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Aircraft Tracking Based on an Antidrift
Multifilter Tracker in Satellite Video Data

Ran Pang , Fang Gao , Peng Zhang, Xiangkun Li, and Yuwei Zhai

Abstract—Using remote sensing video to monitor aircraft dy-
namics is significant for military applications, airport management,
and aircraft rescue. The aircraft has a fixed size and obvious
characteristics, so it is suitable for correlation filtering. Correla-
tion filtering algorithms can extract features from input data to
predict motion trajectories, and the calculation speed of corre-
lation filterings is fast. Hence, such algorithms are advantageous
for tracking targets in remote sensing images. In this article, an
antidrift multifilter tracker based on a correlation filter and the
Kalman filter is proposed for this purpose. This article proposes a
temporal consistency-constrained background-aware correlation
filter algorithm based on temporal regularization that resists the
model drift caused by clouds by using motion information to correct
it. Experimental results show that our proposed method shows
improved antidrift performance compared with other advanced
tracking methods in cases of cloud occlusion and stable perfor-
mance in other complex conditions. We believe that our model will
be helpful for researchers who are interested in object tracking in
satellite video, especially for processing satellite video data with
cloud occlusion.

Index Terms—Cloudy conditions, model drift, object tracking,
satellite videos.

I. INTRODUCTION

W ITH the continuous development of video satellite tech-
nology in recent years, many video satellites (constella-

tions) have been successfully launched worldwide. Video satel-
lites can continuously observe dynamic changes on the Earth’s
surface, enabling long-term dynamic real-time monitoring of
targets through remote sensing technology. At present, the Jilin-
1 satellite constellation has 31 satellites in orbit, and 12 satellites
have video imaging capabilities, as follows. The first-generation
color video satellites include the Jilin-1 SP-01, SP-02, and LQ
satellites. The Jilin-1 SP-03 satellite is a second-generation
color video satellite. The Jilin-1 SP-04–SP-08 satellites are
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third-generation dual-mode push-broom and gaze imaging video
satellites. The fourth generation of small-batch-production video
satellites includes the Jilin-1 GF-03C01–GF-03C03 satellites.
These satellites can provide color videos at ten frames per second
(fps) for up to 180 s with a spatial resolution of approximately
1 m. These remote sensing videos provide a basis for developing
more diverse and convenient applications.

The development of high-resolution remote sensing video
satellites has extensively promoted and enriched modern moni-
toring technologies and methods. The suitability of satellite data
for change detection and monitoring applications depends on
the data characteristics. Here, we provide a few examples of
satellite video applications: oil and gas exploration [1], dis-
aster monitoring [2], marine monitoring [3], monitoring for
ecosystem changes and disturbances [4], traffic monitoring [5],
change detection [6], and recognizing and monitoring military
objects [7], [8]. Object tracking is a core step of such remote
sensing data applications. To date, studies on tools for satel-
lite video tracking, such as the video background extractor
algorithm [9], have focused on the detection and tracking of
moving targets. These algorithms use pretrained object detec-
tion modules to find targets in each frame and track them.
Nevertheless, it is difficult to enable such a model to distin-
guish among objects within a class and acquire moving targets
precisely.

Some methods based on deep learning have also been pursued
in the existing research [10], [11], but after testing, it has been
found that the data processing time of these methods is far from
satisfying the needs of practical applications. Some methods
based on correlation filtering for remote sensing target tracking
have been presented in the existing research, which can serve as a
reference for our work. However, the existing methods are often
oriented toward a single application scenario. It is not always
easy to maintain stable conditions in practical applications. The
existing methods [7], [12], [13], [14] focus on simple video
scenes and have difficulty dealing with complex conditions in
target tracking, such as smoke, clouds, and light spots caused
by changes in illumination. Algorithms of this kind also have
difficulty when the target is moving slowly. Moreover, to date,
research on the detection and tracking of moving targets has
mainly focused on ground vehicles [13]. At present, research on
other vehicles, such as aircraft and ships, is insufficient. Aircraft
are a primary means of transportation and military use today.
Therefore, this article focuses on developing an algorithm that
can track aircraft quickly and accurately based on correlation
filters.
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The main problems encountered when tracking objects in
remote sensing video are as follows:

1) Targets can be obscured by clouds.
2) Fast movement (large displacement) makes background

change leading to tracking difficult.
3) Rotation-induced deformation can change the target ap-

pearance.
4) Because of the large data size, tracking can be time-

consuming.
Due to widespread problems, there are many data of general
quality that have not been used thus far. In particular, data in
which targets are obscured by clouds are often not well utilized
because of model drift and other problems.

The main contributions of this article are as follows:
1) By considering the potential motion relationships of a

moving target during a certain period of time, we in-
troduce a temporal consistency constraint into the BACF
algorithm. Extensive experiments show that this method
can effectively mitigate model drift. We quickly solve this
model by ADMM in the frequency domain.

2) In this article, we use the Kalman filter (KF) to estimate the
current location of the target from its visual information
and then predict its future position by using the observa-
tion sequence. By analyzing and comparing the average
peak-to-correlation energy (APCE) in each frame, we can
estimate the degree to which we believe occlusion occurs.
For cases of occlusion, a corrected fusion strategy based
on the weighting of multiple trackers is proposed.

