..., n, j is the number of samples in each class
of central samples, j = 1,..., m.

Then, for each central sampleXc
j , findK-neighbor samplesH

= {Xc
k} of the same class as the central sample, k= 1, ...,K, and

in C − 1 sample sets of different classes, find K-neighbor sam-
ples m of each class. Xc

k represents the kth sample that does not

belong to class C. Due to the different imaging modes between
PolSAR data and ordinary optical images, Wishart distance is
usually used to calculate the statistical distance of polarimetric
data. The ordinary Wishart distance is an approximate distance
and may have a negative value. In order to measure the
distance between samples more accurately, the modified Wishart
distance can be used for calculation. Among them, since the
central sample set Cen = {Xc

j} is obtained by sampling from
the training set Q, each sample Xc

j in the central sample set is
a rectangular matrix. So for the Ith sample in the sample set
Cen, RCen(I) represents the average value of the sample matrix

RCen(I) = avg(XI), XI ∈ Cen

RH(I) = avg(XI), XI ∈ H

RMc(I) = avg(XI), XI ∈Mc (5)

where avg(·) is the average value of the sample matrix, that
is, the sum of all elements of the matrix and then divided by
the size of the matrix. Therefore, the distance between the Ith
center sample RCen(I) and the J th similar sample RH(J) can be
calculated as follows:

D(RCen(I), RH(J)) =
(

tr
(
T
[
RCen(I)

]−1
T
[
RH(J)

])
+ tr(T

[
RH(J)

]−1
T
[
RCen(I)

]
)
)
− n. (6)

It is the same with the calculation of the distance between
samples of different classes, where T [RCen(I)] is the coherence
matrix for calculating the central sample RCen(I). Only the
features F0 of the coherence matrix T are used in the distance
calculation, while all features F are needed in the later calcula-
tion of the similarity. After finding K-neighbor samples of the
same and different classes, first, for each feature f in feature F,
the weight is initialized to 0. Then, the central sample set Cen
is taken as the training set, and the weight of each feature f is
trained and updated using the weight update formula (7):

wf = wf −
∑K

J=1 diff (f,RCen(I), RH(J))

K

+

C∑
c=1

P (c)
1−P (Cen)

∑K
J=1 diff (f,RCen(I), RMc(J))

K
(7)

diff (f,RCen(I), RH(J))=1

−min

{
N

(
RCen(I)

)
N

(
RH(J)

) ,
N

(
RH(J)

)
N

(
RCen(I)

)
}

(8)

where P (c) and P (Cen) are the proportions of class C sam-
ple Mc and center sample Cen in the whole training set Q.
diff (f,RCen(I), RH(J)) is the dissimilarity between the Ith cen-
tral sample RCen(I) and the Jth similar sample RH(J), as shown
in formula (8). The effect of PolSAR multiplicative speckle
noise can be reduced by calculating the ratio of the normalized
mean values of the two sample areas. As can be seen from
formula (8), when two samples are more similar, the value of
diff (f,RCen(I), RH(J)) is also smaller. Since there are negative
values in the data of polarimetric decomposition features, N(·)
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Algorithm 1: Pol-ReliefF.
Input: The training set Q divided by the original data
XN×f , the number of features c to be selected, the
k-nearest neighbor algorithm parameter k, and the number
of central samples m of each class.
Output: The training set Q′ after dimensionality
reduction.

1. Training set Q is randomly sampled and m center
samples are selected from each category to form center
sample set Cen = {Xi}, in which the total number of
center samples is n and the feature number is f .

2. Initialize the weight matrix Wn×f = 0.
3. for i← 1 to n do
4. Samples of the same and different classes of Xi are

selected, and formula (5) is used to calculate RCen(i)

and its corresponding RH , RMc
.

5. H ← neighbors(RCen(i), RH , k) /*Function
neighbors uses (6)*/

6. Mc ← neighbors(RCen(i), RMc
, k)

7. for j ← 1 to f do
8. W(i, j)← wj /*wjcan be

calculated from (7)*/
9. end

10. end
11. Calculate the average of each row of the weight matrix

Wn×f to generate the final weight vector, then sort it
in ascending order, and select c features with the
largest weight from F to form F′. The new training set
Q′ is formed from these F′ features.

is to normalize the features to eliminate the influence of negative
values on the ratio results.

As can be seen from formula (7), the greater the similarity
between the central sample and the nearest K similar samples,
the faster the weight increases. On the contrary, the greater
the similarity with samples of different categories, the slower
the weight increases. At the end of the training, the features
with the largest weight of c are the most separable features. The
process is shown in Algorithm 1.

B. RSDSnet Network Based on Reg-Superpixel Generation
and Receptive Field Reconstruction

In order to use the homogeneity of superpixel to improve the
classification accuracy of the network, and solve the problem
that ordinary superpixel cannot input CNN structure network
that require Euclidean structure data, a reg-superpixel method
is proposed in this article. Unlike the traditional superpixel, this
method converts non-Euclidian structured data into Euclidian
structured data by using a regularization process to transform
originally irregular superpixel into uniform shape and size.
Reg-superpixel uses its homogeneity to enlarge and adjust the
receiving field, and at the same time realizes the superpixel-level
classification method of CNN structure network. Therefore,
this method based on reg-superpixel has higher generalization
ability and classification accuracy than the ordinary superpixel

Fig. 2. Two methods of receptive field generation. (a) Use the rectangular area
around the sampling point. (b) Use the superpixel where the sampling point is
located.

classification based on traditional methods. And compared with
the superpixel classification method based on GCN, this method
has more flexible network construction and higher accuracy of
superpixel classification.

