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Remote Sensing Based Crop Type Classification
Via Deep Transfer Learning

Krishna Karthik Gadiraju

Abstract—Machine learning methods using aerial imagery
(satellite and unmanned-aerial-vehicles-based imagery) have been
extensively used for crop classification. Traditionally, per-pixel-
based, object-based, and patch-based methods have been used
for classifying crops worldwide. Recently, aided by the increased
availability of powerful computing architectures such as graphical
processing units, deep learning-based systems have become pop-
ular in other domains such as natural images. However, building
complex deep neural networks for aerial imagery from scratch is a
challenging affair, owing to the limited labeled data in the remote
sensing domain and the multitemporal (phenology) and geographic
variability associated with agricultural data. In this article, we
discuss these challenges in detail. We then discuss various trans-
fer learning methodologies that help overcome these challenges.
Finally, we evaluate whether a transfer learning strategy of using
pretrained networks from a different domain helps improve remote
sensing image classification performance on a benchmark dataset.
Our findings indicate that deep neural networks pretrained on a
different domain dataset cannot be used as off-the-shelf feature
extractors. However, using the pretrained network weights as initial
weights for training on the remote sensing dataset or freezing the
early layers of the pretrained network improves the performance
compared to training the network from scratch.

Index Terms—Agriculture, crop classification, deep learning,
remote sensing, transfer learning.

1. INTRODUCTION

EMOTE sensing image classification is an active area
Rof research for the past two decades in areas such as
agriculture, national security, poverty mapping, and disaster
management. More specifically, research in the agricultural
domain has focused on areas such as crop classification, crop
health monitoring, and crop yield prediction. In this article, our
focus is on crop classification. Crop classification serves as an
essential step in estimating the crop area coverage as well as an
initial step for crop yield prediction. As described in [1], accurate
mapping of crops is important to several stakeholders such as
farmers and key policy makers in the government. As described
in [2], accurate agricultural estimates have important economic
impacts. In addition, accurate mapping of crops is essential from
a food security perspective, since it allows governments to make
strategic plans to sustain the growing world population.
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Several works have addressed the task of crop mapping.
These methods have evolved over time, depending upon the
available computing power, advances in machine learning meth-
ods and the spatial and temporal resolutions of the aerial im-
agery. For example, improving spatial (such as the data pro-
vided by National Agricultural Imagery Program (NAIP, 1-m
spatial resolution) [3] and temporal resolutions and availabil-
ity of graphical process units (GPU)-based computing has al-
lowed for the usage of deep learning methods in the domain
of agriculture. However, building deep learning solutions for
the domain of remote sensing has its own challenges. In the
following section, we first highlight the common challenges
existing in building accurate crop maps using satellite im-
agery. Then, we discuss how while some of the challenges can
be overcome using deep learning, other challenges may still
remain.

A. Crop Classification With Remote Sensing Imagery:
Challenges

The challenges associated with performing crop classification
using remote sensing imagery can be broadly categorized into
the following three sections: domain, data, and methodology-
based challenges. We describe each of these sections in detail as
follows.

1) Domain Challenges: Classification of crops has several
domain specific challenges. For instance, high variability can
exist in agricultural data due to differences in terrain, topology,
weather, soil properties, crop health, noise due to the presence
of other classes such as cloud cover or built up area, and time
of acquisition of the image. Fig. 1 shows some examples of
variations caused due to crop health, date of acquisition, and
the presence of other classes in the images. Depending upon
the date of acquisition of a satellite image with respect to the
growth cycle of a crop, images belonging to the same crop may
look vastly different, while images belonging to different crops
may look vastly similar. This results in high interclass similarity
and low intraclass similarity.

2) Data Challenges: Data challenges are twofold described
as follows.

1) Lack of large labeled data: While other domains such
as natural images have large labeled datasets such as
ImageNet [4], despite petabytes of data being collected
regularly using a variety of sensors, the remote sensing
domain has limited labeled data. As described in [5],
acquisition of labeled data is a challenging operation.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0003-3964-7242
https://orcid.org/0000-0002-7083-0267
mailto:kkg.research23@gmail.com
mailto:kkg.research23@gmail.com
mailto:rrvatsav@ncsu.edu

4700

(b)

Fig. 1. Variability introduced in data. (a) Randomly selected imagery for the
Corn class from Iowa and Illinois. (b) Randomly selected imagery for the Corn
class from North Carolina for 2016.