II. METHODOLOGY

A. Satellite Video Data and Preprocessing

The video data selected for this study include multiple videos
taken by the No. 3 satellite of Jilin-1 provided by ChangGuang
Satellite Co., Ltd., and the original satellite videos were acquired
by the No. 3 Jilin-1 satellite. There are nine normal moving
targets, three targets with complex background changes, four
rotating targets, and four targets obscured by clouds. The original
satellite videos have lengths of over 30 s with a frame rate of
10 fps and a spatial resolution of 0.92 m. The single-frame
image size of the true-color (RGB) video is 12000∗5000, and
each video contains more than 300 frames. To facilitate our
experiment, we do not use the full-time series videos. In addition,
for convenience in labeling, we clip some of the data. Based on
actual measurements and statistics, we believe that the size of
the aircraft in the remote sensing video data is relatively stable.
Size changes under a remote sensing lens are caused by rotation
and occlusion; however, an aircraft has unique features, and its
outer frame is close to square. Therefore, the changes in target
size caused by rotation can be ignored. Therefore, we label the
targets with a fixed rectangle. Moreover, we think that cloud
cover generally affects objects only for discernible targets, and
partially obscured targets are not our research targets.

We collected diversity data under four different conditions:
normal flight, complex background change, target rotation, and
cloud obscuration. Through the verification of different tar-
get tracking in complex situations, it is fully proven that our

model can adapt to aircraft tracking in complex situations. In
the dataset, there are four series of videos in different cloudy
conditions. These four series of videos help us verify that our
model has antidrift ability. In Table I, we show the appearance
characteristics of the tracking target. In Fig. 1, we show the
motion trajectories of 20 sequential targets. The four sequences
with occlusion are important research objects. We show the
frames in cloudy sequences in Fig. 2.

B. Moving Object Tracking in Satellite Videos

Existing methods for object tracking in remote sensing videos
include foreground detection methods, correlation filter meth-
ods, and deep learning methods. A common approach is to use
time information (as in the background subtraction method, the
optical flow method, and the interframe subtraction method)
to highlight the areas exhibiting changes in consecutive frames
and to start tracking without considering such information for
the existing targets. With this approach, under conditions of
noise, cloud, and light interference, the moving targets cannot
be reliably detected in each frame. Additionally, deep learn-
ing methods are rarely selected for remote video applications,
mainly because their speed has difficulty meeting the require-
ments of real applications. Another reason why the deep learning
method is difficult to apply is that the existing video data are
insufficient and the labeling cost is expensive, which makes it
difficult to meet the training needs. Therefore, we instead choose
the correlation filtering approach to solve the problem of aircraft
tracking.

For learning from greyscale images, Bolme et al. [15] pro-
posed the minimum output sum of squared error (MOSSE) filter,
in which the minimum output and correlation frequency are ap-
plied for tracking. This method requires only simple calculations
and can track objects quickly, but it cannot guarantee accurate
tracking when the appearance of a moving target changes. Later,
Henriques et al. [16] proposed training a correlation filter in
kernel space and exploiting the circulant structure of the training
patches. In 2014, Henriques et al. [17] proposed the method of
kernelized correlation filters (KCF) by adjusting the channel fea-
tures to multichannel features and introduced a color name (CN)
feature for tracking. The CN feature improves the identification
ability of a tracker. However, the adaptability of the tracker to ro-
tation and fast motion still requires improvement. Subsequently,
Danelljan et al. [18] and [19] proposed a discriminative scale-
space tracker (DSST) using a feature pyramid to solve the mul-
tiscale changes problem; later, they also presented an improved
DSST algorithm. With the rapid development of deep learning,
the continuous convolution operator tracker (C-COT) algorithm
[20] has emerged as a combination of correlation filtering and a
convolutional neural network (CNN), in which spatial location
information is simply represented by the features of a shallow
CNN. This algorithm won the 2016 visual object tracking (VOT)
competition. Similar to C-COT, the discriminative correlation
filter with channel and spatial reliability (CSR-DCF) algorithm
[21] also applies CNN features in combination with a correlation
filter. The use of CNN features improves the robustness of the
algorithm. Tang and Feng [22] proposed multiple kernelized
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TABLE I
STATE OF DIFFERENT MODELS ON OUR DATASET
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TABLE I
(CONTINUED)
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Fig. 1. Trajectories of the 20 sequences.

Fig. 2. Frame of the cloudy sequences.

correlation filters (MKCFs) in 2015. MKCF can achieve stronger
discrimination than KCF through the introduction of multikernel
learning (MKL) into KCF. In 2018, the MKL-based tracker
MKCFup [23] was proposed by reconstructing the correlation
filter objective function. This improvement significantly reduced
the detrimental mutual interference among different particles.
In the learning process of the method of spatially regularized
discriminative correlation filters (SRDCF) [24], a spatial ad-
justment component was introduced to punish the correlation
filter coefficients in accordance with their spatial positions. After
that, Li et al. [25] proposed a tracker based on spatial-temporal
regularized correlation filters (STRCF), combining temporal
and spatial regularization constraints, which showed better per-
formance than SRDCF in terms of both accuracy and speed.