Due to the difficulty of PolSAR image labeling, the whole
image cannot be used to train the deep learning network [32].
Zhou et al. [33] regarded the field in the rectangular area around
each pixel as an image, and constructed the training set by
sampling pixels of PolSAR images. However, the receptive
field used in this method treats all regions around the sampling
point as homogeneous. Fig. 2 shows the process of generating
receptive field by two methods. As shown in Fig. 2(a), the sur-
rounding region near the sampling point (blue) of the edge region
is partially homogeneous (purple) and partially heterogeneous
(green). This sampling method takes both purple and green areas
as receptive fields of sampling points, so classification errors
are easy to occur in the edge areas. At the same time, the noise
around the sampling point will also affect the classification. In
order to reduce the influence of heterogeneous regions and noise,
a regular superpixel training and testing method is designed in
this article.

First, the improved SLIC method [34] is used to segment
the PolSAR image into superpixels. Among them, in order to
make the superpixel fit the edge better, modified Wishart distance
is added on the basis of the traditional Euclidean distance for
clustering

Dsrw(i, j) =
1

2

(
Tr

(
Σ̂−1j Ti

)
+ Tr

(
T−1i Σ̂j

))
− q (9)

where Σ̂j is the average coherence matrix of class j, Ti is the
coherence matrix of pixel i, and q is a constant, usually set as 3.
The distance after adding Dsrw is

D =
Dsrw

m
+

Deuc

S
(10)

where Deuc is Euclidean distance, S is the average distance
between two adjacent superpixels, and m is the scale parameter.
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Fig. 3. Illustration of the reg-superpixel generation method. (a) Regularization
process of superpixels. Zij , i, j = 1, 2 and Pxy are gray values. (b) Coordinate
representation of regularization method.

In order to make the superpixel closer to the edge, m is set to be
small in this article.

The method of using superpixel to generate receptive field is
shown in Fig. 2(b). If the superpixel of the sampling point is
taken as its receptive field, it can be guaranteed that for each
sampling point, no matter where it is located, the receptive field
can be limited by the shape of the superpixel. Meanwhile, the
impact of noise can be suppressed because the sampling point
category is mapped to the whole superpixel.

In addition, since the CNN-structured network requires input
matrix data of a fixed size, a method is needed to map superpix-
els to another size, which called reg-superpixels. The specific
process for reg-superpixel generation is shown in Fig. 3, where
Si is the superpixel to which the ith sampling point belongs
in the training set Q selected by random sampling. As shown
in Fig. 3(a), the maximum and minimum values of coordinates
within Si are selected, and two points Smin

i and Smax
i on the

upper left and lower right are generated, through which the
initial rectangle feature Xori

i of superpixel is generated. Then,
the following regularization method is used to adjust the size
of this region, and the regularized Xreg

i is generated, so that
the superpixels of different shapes can be input into the CNN
structure network for training

Xreg
i = Reg(Xori

i , L) (11)

where Reg(·) is the regularized function and L is the regularized
scale. The specific process of Reg(·) is shown in Fig. 3(a).
Pxy represents the gray value of the point (x, y) in Xreg

i , Px′y′

represents the gray value of the point (x′, y′) projected by Pxy

in Xori
i , four points Z11, Z12, Z21, and Z22 represent the four

gray values closest to Px′y′ , and the gray value of the target
point Pxy can be obtained through the interpolation of the four
points. To describe this process in more detail, Fig. 3(b) shows
the coordinate system corresponding to the image, where the
abscissa is the image width W and the ordinate is the image
height H. First, the gray value Zij corresponding to the point
(xi, yj) is used to calculate R1 and R2. Then, Pxy is calculated
from R1 and R2. Formulas (12) and (13) can describe this
process

Pxy =
1

k

2∑
i=1

2∑
j=1

Zijkij (12)

k = (y2 − y1) (x2 − x1)

TABLE II
PARAMETER SETTINGS OF RSDSNET

k22 = (y − y1) (x− x1) k11 = (y2 − y) (x2 − x)

k21 = (y2 − y) (x− x1) k12 = (y − y1) (x2 − x) (13)

where k, kij is the scaling ratio, i, j = 1, 2.
The main function of the Xreg

i is to use its edge to correct
the receptive field of the sampling point. In addition, since the
interior of the superpixel is regarded as a homogeneous region,
the deformation generated by regularization can not affect the
network training. Regularization is also required in densely
connected networks to take advantage of shallow features. The
input matrix Xreg extracts the deep features in the network
through the formula (14)

Xl = RSConv
(
W,Xl−1)+ l−1∑

k=0

Reg
(
Xk, L

)
l = 1, 3

Xl = Pooling
(
W,Xl−1)+ l−1∑

k=0

Reg
(
Xk, L

)
l = 2 (14)

where l is the number of layers, X0 = Xreg, Reg(·) is the regu-
larization function introduced above,W is the parameter matrix,
RSConv(·) represents the separation convolution of regularized
features to reduce the number of parameters. At the same time,
for each convolution layer, the shallow features can be retained
in the training through Reg(·) regularization. Finally, the ex-
tracted features pass through a layer of separation convolution
RSConv(·) and full connection FC(·), and the softmax function
is used to output the predicted results

Y = Softmax
(
FC

(
RSConv

(
W,Xl

)))
l = 4. (15)

In addition, because the CNN network processes pixel-level
data, the network trained with regular superpixel can still only
predict the category of one pixel. In order to make full use of
the homogeneity and edge information in the superpixel region,
the predicted pixel category of network output is extended to the
entire superpixel, that is, yS = yi, where i ∈ S. yi is the category
predicted by pixel point i through RSDSnet network, and yS is
the category of superpixel S. During the test, each superpixel is
regularized and input into the network, and the abovementioned
method is used to predict the category of superpixel, making
RSDSnet a superpixel-level CNN structure network.