2) Dependence on data due to high variability in data
sources: This high variability can occur due to a variety
of conditions such as follows:

a) depending upon when the images are acquired, one can
observe variability due to changes in weather creating
noisy conditions such as cloud cover;

b) depending upon the properties/features of the collec-
tion medium such as the spatial and temporal resolu-
tions of the satellites/unmanned aerial vehicle (UAV)
devices used to collect the data, and the difference in
the type of on-board sensors.

Traditionally, satellites with lower spatial resolution such as
Moderate Resolution Imaging Spectrometer (MODIS, 250-m
spatial resolution) [6] and LANDSAT (30-m spatial resolution)
have been used to map the crops around the world [7], [8].
The challenge with classification of data using coarse resolution
imagery is thatitis purely dependent on the spectral information,
since the size of an object will be significantly lower than the
size of a pixel. As a result, most historical efforts for mapping
crops across the world [9], [10], [11], [12] have focused on
per-pixel classification efforts. In contrast, very high spatial res-
olution (VHR) multispectral imagery such as the data provided
by National Agricultural Imagery Program (NAIP, 1-m spatial
resolution) [3], allows for higher spatial information. The high
spatial resolution allows individual objects within a region to
be distinguished, and the size of a pixel is much lesser than
the size of an object. More specifically, in the area of crop
classification, high spatial resolution allows for the development
of fine grained crop maps. In particular, in Asian countries
where farm sizes can be small in area, high-resolution images

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

are critical for identifying crop types. We discuss more about
the various methodologies used for classifying remote sensing
imagery and their challenges in the next section.

3) Methodology Challenges: ITmage classification efforts us-
ing aerial imagery for crop classification are either pixel-
based [13], [14], [15], [16], object-based [17], [18], [19],
neighborhood-based [20], [21] or patch-based [22], [23] ap-
proaches. The main drawback of pixel-based approaches is
their inability to capture the spatial autocorrelation of neigh-
boring pixels and often require postprocessing steps to improve
classification. In addition, they are computationally inefficient
when dealing with VHR imagery. In contrast, neighborhood-
based and object-based approaches take into consideration the
spatial relationship between neighboring pixels. Neighborhood-
based approaches typically use methods such as Markov ran-
dom fields (MRFs) and are computationally expensive when
using VHR imagery. Object-based approaches typically iden-
tify individual objects from images using image segmenta-
tion methods followed by classifying these individual objects
based on their properties. Object-based approaches are de-
pendent on the efficiency of the segmentation and are more
popular for detecting objects such as buildings and roads.
Next, we have the patch-based approaches such as Bag of Vi-
sual Words (BOW)-based approaches. However, certain BOW-
representations also ignore the relationships between the words
in the bag, which may prove crucial in improving the predic-
tive performance. Finally, a majority of the aforementioned
approaches require the generation of additional features [24],
[25] to achieve optimal predictive performance. The authors
in [26] and [27] provide a detailed overview over the var-
ious hand-crafted features used for remote sensing image
classification.

Classification of imagery using deep neural networks such
as convolutional neural networks (CNNs) also falls into the
category of patch-based approaches. As described in [28], CNNs
are deep neural networks that are designed to work on data
that has a grid-like structure such as time series, images, and
videos. When considering images (2-D), in contrast to traditional
neural networks, which acts on each pixel of the image, CNNs
act on the neighborhood of each pixel. This is done using
linear operations (convolutions). The outputs of the convolution
operations are known as feature maps. As a result, CNNs are
better able to capture neighborhood relationships in contrast to
traditional per-pixel, object-based and BOW-based classifiers.
In addition, CNNs simulate the features perceived by the human
brain by detecting high-level task-relevant features as a function
of low-level feature representations. In other words, they can
perform representation learning. This ability allows CNNs to
extract hierarchical semantic features relevant to a particular
task [29]. As aresult, CNNs have outperformed traditional image
classification methods in domains such as natural images. Deep
CNNs such as the VGG network [30] from the Visual Geometry
Group (VGG) from the University of Oxford, GoogleNet [31],
Residual Network (ResNet) [32], and DenseNet [33] have
demonstrated significant improvements in performance in the
domain of natural images. While deep CNNs have since evolved
to solutions in the temporal (1-D-CNNs) and spatiotemporal
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Fig. 2.
and soy images.

domains (3-D-CNN:ss), in this article, we specifically study CNNs
from the 2-D perspective.

However, even while using deep neural networks such as
CNN:s, the following challenges exist.

1) Deep CNNs require high spatial resolution imagery. Pop-
ular remote sensing sources used for crop classification
such as MODIS (250 m) have coarse spatial resolution.
Coarse spatial resolution leads to the aggregation of visual
information such as combination of spectral information
of built-up areas and vegetation. This hinders the ability
of CNNss to find low-level features that are relevant to the
task.