The efficient convolution operator (ECO) [26] was introduced
as a novel formulation for the training and application of a
continuous convolution filter. An implicit interpolation model
is used to model the learning process in a continuous spatial
domain. However, the above-mentioned tracking methods based
on correlation filters are sensitive to boundary effects due to
boundary samples that are not truly negative samples in real
scenes, which affects their tracking performance. In contrast,
the BACF [27] is a learning/updating filter that can effectively
extract negative samples from the background in real time rather
than focusing solely on moving foreground patches. Before this
article, some articles studied tracking methods for occlusion.
The visibility of the target will be different even if the cloud
is completely obscured by the thin environment. In CFME,
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Fig. 3. Pipeline of the proposed ADMFT. First, we use the previous filter to
calculate the response map. Then, if the confidence conditions are not met, the
model is updated based on the current frame and the previous model. Otherwise,
the position will be ensured by the KF result and the correlation filter result. The
parameters of the KF are calculated depending on the frame number of occlusion
occurrence.

proposed by Xuan et al. [12], occlusion is processed through
an update strategy. Recently, some convolutional regression
network and motion features [28], [29], [30], [31] are integrated
for final target location prediction. Shangtang Intelligent Video
Team has performed a series of work on the twin network,
including the Siamese region proposal network (SiamRPN)
[32], which implements the first high-performance twin network
tracking algorithm after introducing detection into tracking.
Cavity convolution is introduced into the Siamese box adaptive
network (SiamBAN) [33]. Experiments show that cavity con-
volution can increase the receptive field and improve tracking
performance. The anchor-free reference in SiamBAN removes
the predefined anchor, which reduces the overall parameters
of the model and further improves the speed. Siamese fully
convolutional classification and regression (SiamCAR) [34] has
an additional centrality branch to better determine the location
of the target center point. Through the anchor-free strategy,
the regression output of the network is transformed into the
distance between the feature map point on the search patch and
the four sides of the selected ground-truth box. Such methods
are not suitable for all complex environments. Target features
will change due to cloud cover. Considering this change when
expressing features can better track in a cloudy environment.

For object tracking in a remote sensing video, the tracking
updates will constantly drift when occlusion occurs. Under
such conditions, the principle of an antidrift multifilter tracker
(ADMFT) is to learn a relatively stable model over a certain
period of time. However, this regularization strategy imposes un-
equal penalties on the filter coefficients, causing the filter to learn
the appearance features of the deformed target. The ADMFT al-
gorithm uses the BACF to process complex background changes.
The BACF can deal with rotation by truly negative samples in
real scenes. It is difficult to estimate position solely on the basis
of appearance features. However, in general, the motion state of

an aircraft should always be stable. But predicting only by the
motion state could not deal with complex motion trajectories.
Therefore, the predicted result for the motion state can be used
to correct the predicted position.

C. Development of an Antidrift BACF via the Introduction of
Temporal Regularization

First, we briefly revisit the BACF formula. The correlation fil-
ter learns the optimalE(h) by optimizing the following formula:

E(h) =
1

2

T∑
t=1

∥∥vt − hP�u [Δτt]
∥∥2
2
+

λ

2
‖h‖22 (1)

where P is a D×T binary matrix, with T being the number
of pixels. u denotes a training image sample, v denotes the
corresponding output centered on the peak of the target, and W
represents the correlation filter. u ∈ R�, v ∈ RT and h ∈ RD.
u[Δτi] denotes the circular shift operator of U. Operator T
denotes a conjugate transpose. λ is a regularization. With the ap-
plication of the circle shift operator, the number of samples will
increase. To improve the speed, we express the above-mentioned
formula in the frequency domain as follows:

E(h, ĝ) =
1

2T

∥∥∥v̂ − 〈 Û , ĝ
〉∥∥∥2

2
+

λ

2
‖h‖22

s.t.ĝ =
√
T (FP� ⊗ I)h. (2)

Here, ˆ denotes the discrete Fourier transform, and � denotes
the Kronecker product. ĝ is an auxiliary variable. F denotes the
orthonormal matrix of complex basis vectors for mapping to the
Fourier domain for any T-dimensional vectorized signal.

Deformation, occlusion, or a complex background of the
target will impact the tracking performance. For example, if
occlusion occurs, the BACF tracker will lose the target. Even if
the occlusion disappears in subsequent video frames, the tracker
cannot relocate the target. In previous studies, termination of the
model update process was often used to overcome occlusion.
We believe that the main difference between cloud occlusion
and the other types of occlusion is that clouds have certain
transparency. Many methods of resisting model drift are based on
ceasing to update the model when occlusion occurs. We believe
that although the apparent features of the target change due to
occlusion in the case of cloud occlusion, these changes should
not be neglected. For a moving target, the target has a potential
motion relationship between consecutive frames. Considering
the motion relationship of a moving target within a certain
period, we introduce an L2 regularization term constraint and
propose minimizing the following objective function to train the
improved BACF algorithm:

E(h) =
1

2

T∑
t=1

∥∥vt − h�u [Δτt]
∥∥2
2

+
λ

2
‖h‖22 +

η

2

T∑
t=1

∥∥v − h�ut−1

∥∥2
2

s.t. g =
(
P� ⊗ I

)
h (3)
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Fig. 4. Impacts of the temporal consistency constraint η on 20 sequences.