Table II shows the parameter settings of RSDSnet, and also
presents the calculation process of the number of channels in
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Fig. 4. Structure of RSDSnet based on reg-superpixel.

Algorithm 2: RSDSnet.

Input: The training set Q′ after dimensionality reduction,
the superpixel map S, and the coordinate vector E1×s of
superpixels, where s is the total number of superpixels.
Output: Superpixel classification result label L1×s.

1. For each sample Xori
i in Q′, find its superpixel

according to the superpixel map S and use formula
(12) to generate the regularized sample Xreg

i .
2. Input Xreg

i into RSDSnet network as shown in Fig. 4
for training.

3. for i← 1 to s do
4. Find the superpixel i corresponding to Ei and

regularize it.
5. The superpixel i is input into RSDSnet network for

testing, and the predicted category is regarded as the
classification result of the whole superpixel i.

7. end
8. Output the final classification results of superpixel

L1×s.

each layer. In Table II, RSConv-1 is depthwise convolution,
and RSConv-2 is pointwise convolution. c = 12 is the num-
ber of input image channels after feature selection, W1 = 36,
W2 = 192, andW3 = 288 are the number of convolution kernels
at the first, third, and fourth layers, respectively. Set the input
size L = 15 based on the convolution kernel size. The deep
learning network based on reg-superpixel is shown in Fig. 4.

In Fig. 4, B1 = c is feature number selected by Pol-ReliefF.
B2 = W1 = 36, B3 = (c+W1) = 53, and B4 = W2 = 192
are calculated from Table II. The network structure consists
of three separation convolution layers, one max-pooling layer,
and one fully connection layer. The RSDSnet uses sigmoid as
the activation function, the cross entropy loss function is used
to calculate the loss value, and dropout operation is added to
prevent the overfitting phenomenon. The RSDSnet based on
reg-superpixel is shown in Algorithm 2.

C. MSRSnet Based on Multiscale Reg-Superpixel

For the same pixel in the image, superpixel information of
multiple scales can be used for training at the same time. Small

Fig. 5. Generated size of the small-scale superpixel and the large-scale super-
pixel.

scale superpixels segment the image finer and contain more edge
information, while large scale superpixels segment the image
wider and contain more spatial context information. Therefore,
on the basis of the second section, a branch is added to the
RSDSnet network to form the multiscale reg-superpixel network
(MSRSnet), as shown in Fig. 5.

In Fig. 5, L = 15 is the size of the input rectangle of the
network, L1 and L2 are sizes of the rectangle corresponding to
the small-scale superpixel and large-scale superpixel. However,
reg-superpixel has the possibility of oversmoothing the original
image in the process of generating reg-superpixel. In the pro-
cess of generating reg-superpixel, formula (12) calculated the
weighted average of the four pointsZij , essentially equivalent to
smoothing the four points to generate the target point Pxy. This
smoothing operation has a negative effect on network feature
extraction, but it can be reduced through the selection of the
relative size of L1 and L2.

We regard the coordinate of a point Pxy in the generated
reg-superpixel as (x, y), where x≥0 and y≥0. Then, its corre-
sponding reconstructed coordinate point in the original image is
(x′, y′). The reconstruction formula of coordinates is as follows:

x′ = (x+ 0.5) ∗ Wx′

Wx
− 0.5

y′ = (y + 0.5) ∗ Hy′

Hy
− 0.5 (16)

where Wx′ and Hy′ are the width and height of the original
image, Wx and Hy are the width and height of the reconstructed
reg-superpixel image. As shown in Fig. 5, the reconstruction
point of the large size superpixel in the reduction operation is
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(xs, ys), so the reconstruction formula can be rewritten as

xs = (x+ 0.5) ∗ a− 0.5 = x ∗ a+ 0.5 ∗ (a− 1)

ys = (y + 0.5) ∗ a− 0.5 = y ∗ a+ 0.5 ∗ (a− 1) (17)

wherea=L2/L. Because in the reduction operationL2>L,L ∈
N ∗, so a− 1>0. Thus, xs>x can be derived from formula (17),
and in the same way ys>y can be derived. The amplification
operation is also shown in Fig. 5. The reconstructed point is
(xb, yb). So xb<x and yb<y can also be deduced from L1<L.

Take the x-coordinates x1 and x2 of two adjacent points
on reg-superpixel (x2 − x1 = 1) as an example, from the
abovementioned inequality derivation process, 0 ≤ xi

b < xi

(i= 1, 2) can be obtained. The distance between two correspond-
ing reconstruction points x1

b and x2
b of the amplification opera-

tion isx2
b − x1

b<x2 − x1, sox2
b − x1

b < 1. The y-coordinate is in
the same way. The adjacent reconstruction points required by the
amplification operation often appear within 1 unit coordinate,
and multiple reconstruction points are calculated by four same
points Zij . Therefore, the generated reg-superpixel often results
in image degradation due to excessive smoothness.