2) Supervised deep neural networks need to be trained on
large datasets for optimal performance, which is a chal-
lenge due to the limited labeled data available in the remote
sensing domain. While labeled data exist at high resolution
scale in developed countries, such data are not available in
developing countries. In addition, most existing datasets
are typically small or medium scale in size.

3) Deep neural networks also suffer from the variability
challenge arising due to high interclass and low intraclass
similarity. This, when combined with the limited data,
becomes a bigger challenge.

4) Finally, deep learning has a high computational require-
ment.

The limitation of coarse resolution imagery has been over-
come in the recent past due to the availability of VHR im-
agery. Computational challenges can be overcome using high
performance computing (HPC) systems and GPUs. As described
in [29], the variability due to a variety of factors (such as
the ones described in the aforementioned domain and data
challenges) can cause a shift in the class distributions between
training and test data. This is contrary to the assumption of
traditional machine learning approaches that training and test
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Low interclass similarity observed in the probability distributions (PDFs) between two different corn images and high intraclass similarity between corn

data have similar distributions. For instance, depending upon
the geographical location, climate and weather conditions, and
the acquisition time of the remote sensing imagery, images
of the same crop can appear to be vastly different. Similarly,
images of different crops can appear vastly similar. This is
clearly seen in Fig. 2, where there is a clear distinction in the
marginal distributions of the two corn images, while the corn
and soy images have a very similar distribution. As a result,
traditional machine learning approaches demonstrate a poor
performance when there is a shift in domain. Donahue et al.
[34] demonstrated that deep neural networks are impacted when
such a domain shift occurs. While it can be argued that with
sufficiently large training data, one can build models that can
sufficiently capture the variabilities, as discussed earlier, there is
lack of large labeled data in the remote sensing domain. Another
solution is to build temporal methods that can capture different
stages of the crop growth period (crop phenology). In this case,
classification will be based on differentiating the growth patterns
of different crops. However, as described in [35], these criti-
cal patterns may change with changing seasons, geographical
locations, and a variety of other conditions and choosing the
relevant time periods is a challenge. Purely temporal solutions
also tend to be per-pixel based and as a result cannot capture
the spatial autocorrelation between neighboring pixels remote
sensing data. Spatiotemporal solutions using methods such as
3-D CNNs [36] that can capture both the spatial and temporal
relationships, which can perform better. However, not all remote
sensing sources have both high spatial and temporal resolutions,
or sufficiently large amount of training data to achieve high
classification accuracy. Finally, another solution is to build local
models to capture the specific properties in a geospatial location.
However, even this approach can quickly become computa-
tionally expensive when operating at a national or a global
scale.
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In this article, we focus on transfer learning as a means to
overcome the challenge of limited labeled data. We study trans-
fer learning in detail in Section III. We describe our contributions
in the next section.

II. OUR CONTRIBUTIONS

In this article, we offer the following contributions.

1) We provide a detailed overview of the various transfer
learning strategies to overcome the challenge of limited la-
beled data in the remote sensing community in Section III.

2) We evaluate several finetuning strategies in the context
of deep neural networks and identify optimal strategies.
A detailed overview of these methods can be seen in
Section V.

3) We created a large scale crop imagery benchmark dataset
to evaluate various aspects of transfer learning. A detailed
description of the dataset is included in Section V-A.

The rest of this article is organized as follows. In Section III,

we provide a brief background of transfer learning and discuss
the various transfer learning methods described in the literature.
This is followed by a description of the methodology used in
this article in Section IV, and the experiments and results are
presented in Section V. Finally Section VI conclude this article.

III. RELATED WORK

Machine learning methods for remote sensing image classi-
fication have evolved with the improving spatial and temporal
resolutions of available imagery. We discussed the limitations
of traditional approaches such as pixel-based, neighborhood-
based, and object-based approaches in the previous section. We
also discussed the limitations of certain patch-based approaches
such as the BOW-based methods.

As described earlier, deep neural networks, such as deep
CNNs on the other hand, can perform representation learning
by detecting hierarchical task-relevant features as a function
of low-level features such as edges. We described in detail
the challenges associated with using deep neural networks for
performing remote sensing image classification in Section [-A3.