TABLE II
COMPARISON OF THE PERFORMANCES OF DIFFERENT MODELS ON OUR

DATASET. THE BEST VALUES IS HIGHLIGHTED IN BOLD

where η is a regularization parameter (λ, η ≥ 0) and µ > 0 is
the corresponding penalty factor, which is used to adjust the
function of the target in the previous frame for model training in
the current frame. The last term in the above-mentioned formula
is a global temporal consistency constraint.

To improve computational efficiency, a correlation filter is
usually converted into the frequency domain by means of the
Fourier transform. In this way, the proposed filter can be repre-
sented in the frequency domain as follows:

E(w, ĝ) =
1

2
‖v̂ − 〈 ût, ĝ〉‖22 +

λ

2
‖h‖22

+
η

2

∥∥v̂ − w�ût−1

∥∥2
2

s.t.ĝ =
√
T (FP� ⊗ I)h. (4)

To solve the above-mentioned formula, we rewrite it using
the augmented Lagrange method [35]

L(w, ĝ, ζ̂) =
1

2
‖v̂ − 〈ût, ĝ〉‖22 +

λ

2
‖h‖22

+ η
∥∥h�ût−1 − v̂

∥∥2
2

+ 2ζ̂
(
ĝ −

√
L
(
FP� ⊗ I

)
h
)

+ μ
∥∥∥ĝ −√

L
(
FP� ⊗ I

)
h
∥∥∥2
2

(5)

where ζ denotes a complex Lagrangian multiplier. This equation
can be solved iteratively using the ADMM technique, and each
of the subproblems, ĝ and h, has a closed-form solution.

Subproblem h is solved as follows:

h = argminhT(h, ĝ, ζ̂)

= argminh

{
λ

2
‖h‖22

+ ζ̂�
(
ĝ −

√
T
(
FP� ⊗ I

)
h
)

+
μ

2

∥∥∥ĝ −√
T
(
FP� ⊗ I

)
h
∥∥∥2
2

}

=

((
μ+

λ√
T

)
I + ηŝu

)−1

(μg + ζ + ηŝv) (6)

where g and ζ are defined as g = 1√
T
(PF� ⊗ I)ĝ and

ζ = 1√
T
(PF� ⊗ I)ζ̂, respectively, ŝu = û�û, and ŝv = û�v̂.

Subproblem ĝ is solved as follows:

ĝ = argminĝL(h, ĝ, ζ̂)

= argminĝ ‖〈ût, ĝ〉 − v̂‖22
+ λ ‖h‖22 + η

∥∥h�ût−1 − v̂
∥∥2
2

+ 2ζ̂
(
ĝ −

√
T
(
FP� ⊗ I

)
h
)

+ μ
∥∥∥ĝ −√

T
(
FP� ⊗ I

)
h
∥∥∥2
2
. (7)

We express problem ĝ as an independent problem and directly
obtain the solution to (7)

ĝ(t)∗ =
1

μ
(T v̂tût − ζ̂t + μĥt)

− ût

μb
(T v̂tŝu(t)− ŝζ(t) + μŝh(t)) (8)

where ŝu(t) = û�
t û, ŝζ(t) = û�

t ζ̂, ŝh(t) = û�
t ĥ and

b = ŝu(t) + Tμ.
Subproblem ζ̂ is solved as follows:

ζ̂ = ζ̂ + μ(ĝ − ĥ) (9)

where ĥ =
√
T (PF� ⊗ I)h andμ is a penalty factor. We update

μ by using the iterative ADMM. μ = min(μmax, βμ), where
μmax denotes the maximum value of μ and β is a scale factor.

We choose the histograms of oriented gradients (HOG) feature
and the CN feature to extract the feature map, where the HOG
feature is a gradient feature and the CN feature is a color feature.
Accordingly, these two features can complement each other to
help better satisfy the tracking objective.
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TABLE III
CLE RESULTS FOR 9 TRACKERS ON 20 SEQUENCES. A TRACKER WITH A SMALLER CLE (IN PIXELS) EXHIBITS BETTER PERFORMANCE IN THE TRACKING

PROCESS. THE BEST AND SECOND-BEST VALUES ARE HIGHLIGHTED IN BOLD AND UNDERLINED, RESPECTIVELY
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Fig. 5. Overlap success plots over eight challenging attributes. The abscissa shows the overlap threshold, ranging from 0 to 1. Precision and success plots show
the performance of our ADMFT compared with other CFTs on 20 sequences.

D. Motion Estimator

In the KF, only the current measured value and the estimated
value from the previous sampling period are needed to estimate
the state, which does not require much storage space. The
number of calculations in each step is small, and the calculation
steps are clear, making this filter very suitable for computer
processing. The KF can help estimate the positions and ve-
locities of moving targets. However, the parameters of the KF
are difficult to determine. To this end, we use a frame-based
parameter selection strategy. Specifically, we use the expectation
maximization (EM) algorithm to estimate the parameters [36]
when the frame number is greater than a certain threshold.
When the frame number is greater than a certain threshold, the
dynamics and observation model can be written as follows:

xt+1 = Axt + wt (10)

yt = Cxt + rt (11)

where xt and xt-1 are the state vectors of the system at times t
and t-1, respectively. In this article, we choose the state vector
xt = [xst, yst, xvt, yvt]