Although small-size superpixels can provide detailed infor-
mation, amplification operation can reduce the image quality. On
the contrary, the reduction operation on large-size superpixels
loses the detail information, but at the same time can reduce
the impact of image degradation. In order to reduce the negative
impact of image degradation on feature extraction of the network
as much as possible while enlarging the receptive field of the
network, the L1 and L2 are set as L1<L<L2 in this article to
obtain the optimal classification effect. Among them, since L
= 15 as shown in Table II of Section II-B is determined by
the size of the convolution kernel, the range of L1 and L2 is
L1< 15 <L2.

MSRSnet first regularizes the large and small superpixels of
the same sampling point, and then inputs them as the training fea-
tures of the sampling points into the RSDSnet network described
in Section B. After three convolution layers, one pooling layer
and one fully connected layer, the network outputs the prediction
results, as shown in formula (18)

Y1 = softmax(FC(Wsmall,X
reg
small))

Y2 = softmax(FC(Wlarge,X
reg
large)) (18)

where Y1 and Y2 are the 1× C dimensional output layers of
small scale and large scale, and C is the number of categories.
Wsmall is the weight matrix of small-scale superpixels, and
Xreg

small is the input feature map of the convolution layer. Wlarge

and Xreg
large are in the same way. FC() is the full connection layer.

Then, the network output layer is fused, and the fusion method
is shown in formula

Y = avg(Y1,Y2) =
1

2
(Y1 +Y2) (19)

where avg(x, y) represents the average of x and y. The Y after
averaging synthesizes the classification results of the same sam-
pling point under the two scale superpixels. Finally, in order not
to lose the edges and other details of the small-scale superpixel,

Algorithm 3: MSRSnet.

Input: The training set Q′ after dimensionality reduction,
the extracted su–perpixel map Slarge and Ssmall, and the
coordinate vector E1×s of small-scale superpixel, where
s is the total number of small-scale superpixel.
Output: Classification result labels for small-scale
superpixel L1×s.
1. For each sample Xori

i in Q′, find the two scale
superpixels Slarge and Ssmall to which it belongs.

2. Xreg
large and Xreg

small is generated by two scale
superpixels according to Algorithm 2, and is fed into
two-branch RSDSnet network. Formula (19) is used to
fuse the output layer during training.

3. for i← 1 to s do
4. Find out the large-scale superpixel corresponding to

the small-scale superpixel i of Ei, and regularize
them respectively.

5. Algorithm 2 is used to input the two scale regular
superpixels into the two-branch RSDSnet network
for testing, and the output layers Y1 and Y2 are
obtained.

6. Formula (19) is used to fuse Y1 and Y2, and the
prediction category is regarded as the classification
result of small-size superpixel i.

8. end
9. Output the final classification results of small-scale

superpixel L1×s.

the final classification results are expanded on the small-scale
superpixel.

The multiscale reg-superpixel classification network
MSRSnet is constructed as shown in Algorithm 3.

D. Proposed FS-MSRSnet Method

FS-MSRSnet uses the separation feature selection method
considering the polarimetric decomposition features, and its
network structure is based on RSDSnet by adding two scale
branches to form MSRSnet. MSRSnet classifies small-scale
superpixels by synthesizing the superpixel information of the
two scales, and the final segmentation map is represented
by the superpixel classification result. The overall process of
FS-MSRSnet is shown in Algorithm 4. Among them, the training
set Q is used for both feature selection and network learning,
which makes full use of the limited training data of PolSAR to
generate better classification results.

III. EXPERIMENTS

In this section, to verify the effectiveness of the FS-MSRSnet,
we conduct experiments with four different sizes of PolSAR
datasets. First, four kinds of datasets and four compared algo-
rithms are introduced briefly, and the parameter setting of the
experiment is analyzed and discussed. Second, three indexes of
average accuracy (AA), overall accuracy (OA), and Kappa coef-
ficient are used as evaluation indexes, and the classification result
graph is shown. Finally, the ablation experiment is carried out.
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Fig. 6. Pauli RGB images for four datasets. (a) Flevoland. (b) San Francisco.
(c) Oberpfaffenhofen. (d) Xi’an.

Algorithm 4: FS-MSRSnet.
Input: Original PolSAR coherence matrix T. Selected
feature number c, superpixel scale L1 and L2

(L1 < 15 < L2).
Output: Classification result labels for small-scale
superpixel L1×s.

1. The improved SLIC method is used to extract
superpixel maps Slarge and Ssmall of sizes L1 and L2

from the coherence matrix T.
2. The H,A, α, Pc, Ps, Pd, Pv and SPAN features are

extracted from the coherence matrix T, and the
17-dimensional feature F is formed together with the
9-dimensional data F0 to generate the original data
XN×f , where N is the total number of pixels.

3. Generate a training set Q by randomly sampling
XN×f , use Algorithm 1 to extract c-dimensional
features F′ that are useful for classification, and
generate the new training set Q′ after dimensionality
reduction.

4. Combined with Slarge, Ssmall and Q′, Algorithm 3 is
used to input data into MSRSnet, and output the
classification result L1×s of small-scale superpixel.

A. Dataset Introduction

In order to test the performance of the FS-MSRSnet more
objectively, experiments are carried out on four datasets with
different sizes. The details of the four datasets are as follows,
and their Pauli decomposition images are given in Fig. 6.

1) Flevoland Dataset: This dataset is the four-polarization
SAR dataset obtained by NASA/JPL AIRSAR in Flevoland, the

TABLE III
EXPERIMENTAL ENVIRONMENT SETTING

Netherlands, which is widely used as the benchmark dataset
for PolSAR. The image size is 750× 1024 pixels, as shown in
Fig. 6(a).

2) San Francisco Dataset: This dataset is the PolSAR dataset
in San Francisco, USA, acquired by RADARSAT-2 system, and
annotated data are provided by Liu et al. [35]. The image size is
1800× 1380 pixels, as shown in Fig. 6(b).

3) Oberpfaffenhofen Dataset: This dataset is the PolSAR
data collected by ESAR in Oberpfaffenhofen, Germany. The
image size is 1300× 1200 pixels, as shown in Fig. 6(c).

4) Xi’an Dataset: This dataset is also the Xi’an region of
China acquired by RADARSAT-2 system, which is composed
of 512× 512 pixels, as shown in Fig. 6(d).

B. Compared Algorithms

The four compared algorithms used in this article are PolSAR
classification method based on CV-CNN [23], PolSAR clas-
sification method based on real number field deep CNN with
the same structure [23], dense connection and deep divisible
convolution PolSAR image classification method based on CNN
(DSnet) [36], and a PolSAR image classification method based
on MSSP-GCN [27].

Among them, the first three compared algorithms are pixel-
level methods. CNN network and CV-CNN have the same
structure as shown in [23], including two convolutional layers,
one pooling layer, and one fully connected layer. DSnet network
structure consists of three convolutional layers, a pooling layer
and a fully connected layer, and is also classified pixel by pixel.
The fourth is a superpixel level multiscale graph convolutional
network classification method (MSSP-GCN). In order to control
the experimental variables, the size scale superpixel size set by
the MSSP-GCN method and the proposed method is the same.

C. Experimental Setup and Parameter Analysis

All experiments in this article are carried out on the same
platform, as shown in Table III.

The experimental settings are as follows: the parameter m of
SLIC segmentation is set to 0.7, the proposed network uses a
learning rate of 0.001, the dropout value is 0.5, the input image
matrix size is L = 15, the feature selection number is set as
c = 12 through parameter analysis, and the average side length
of superpixels of size is L1 = 10/L2 = 20 or L1 = 10/L2

= 25, respectively. Due to the poor performance of CNN and
CV-CNN in the low sampling rate on Flevoland dataset, both of
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Fig. 7. OA values of four datasets under different feature numbers.
(a) OA value at c ∈ [1, 17]. (b) OA value at c ∈ [10, 17], which is the part
intercepted from the black dashed box in (a).

them are set as the best 10% sampling rate in this experiment,
and the other compared algorithms and the proposed method all
have 1% sampling rate. On other datasets, the training data of
all compared algorithms and proposed methods are set at 1%
sampling rate.

In Section II-A, a Pol-ReliefF method is proposed to select
separation features for classification, which reduces the original
17-dimensional polarization featureF to cdimension to generate
F′. However, when the number of c is too small, it is difficult
for the network to learn an effective classification model, while
if the value of c is too large, it cannot play the role of feature
selection. Therefore, the classification accuracy of FS-MSRSnet
network with different feature numbers c=[1, 17] is calculated.
The OA is used as the classification accuracy index to observe
the influence of different feature numbers c on the classification
results. The experimental results are shown in Fig. 7, where
Fig. 7(a) is the change of OA value of the four datasets when the
number of features increases from 1 to 17, and Fig. 7(b) is the
result of intercepting the black dashed box in Fig. 7(a).

As can be seen from Fig. 7(a), when the selected feature
number c is small, the OA value of the four data sets is low. With
the increase of the number of features, the network can learn
more features, and the OA value also increases. When c increases
to more than 13, it can be seen from Fig. 7(b) that the OA
value of Flevoland dataset and Xi’an dataset decreases greatly
with the increase of the number of features. This is because
some poorly performing decomposition features have a negative

Fig. 8. Computation times of the algorithms of four datasets with different
number of features.

TABLE IV
OA VALUES OF SUPERPIXEL AT DIFFERENT SCALES ON FOUR DATASETS

impact on classification. The decomposition features of the other
two datasets have less negative impact on the classification. On
the four PolSAR datasets, although the variation amplitude of
parameter c is different, the variation regularity is consistent.
Flevoland dataset and San Francisco dataset have high OA value,
and the range of change is not obvious, but it can still be seen
that OA reaches the maximum value in the range c = [8, 13],
and fluctuates in a small range. Fig. 8 shows the change of
computation time under different feature numbers.

It can be seen that with the increase of the number of fea-
tures, the computation times of the algorithms increases almost
linearly. Therefore, based on the variation trend of running time
and OA values, c = 12 can be chosen to select the most ben-
eficial features for classification and improve the classification
efficiency of the network.

The multiscale superpixel network uses two different scales
of superpixels, namely the small-scale superpixel L1, and the
large-scale superpixel L2. For reference to the experimental set-
tings of superpixels of two scales in paper [27], we conducted ex-
periments, respectively, under several conditions:L1 = L− 5n,
L2 = L+ 5 m (n, m ∈ N ), where L = 15. The experimental
results are shown in Table IV, where bold entities means the
maximum accuracy.