�, where xst and yst are the horizontal
and vertical positions of the target, respectively, at time t and xvt
and yvt are the horizontal and vertical velocities of the target
at time t. wt and rt are Gaussian-form noise matrices, with
the distributions of the covariance matrices being Qt and Rt.
Since the time between any two consecutive frames is short,
it can be assumed that moving targets such as vehicles move
with uniform linear motion. When occlusion occurs, we use
the previous motion state to estimate the motion state under
occlusion. Assume that xt and yt are given for 0 ≤ t ≤ Tocc (the
time of occlusion occurrence); then, the likelihood of A, C, Q,
and R can be written as follows:

L(A,C,Q,R|x,y)
= p(x,y|A,C,Q,R)

=

Tocc∏
t=0

p (xt|xt−1) p (yt|xt) . (12)

This equation can be expanded as follows:

l(A,C,Q,R|x,y)= Tocc

2
log
∣∣Q−1

∣∣+ Tocc+1

2
log
∣∣R−1

∣∣+β

− 1

2
Tr

(
Q−1

(
Tocc−1∑
t=0

xt+1x
�
t+1

−xt+1x
�
t A

�−Axtx
�
t+1 +Axtx

�
t A

�
))

− 1

2
Tr

(
R−1

(
Tocc∑
t=0

yty
T
t − ytx

�
t C

�

− Cxty
�
t+1 + Cxtx

�
t C

�
))

(13)

where Tr is the trace of a matrix and β is a constant. By
maximizing l(A, C, Q, R | x, y) for A, C, Q, and R in turn,
we can obtain

A =

(
Tocc−1∑
t=0

xt+1x
�
t

)(
Tocc−1∑
t=0

xtx
�
t

)−1

(14)

C =

(
Tocc∑
t=0

ytx
T
t

)(
Tocc∑
t=0

xtx
T
t

)−1

(15)

Q =
1

Tocc

(
Tocc−1∑
t=0

xt+1x
�
t+1 − xt+1x

�
t A

�

−Axtx
�
t+1 +Axtx

�
t A

�
)

(16)

R=
1

Tocc + 1

(
Tocc∑
t=0

yty
�
t −ytx

�
t C

� − Cxty
�
t +Cxtx

�
t C

�
)
.

(17)

We represent the motion state estimates as follows:

x̃t+1|t = Ax̃t|t (18)



4448 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 6. Precision and success plots show the performance of our ADMFT compared with other CFTs on cloudy_little_01(b).

Fig. 7. Tracking performance of our ADMFT compared with other CFTs on cloudy_little_01(b).

Pt+1|t = APt|tAT +Q (19)

Kt+1 = Pt+1tC
T
(
CPt+1|tCT +R

)−1
(20)

x̃t+1t+1 = x̃t+1|t +Kt+1

(
yt+1 − Cx̃t+1|t

)
(21)

Pt+1|t+1 = Pt+1|t −Kt+1CPt+1t (22)

where x̃t+1 is the optimal state estimate and K is the KF gain
matrix. In the inference stage, the calculation of the KF includes
only 10 instances of matrix multiplication, 5 instances of matrix
addition, and one calculation of the reciprocal of a 2×2 matrix.

Compared with the computational complexity of the correlation
filter, the increase in computational complexity is very small.

The KF offers high accuracy in estimating the target motion
state, but the KF is very complex. This filter can converge
only when sufficient frames are used to update the filter. To
estimate the motion of a moving target before KF convergence,
we propose a method of simulating the real motion state by
using an assumed motion state. We can assume that the target
moves in a uniform, straight line over a short time, even if the
target is in a state of turning, stopping due to an emergency, or
accelerating. Based on this assumption, the speed of the moving
target in the current frame can be estimated from the average
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Fig. 8. Performance of our ADMFT compared with other CFTs on cloudy_little_02(c).

Fig. 9. Tracking performance of our ADMFT compared with other CFTs on cloudy_little_02(c).

displacement with respect to the previous frame. The moving
target’s position in the current frame can be estimated by using
the speed and position of the moving target in the previous
frame. Therefore, the values can be estimated as described in
the following equations:

Δxt−1 =
1

n

n∑
i=1

(xt−i − xt−i−1) (23)

Δxt−1 =
1

n

n∑
i=1

(xt−i − xt−i−1) (24)

Pt = φSt−1n (25)

where St-1 is the state vector of the target at time t-1,
St−1= (xt−1, yt−1,Δxt−1,Δyt−1)

�; Pt = (xt, yt)
� is the po-

sition vector of the target at time t; and φ is a transfer matrix,
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Fig. 10. Precision and success plots showing the performance of our ADMFT compared with other CFTs on cloudy_less_01(a).

which can be written as follows:

φ =

(
1 0 1 0
0 1 0 1

)
(26)

n is the number of frames used for estimation. If n >
Numconfident, then the parameters can be ensured by the EM
algorithm. Using a frame-based parameter selection strategy can
help us obtain the most suitable parameters.

E. Tracker Fusion Based on the APCE

To combine the result of motion state prediction with the result
of the correlation filter, we propose a combination strategy based
on multipeak matching Fig. 3. First, to judge whether the target
is occluded, we calculate the APCE, the degree of fluctuation of
the response diagram, and the confidence level of the detected
target

APCE =
|Fmax − Fmin|2

mean
(∑

w,h (Fw,h − Fmin)
2
) (27)

where Fmax, Fmin, and Fw,h represent the maximum and min-
imum response values and the response at position (w, h),
respectively.