As can be seen from Table IV, the optimal value of classi-
fication accuracy is concentrated in the region where L1 < 15
and L2 > 15. When L1 = 10 and L2 = 20, Oberpfaffenhofen
dataset and Xi’an dataset obtain the optimal classification result.
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TABLE V
CLASSIFICATION ACCURACY OF THE FIVE ALGORITHMS ON

FLEVOLAND DATASET

When L1 = 10 and L2 = 25, Flevoland dataset and San Fran-
cisco dataset obtain the optimal classification result. Therefore,
the selection of parameter L1 and L2 in this article is L1 = 10
and L2 = 20/25.

D. Classification Results on the Flevoland Dataset

The experimental results on Flevoland dataset are shown in
Table V. The percentage in parentheses represents the sampling
rate of the training set. In order to maintain the experimental
variables, the FS-MSRSnet and MSSP-GCN methods proposed
in this article use the same size of two scale superpixels, namely,
the average side length isL1 = 10 andL2= 25, respectively. The
CNN and CV-CNN networks are tested at their best sampling
rate of 10%.

As can be seen from Table V, the FS-MSRSnet has high
classification accuracy in eight categories of pea, forest, lucerne,
two kinds of wheat, potato, grass, and rapeseed. Compared with
CNN and CV-CNN, AA value increases by about 1%–2%, OA
value, and Kappa value significantly increase by about 2%–3%.
Compared with DSnet and MSSP-GCN, OA value, and Kappa
value increase by about 1%, and AA value is also improved.
Taking the OA value as an example, the OA value between CNN
and CV-CNN is about 96%–97% at 10% sampling rate. The
OA value of DSnet using separate convolution and dense con-
nection network and superpixel-level classification MSSP-GCN
network can reach more than 98% at 1% sampling rate. Under
the same sampling rate, more than half of the subcategories of
FS-MSRSnet proposed in this article are improved compared
with the four algorithms, and the OA value can also reach about
99%. The AA and Kappa value are also slightly improved.
Although there is not much difference between indicators in
Table V, the classification effect of edge and homogeneous
regions is different in the classification result map. The clas-
sification results on Flevoland dataset are shown in Fig. 9.

In Fig. 9, the first three pixel-level network classification
results based on CNN structure all have noise points, and there
are many pixels classified incorrectly in the edge area. Taking

Fig. 9. Classification results of five algorithms on Flevoland dataset.
(a) Ground truth map. (b) CNN. (c) CV-CNN. (d) DSnet. (e) MSSP-GCN.
(f) FS-MSRSnet.

the black box in the figure as an example, there are a large
number of noises in the two wheat and rapeseed regions of CNN
and CV-CNN. DSnet has a good result, but there are still some
noises, indicating that the network has a poor discrimination
of these regions. From Fig. 9(e) and (f), both superpixel-level
methods can fit the image edges well. Similarly, as shown in the
black rectangle area in the figure, some misclassified superpixels
appear in MSSP-GCN, while the proposed FS-MSRSnet has
fewer misclassified superpixels in the same area, indicating that
the proposed method achieves the best in terms of uniformity,
edge fit, and superpixel classification effect.

E. Classification Results on the San Francisco Dataset

The experimental results on the San Francisco dataset are
shown in Table VI. On this dataset, 1% sampling rate is used
for all methods, and the superpixel size is unchanged. As can
be seen from Table VI, the OA, AA, and Kappa on the two
superpixel-level networks are all higher than those on the three
pixel-level networks, indicating that the superpixel-level classi-
fication method can better learn the local features of PolSAR
data. The proposed FS-MSRSnet has achieved the highest clas-
sification accuracy in the five categories.

In Table VI, compared with CNN, CV-CNN, and DSnet,
the AA value of FS-MSRSnet can be significantly improved
by about 3%–4%, and the OA value and Kappa value can be
improved by about 2%–3%. It shows that the introduction of
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TABLE VI
CLASSIFICATION ACCURACY OF THE FIVE ALGORITHMS ON SAN

FRANCISO DATASET

Fig. 10. Classification results of five algorithms on San Francisco dataset.
(a) Ground truth map. (b) CNN. (c) CV-CNN. (d) DSnet. (e) MSSP-GCN.
(f) FS-MSRSnet.

superpixel information can improve the classification accuracy.
Compared with the superpixel-level MSSP-GCN network, the
three indicators can also be improved by about 1%–2%, the OA
value of FS-MSRSnet can reach about 99%, indicating that the
proposed CNN structure network based on regular superpixel
can classify superpixel more effectively. The classification result
map on this dataset is shown in Fig. 10.

It can be seen from Fig. 10 that the results of CNN have
great noise, especially the discrimination between high-density

TABLE VII
CLASSIFICATION ACCURACY OF THE FIVE ALGORITHMS ON

OBERPFAFFENHOFEN DATASET

cities and low-density cities is obviously poor. The classification
results of CV-CNN and DSnet are similar. Compared with CNN,
the misclassification noise is less, but there are still a lot of
noise and holes in the homogeneous region. In Fig. 10(e), the
MSSP-GCN method based on GCN network can well reduce the
misclassification phenomenon in the low-density area, but there
are still some errors in the green high-density area. In addition, as
can be seen from the black box in the figure, for some small target
point in the red area, due to the superpixel classification error of
the MSSP-GCN method, all pixels in the same area also have
classification errors, resulting in the loss of most of some red
targets. The proposed FS-MSRSnet has a higher accuracy rate
of superpixel classification, so it can better retain the red small
target point in the same region. Compared with the three pixel-
level networks CNN, CV-CNN, and DSnet, it can also obtain
better results in the homogeneous region and the edge region.

F. Classification Results on the Oberpfaffenhofen Dataset

In order to verify the effectiveness of the proposed method on
more complex PolSAR images, the five algorithms are tested
on the German Oberpfaffenhofen dataset with the same five
categories. In this dataset, there are fine road regions, and
because the scattering characteristics of homogeneous regions
are complex, it is easy to produce misclassified noise and holes.
On this dataset, all methods are tested with 1% sampling rate, and
the superpixel scale is L1 = 10/L2 = 20, while other indicators
are unchanged. The experimental results are shown in Table VII.

In Table VII, the FS-MSRSnet has achieved a significant
improvement of about 2%–9% in Kappa. The classification
accuracy of CNN and CV-CNN is low, DSnet, and MSSP-
GCN are partially improved, and FS-MSRSnet has the largest
improvement in this category. It can be seen from the three
indicators that the OA values of CNN and CV-CNN are relatively
low, and AA is below 80%, indicating that the effects of these
two methods are limited for more complex PolSAR images at a
certain sampling rate. In contrast, DSnet’s OA value can reach
about 85%, and the superpixel-level MSSP-GCN network can
reach about 86%, and also has about 2% and 4% improvement.
From the subcategories, it can be seen that the accuracy of road
and other two categories is mainly improved greatly, indicating
that DSnet and MSSP-GCN can better distinguish these two
categories. The OA value of the proposed FS-MSRSnet can be
increased by about 1%, and the AA and Kappa can be increased
by about 3%, indicating that the proposed method can better
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Fig. 11. Classification results of five algorithms on Oberpfaffenhofen dataset.
(a) Ground truth map. (b) CNN. (c) CV-CNN. (d) DSnet. (e) MSSP-GCN.
(f) FS-MSRSnet.

distinguish the four categories of woodland, farmland, suburban,
and road. The experimental results are shown in Fig. 11.

It can be seen from Fig. 11(b)–(d) that there are a lot of noise
and voids in both the farmland area and the suburban area. As can
be seen from the black box area in the figure, CNN and CV-CNN
misclassified pixels of many other areas into road areas and sub-
urban areas. While DSnet can better distinguish roads and other
categories, there are still noise points caused by misclassification
in the homogeneous area. The superpixel method in Fig. 11(e)
and (f) can effectively reduce noise and voids. However, it can be
seen from the black rectangular area that although it performs
well in the homogeneous and edge areas, there are still many
misclassified superpixels in this dataset. As can be seen from the
yellow box, for the relatively elongated road area, the MSSP-
GCN method is partially broken and missing. Compared with
the other four methods, FS-MSRSnet has uniform classification
results in farmland, suburban, woodland, and other areas, and
the edge fit is also good. Although there are still some superpixel
classification errors in the road area due to the influence of the
superpixel size, it has been greatly improved compared with the
other algorithms.

TABLE VIII
CLASSIFICATION ACCURACY OF THE FIVE ALGORITHMS ON XI’AN DATASET

G. Classification Results on the Xi’an Dataset

The experimental results on another relatively complex Chi-
nese Xi’an dataset are shown in Table VIII. In this dataset,
the sampling rate is also set as 1%, and the superpixel scale is
L1 = 10/L2 = 20.

From Table VIII, it can be seen that three pixel-level networks,
CNN, CV-CNN, and DSnet, perform poorly on this dataset,
and it is difficult to distinguish between grass and crop areas.
Especially in grass area, large classification errors occur, and
the classification accuracy is below 80%. In contrast, better
classification results can be obtained in cities and water areas,
among which CV-CNN achieves the best classification accuracy
in water areas. The MSSP-GCN method can distinguish grass
and crop areas well, and the classification accuracy of these
two categories is more than 80%, but the improvement is very
limited. However, the proposed FS-MSRSnet method can well
distinguish city, grass and crop areas, and has been significantly
improved in these three categories. It can be seen from the three
evaluation indicators that the OA value of CNN, CV-CNN, and
DSnet only reached about 81%–82%. The AA value of CNN
and CV-CNN is high, but the Kappa value is low, indicating that
the classification results are unbalanced. From the classification
accuracy of each category, it can be seen that these two networks
can classify the other categories well, but the classification effect
of grass is poor. Compared with MSSP-GCN, FS-MSRSnet can
improve the accuracy by about 1%–2% in all three indicators,
especially for crop area, which can increase the classification
accuracy from 80% to about 94%, indicating that the proposed
method can better distinguish crop area and improve the accu-
racy of superpixel classification.

The experimental results are shown in Fig. 12. It can be seen
that the three pixel-level networks in Fig. 12(b)–(d) all classified
part of grass as crops, and the red and green areas are mixed and
difficult to distinguish. However, the three pixel-level networks
can get good classification effect in the water area. The blue
region in the figure has some noise points in the edge area, but
the whole can well fit the blue river region in the ground truth.