The current APCE value will be significantly reduced rela-
tive to the historical mean when the moving target is blocked,
changed, blurred, or lost. Consequently, the current response
diagram will oscillate and exhibit a multipeak phenomenon. At
this time, confidence in the target center position is considered
to be low. Generally, when multipeak oscillation occurs, the
response value at the center of the target will also be signifi-
cantly reduced, that is, the peak Fmax will generally be lower
than the peak without interference. It can be seen that Fymax

reflects the confidence in the target center position from the
local part of the response diagram, whereas the APCE reflects
its confidence from the overall response diagram. Accordingly,
higher confidence can be achieved by combining the two in the
current frame t only when the ymax and APCE values are in
a certain proportion, represented by α and β. In this article,
we set α to 0.5 and β to 0.3. α and β can be adjusted in the

reality; for example, if the movement is complex, the KF should
be suppressed, and β should be downwards. If the object has
confusing features,α should be downwards. When the historical
mean value is exceeded, it is considered that the target center
position has high confidence, that is, two conditions need to be
met simultaneously.⎧⎪⎪⎨⎪⎪⎩

Fmax ≥ α · 1
t−1

t−1∑
i=1

Fi,max, Fi,max ∈ Py

APCE ≤ β · 1
t−1

t−1∑
j=1

APCEj , APCEj ∈ PE

. (28)

Each time Fi,max and APCEj are calculated, the values will
be saved in the corresponding sets Py and PE as a pair of
historical values for the next judgment. To reduce the number
of calculations in the algorithm, we do not correct the position
in each frame; however, when there is multimodal oscillation in
the current frame t and the target center position may be judged
incorrectly, that is, when the Fmax and APCE values do not
meet the conditions for high-confidence detection, we introduce
motion information to correct the position. At this time, we fuse
the motion information with the relevant filter information in a
weighted manner, replace the current prediction result with the
fused result, and update the filter model with the current result

positionreal =
1

2(APCE/APCE1)
positionCF

+

(
1− 1

2(APCE/APCE1)

)
positionKF .

(29)

III. EXPERIMENT AND ANALYSIS

A. Performance Measures

To evaluate the performance of our proposed algorithm, we
use one-pass evaluation (OPE) as the evaluation protocol. This
protocol was proposed for the OTB-2013 benchmark [37]. OPE
relies on two plots, which are called the accuracy plot and the
success plot. The accuracy plot shows the percentage accuracy
of the predicted positions relative to the ground-truth values
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Fig. 11. Tracking performance of our ADMFT compared with other CFTs on cloudy_less_01(a).

at different thresholds. The success plot represents an average
overlap measure [38]. Given the result bounding box br and the
ground-truth bounding box bg, the success score (success) is
calculated as follows:

Successs=
S {br ∩ bg}
S {br ∪ bg} (30)

where � represents the intersection of two regions, � represents
the union of two regions, and s represents the area of a region.

The AUC is defined as the area under the receiver operating
characteristic curve.

To evaluate the performance of our proposed tracker, we also
adopt the center location error (CLE), which is the average
Euclidean distance between the center location of the estimated
target and the ground-truth target center location.

Similar to BACF, we adopt the regularization factor λ is set
to 0.01, and η is set to 10−4 by experience in Fig. 4. For the
ADMM optimization, the number of iterations and the penalty
factor μ are set to 2 and 1. The penalty factor at iteration i+1 is
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Fig. 12. Tracking performance of our ADMFT compared with other CFTs on cloudy_less_01(a). The red boxes represent the ADMFT labels, while the black
boxes indicate positive sample labels.

Fig. 13. Tracking performance of our ADMFT compared with other CFTs on cloudy_more_01(d). The red boxes represent the ADMFT labels, while the black
boxes indicate positive sample labels.

updated by µi+1 = min(µmax, βµi), where μ = 1, β = 0.1, and
µmax = 103.

For cloudy data, drift often occurs in the last frame; therefore,
when estimating, we focus on its trajectory and drift degree.

B. Quantitative Evaluation

In our experiment, to ensure fair comparisons, a list of the
most advanced trackers of the same type, i.e., the top-performing
trackers that function similarly to the proposed ADMFT, was
compiled as the set of trackers considered for comparison. For
this purpose, the efficient convolution operator with handcrafted
features (ECO) was selected from among trackers based on
handcrafted features as a representative tracking model with
good performance. The circulant structure of the tracking-by-
detection with kernels (CSK) algorithm also achieves good
performance by introducing the kernel technique and ridge
regression into MOSSE. The CN approach is a good method to
obtain color features. It achieves good performance on images
with obvious color contrast. The CSR-DCF algorithm combines
spatial reliability and channel reliability methods in image seg-
mentation to more accurately select the effective target tracking
area. MKCFup significantly reduces the detrimental mutual
interference among different particles. The STRCF method
constrains the effective scope of the filter template to overcome
the boundary effect. The BACF is the basic method on which
our improved algorithm is based. SiamRPN combines the twin
network in tracking and the regional recommendation network
in detection: the twin network can adapt to the tracking target
so that the algorithm can use the information of the tracked

target to complete the initialization of the detector. The regional
recommendation network allows the algorithm to predict the tar-
get location more accurately. SiamBAN adopts the anchor-free
strategy, which does not preset the size of the anchor box so that
the box has more powerful degrees of freedom. SiamCAR has
an additional centrality branch to better determine the location
of the target center point. We compare our improved method
with the above-mentioned advanced methods.