In Fig. 12(e), the MSSP-GCN network can identify the grass
and crop areas well, but there are still superpixel classification
errors at some points (as shown in the black rectangular box).
At the same time, due to the limitation of superpixel size, the
water area is broken and missing to different degrees. Since this
article uses the deep separated convolution method, which is
more suitable for PolSAR data, compared with the MSSP-GCN
based on GCN network, the superpixel classification error is
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TABLE IX
OA OF RS AND MS-RS ON FOUR DATASETS

TABLE X
OA OF MS AND POLRF-MS ON FOUR DATASETS

Fig. 12. Classification results of five algorithms on Xi’an dataset. (a) Ground
truth map. (b) CNN. (c) CV-CNN. (d) DSnet. (e) MSSP-GCN. (f) FS-MSRSnet.

lower. It can be seen from Fig. 12(f) that there is almost no
mixing of red and green. Compared with the previous pixel-level
methods, the classification results are more uniform and the edge
fit is better.

H. Ablation Experiments

In order to verify the effectiveness of each module of the pro-
posed method, in addition to the compared experiment with the
advanced method, the following two ablation experiments are
also set up. The ablation experiments between FS-MSRSnet with
multiscale idea (MS-RS) and RSDSnet with only small-scale
superpixels (RS) are, respectively, conducted under the condi-
tion of both using feature selection. And ablation experiments
between Pol-ReliefF feature selection method (PolRF-MS) and
multiscale (MS) method without feature selection.

The experimental setup between MS-RS and RS is as follows:
RSDSnet, which only uses small-scale superpixels, and FS-
MSRSnet, which adds MS idea, are compared on four datasets.
RSDSnet is a single-branch network using only small-scale
superpixels, while FS-MSRSnet is a two-branch network with
two scales. Both methods classify small-scale superpixels, and
other modules are the same.

The RSDSnet and FS-MSRSnet classification results with the
MS method are shown in Table IX. Compared with RSDSnet,
FS-MSRSnet has about 1% improvement in each dataset, indi-
cating that the addition of large-scale superpixel information in
network learning can well correct the classification results of
small-scale superpixels. In Flevoland dataset, since the ground
truth area of each class is small, the addition of large-scale
superpixel information does not improve the classification effect
much. However, the classification indexes of the other three
datasets have been greatly improved, which can fully prove the
effectiveness of the MS superpixel algorithm.

The experimental setup between PolRF-MS and MS are as
follows: an ablation experiment is conducted between the MS
method using Pol-ReliefF feature selection and the MS method
without feature selection. All modules are the same between
PolRF-MS and MS except feature selection.

The experimental results are shown in Table X. On Oberp-
faffenhofen and San Francisco, the AA value of PolRF-MS
using Pol-ReliefF feature selection method has been increased
by about 1% compared with the MS method without feature se-
lection, and the OA value and Kappa value have little difference.
In Flevoland and Xi’an, PolRF-MS improves the accuracy by
1%–2% compared with MS. It can be seen that the Pol-ReliefF
feature selection method can well select effective features, and
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delete some features with weak discrimination between classes.
At the same time, it can reduce the running time and improve
the efficiency of network learning.

IV. CONCLUSION

Due to the limitation of receptive field, the classification
results of PolSAR data in pixel-level CNN structure network are
not uniform. At the same time, the accumulation of polarization
features is easy to cause overfitting in network learning. To solve
these problems, this article proposes a reg-superpixel guided
convolutional neural network based on feature selection and
receptive field reconstruction (FS-MSRSnet). First, Cloude and
Yamaguchi decomposition methods are used to extract seven
different decomposition features for the original PolSAR image,
and then the original 17-dimensional features are composed
with the original coherence matrix and features. The Pol-ReliefF
method is then used to select features. According to the results
of PolRF-MS and MS ablation experiments, the Pol-ReliefF
method can improve the classification accuracy by about 1%–2%
on Flevoland and Xi’an datasets, and also improve the other
two datasets to different degrees. Second, reg-superpixel is used
to adjust the receptive field, which is regularized and input
into the network for training. The class of sampling points is
designated as the class of the superpixels in the test, so as to
realize the superpixel classification of CNN network. RSDSnet
using this method has a significant improvement compared with
DSnet network. The OA values of DSnet on the four datasets
are 98.09%, 97.41%, 85.01%, and 82.11%, respectively, while
RSDSnet can improve 1%–5% on this basis, reaching 98.17%,
98.56%, 86.44%, and 87.56%, respectively. Finally, the two
scale superpixels are simultaneously input into RSDSnet and
fused in the output layer to adjust the classification results of
small scale superpixels by using the spatial context information
of large-scale superpixel. It can be seen from the ablation ex-
periment results of MS-RS and RS that the method combining
MS superpixel can improve the classification accuracy by about
1%. Compared with the pixel-level network, FS-MSRSnet can
improve the classification accuracy by about 1%–6%, and com-
pared with the latest superpixel-level network MSSP-GCN, it
can improve the classification accuracy by about 1%–2%. At
the same time, it can be seen from the classification result map
that FS-MSRSnet method can distinguish several regions with
complex structure and regions with low discrimination well,
and can obtain more complete and accurate classification results
compared with other methods. Compared with the GCN struc-
ture network, FS-MSRSnet has significantly fewer superpixel
classification errors. It shows that the classification accuracy
of PolSAR superpixel can be better improved by inputting
superpixel into the CNN structure network that is more targeted
to PolSAR images.

FS-MSRSnet has achieved good results in both classification
accuracy and classification result maps. However, some small
items with scales smaller than superpixels are easy to be ignored.
In the future, we can consider introducing pixel-level informa-
tion on the basis of this method to improve the classification
accuracy of small objects. The regularized superpixel method
can also be applied to deep networks with other CNN structures.
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