Our model ensures high accuracy and a good antidrift ability
while maintaining high operation efficiency. The purpose of our
experiments is to verify that under a variety of different target
states, it achieves an AUC that is higher than those of other track-
ers. It can adapt to complex conditions. The performance and
programming language specifications are given in the following
table.

Moreover, the frame rate of our method reaches 83.84 fps,
which is only 0.13 times slower than that of the BACF before
improvement. Our experimental environment is as follows: the
algorithms are executed on a Windows 10 system with an
Intel(R) Core(TM) i7-9700 CPU and 16 GB of RAM. The
performance is given in Table I.

Table III shows the CLE results (in pixels) achieved by our
proposed tracker and the other approaches on 20 sequences. Our
model achieves satisfactory performance among the compared
methods, with a small CLE. The results show that the ADMFT
is robust on video sequences with fast motion, occlusion, and
deformation of the tracking targets.

The ADMFT uses a correlation filter for position estimation.
When occlusion occurs, its influence will be corrected based
on the motion state. Its average CLE is 4.363 pixels, which is
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Fig. 14. Tracking performance of our ADMFT on videos occluded by white
blocks with transparency 0.8. According to the results, the performance of the
ADMFT can remain stable even under a high degree of occlusion.

greatly superior to the results for the other correlation-filter-
based trackers (CFTs). These results show that the proposed
combination of the KF and a correlation filter is quite effective
for position estimation.

Furthermore, a frame-by-frame comparison of the CLEs
on the 20 sequences is shown in Fig. 5. The vertical axis
represents the CLE, while the horizontal axis represents the
frame number in the image sequence. The proposed ADMFT
produces favorable results for the 20 targets. Compared with
the other eight methods, the ADMFT handles cloud occlu-
sion well. In the complex_background_01–03 videos, the tar-
gets suffer from background clustering, and the ADMFT
achieves better performance. On videos showing aircraft mov-
ing at regular and slow speeds, almost all trackers per-
form well. In videos with aircraft rotation (rotation_01-04),
the target appearance changes significantly with deformation
and illumination variation, and most trackers fail to track
the target at the beginning of the image sequences. How-
ever, our method succeeds in estimating the position of the
target.

Fig. 15. Trajectories of CFME for the sequence cloudy_ more_01(d) and
cloudy_ less_01(a).

Fig. 16. Pictorial representation of ADMFT and BACF updates for the se-
quence cloudy_ less_01(a) (frames #10, #100, #116, #127, and #164).

Fig. 17. Comparison of the influence of the ADMFT motion estimator on
cloudy_less_01(a).
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It can be seen from the above-mentioned findings that our
algorithm can track targets more accurately under normal condi-
tions than the BACF method before improvement. Moreover, the
ADMFT has an improved tracking ability in cases of occlusion,
especially in terms of the balance between resisting occlusion
and performing well in general situations. Consequently, our
method is far superior to the existing methods. Occlusion is
widely encountered in remote sensing images. Because general
methods do not have a high ability to deal with the problem of
cloud occlusion, even though targets in cloud-occluded image
data can be observed by the human eye, these data have often
been directly abandoned in previous practice. Under the pre-
viously available methods, such cloud-obscured data have not
been well utilized, and the quantity of data discarded for this
reason is considerable. Therefore, the ability to effectively use
these data is expected to be of great significance in research and
practical applications.

C. Antidrift Ability Evaluation

From a comparison of the CLEs for cloudy_little_01 and
cloud_little_02 in Fig. 1(b) and (c), it can be seen that the
ADMFT achieves constant, stable tracking in the case of thin
clouds. To more intuitively see whether the target suffers
from a position offset under cloud occlusion, we comprehen-
sively consider the accuracy and success rate results for the
cloudy_little_01(b) video and observe the corresponding tra-
jectories in Figs. 6 and 7. It is found that in the case of thin
cloud occlusion, although the original method is only slightly
disturbed, our model can still more effectively resist the inter-
ference and achieve better performance.

We also comprehensively consider the accuracy and success
rate results for the cloudy_little_02 video and observe the cor-
responding trajectories in Figs. 8 and 9. Again, it is found that
in the case of thin cloud occlusion, the original method is only
slightly disturbed, but our model still performs better. However,
the Siam-trackers model drifts in this sequence, and the Siam-
tracker cannot deal with sudden changes in two adjacent frames.

In the case of medium cloud cover, some methods fail badly,
and the trajectory offset is serious. All other methods show per-
formance fluctuations to varying degrees, whereas our method
is stable. The CN approach uses color features. The CSR-DCF
algorithm combines CNN features to better express the target
characteristics. MKL achieves a stronger distinguishing ability
than KCF in MKCFup. The results of these trackers show slight
deviations. When the target is initially occluded, these methods
can obtain features that are not occluded to continue tracking the
target. However, when the target is occluded and then exposed,
the previously occluded part is often exposed first, and because
the features of this part have not been learned for some time, they
cannot well represent the target. Improving the feature extraction
capabilities is effective for transient cloud occlusion but cannot
overcome the influence of the occlusion caused by dense clouds.
However, feature extraction over a certain period of time can
solve this problem. In the cloudy_less_01(a) video, the STRCF
results drift because of rotation. The STRCF method does not

intensively extract negative examples from the background in
real time rather than focusing on moving foreground patches.
Introducing the time consistency constraint into the BACF algo-
rithm endows it with good tracking ability that can adapt to
complex scenes. We comprehensively consider the precision
and success rate results for cloudy_less_01(a) and observe the
corresponding trajectories in Figs. 10–12.

As seen in the above-mentioned figures, in cases of occlusion,
our method effectively limits the model drift compared with
the original BACF algorithm. Through incorporating motion
features, the prediction of the target position is improved.

In the case of thick cloud occlusion, the model update process
gradually causes the model to prioritize cloud features over real
target features; however, our model is less polluted when the
target enters a cloud. In this case, the target becomes seriously
occluded within five frames. It can be seen that other methods
suffer from model drift, resulting in a gradually increasing target
offset. Due to improper updates, the CN, CSR-DCF, and MKC-
Fup methods also exhibit model drift. In contrast, the correction
process based on the motion state and time regularization helps
our method predict the target’s position more accurately. When
the clouds are thick and the aircraft body is severely blocked,
our method can still closely track the target in Fig. 13, while
other methods suffer from offset.

We used white blocks to simulate clouds of different trans-
parencies and performed tests using the simulated data to verify
the performance of the ADMFT. We selected several targets
with good tracking performance for each tracker as the research
targets and used white blocks with transparency values of 0.2,
0.5, and 0.8 to occlude half of each target to test the performance
of the trackers. In this verification test, our method can still
achieve stable tracking under occlusion with a transparency
value of 0.8, as shown in Fig. 14.

In CFME, a method using short-term motion state prediction
to replace the prediction value in the case of model drift is pro-
posed. After testing in four cloud occlusion videos, the CFME
method is an efficient tracking method that performs well in the
case of a simple motion state. However, after verification in the
video, the CFME method cannot track the target normally in the
case of occlusion with a complex motion state in Fig. 15.

D. Ablation Experiment

The temporal regularization strategy can improve the antidrift
ability of a tracker. The features extracted over a period of
time are more stable than those extracted from only one frame.
Here, we compare the peak distributions before and after the
introduction of temporal regularization. It can be seen in the
peak diagram that the peak fluctuation with our method is slight
in Fig. 16, resulting in a better anti-interference effect.

The motion estimator also helps to correct the tracking results.
To test its contribution, we used only the antidrift BACF with
temporal regularization on cloudy_less_01(a). The tracking re-
sult is shown in the left part of Fig. 17, and the tracker fusion
result is shown in the right part of the figure.
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As seen in the above-mentioned comparisons of the influence
of the motion estimator and the temporal regularization strategy,
these two model components both improve the tracker’s ability.
The motion estimator incorporates motion information, which
is always stable in aircraft tracking. The temporal regularization
strategy can help the tracker learn stable features over a certain
period of time.

The features of the target will change upon entering a cloud.
During this process, the target states will serve as our essential
reference values for updating the model. Model drift often occurs
before and after the target enters the cloud. The greater the
degree of occlusion is the more pronounced the model drift.
Some tracker models will drift during the update process. Our
method restricts the model update by means of L2 regularization
and uses the motion state to correct the trajectory. Thus, tracking
failure caused by drift is successfully avoided.

IV. DISCUSSION

The ADMFT was written in Python and implemented on a PC
with a 3.00 GHz CPU and 16 GB of memory. Our experiments
show that the developed ADMFT can process video data at more
than 83 fps. In summary, the remote sensing image features
remain unchanged, and the main model drift is caused by cloud
occlusion. For this type of drift, we successfully solve the drift
problem by learning features over a time series and correcting the
target model. Moreover, in the general process of aircraft flight,
the proposed method can effectively obtain the features of the
target aircraft to address the aircraft tracking problem in complex
scenes. The ADMFT can be widely used as an aircraft tracker for
satellite video. However, the ADMFT only works for aircraft,
so we did not consider the scaling problem or target labeling
with rotation rectangles. Moreover, the tracking efficiency can
be further improved by implementing the algorithm in a parallel
processing system.

V. CONCLUSION

This article describes an effective method for tracking moving
aircraft in satellite videos. For video tracking of moving aircraft,
we design a BACF based on temporal regularization to address
the model drift caused by cloud occlusion and use the ADMM to
speed up the solution process. In addition, the KF helps improve
detection accuracy. The APCE is used to judge whether the
trajectory needs to be corrected. The motion information can
correct the trajectories of objects in simple environment and tem-
poral regularization can help resist the influence of occlusion.
We tested our method on satellite videos by tracking 20 moving
aircraft of different sizes and in different dynamic states. The
proposed ADMFT algorithm achieved better tracking accuracy
than the most advanced existing algorithms. Specifically, its
tracking effect for targets under cloud cover is better than that of
other advanced methods. The ADMFT exhibits good robustness
and can handle various remote sensing video environments
for airplanes. In future work, we will further test the tracking
capabilities for other remote sensing targets, such as ships and
ground vehicles.
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