Previously, methods such as greedy layer-wise unsupervised
pretraining were popular to tackle the challenge of limited
labeled data. Greedy layer-wise unsupervised pretraining trains
each layer (such as autoencoders or restricted Boltzmann ma-
chines, which can learn latent representations [28]) of a net-
work on unlabeled data before adding the next layer. After the
unsupervised training, finetuning is performed by training all
the layers using a supervised learning method on the limited
labeled data. As described in [27], the pretraining can serve as a
regularizer, and the learned parameters from pretraining can be
good initial parameters for the supervised learning step. In [37],
the authors learn sparse representations of satellite images by
using greedy layer-wise unsupervised pretraining together with
the Enforcing Population and Lifetime Sparsity algorithm. The
trained network is used as a feature extractor and combined
with a simple classifier. Liang et al. [38] use greedy layer-wise
unsupervised training to train the nonpenultimate layers of a
stacked denoising autoencoder, followed by supervised training
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on labeled data. However, as described in [28], solutions such
as transfer learning, Bayesian learning, and deep CNNs have
overshadowed the greedy layer-wise unsupervised pretraining
effort. As discussed earlier, in this article, we focus on transfer
learning approaches.

Transfer learning is one possible solution to the challenges of
limited labeled data and variability. As described in [39], given
a source domain S and its learning task Lg, a target domain
T and its learning task L, transfer learning methods allow for
the improvement of performing learning tasks on 7" using the
knowledge gained from S. Pan and Yang [39] categorize transfer
learning as inductive, transductive, or unsupervised depending
upon the similarities/dissimilarities between the two domains,
the two tasks and the availability of labeled data in the source
and target tasks. Some examples of domain dissimilarity include
differences in the marginal distributions or the feature space.
Some examples of task dissimilarities include differences in
the classification labels. Traditional methods such as Random
Forests were also used previously for pixel-based classification
of crops [40], where a Random Forest model trained on multi-
temporal NDVI data from one location is used to evaluate the
performance at a different location. However, in [40], it should
be noted that both the source and target domains, as well as
source and target tasks are the same. Our focus in this work is
based on transfer learning for patch-based classification using
deep neural networks.

While other methods such as self-supervised learning [41],
[42] and zero-shot learning have also overcome the limited
labeled data challenges, our focus in this article will be on
transfer learning methods. We refer the readers to [43] for
further reading on these methods. It should be noted here that
some methods described in the following may fall under several
categories, and they are not necessarily mutually exclusive,
and can be used together as well. A comprehensive review of
machine learning methods to tackle the limited labeled data and
variability challenges is beyond the scope of this article. We will
primarily focus on deep transfer learning methodologies. More
specifically, we will focus on the scenarios where labeled data
exist either in the source or target domains or both.

1) Inductive transfer learning [39]: In inductive transfer
learning, the target and source learning tasks are different
but related, while the source and target domains may or
may not remain the same. Methods such as finetuning in
deep neural networks and multitask learning fall under this
category.

The concept of supervised finetuning can be observed in
Fig. 3. In finetuning deep neural networks such as CNNss,
the assumption is that a deep neural network trained on a
sufficiently large source dataset would learn features that
are transferable to analyzing another target dataset when
the source and target domains are similar to each other.
This is because, earlier layers in a CNN learn generalized
features [44] (such as edges) and the later layers learn
more advanced task-specific features. While using the
pretrained model and performing training on the target
dataset, the layers extracted from the pretrained model
can either be trained again, or we can fix the parameters
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Fig. 3.
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layers (c) on TARGET side are appropriately designed for the target domain. This new TARGET network is finetuned on the smaller target dataset using the three
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of these layers (referred to as freezing the layers) and train
only the new layers. It should be noted here that the pre-
trained network becomes purely as a feature extractor [45]
if all the layers of the network are frozen. Several examples
exist in literature where finetuning deep neural networks
using large source datasets such as the ImageNet [4] has
improved classification performance on a similar target
domain (such as natural images). However, the domain of
remote sensing imagery is different in comparison to nat-
ural images [46]. First, the size, shape, and orientation of
objects typically found in remote sensing imagery (which
is typically overhead imagery) is different to those found in
natural images. Second, the type of sensors (LIDAR, ther-
mal, radar, and multispectral [46]) used in remote sensing
imagery are typically not available in the domain of natural
images. The important question that we aim to answer in
this work is to verify if the principle of finetuning using
well-known models that were trained on large scale dataset
of natural images such as ImageNet [4] can help improve
the classification performance of a different domain such
as remote sensing imagery.

Some recent research efforts that use finetuning in the do-
main of remote sensing include the following: Marmanis
et al. [47] train a smaller CNN on the features extracted
from a much larger CNN that was pretrained on the Im-
ageNet dataset to show improved predictive performance
on the University of California (UC), Merced Land Use
dataset [48]. Nogueira et al. [49] prove that using several
well-known networks that extracting features from finte-
tuned networks and classifying them using an SVM clas-
sifier improved performance on Merced [48], Brazilian
Coffee Scenes [50], and the RS-19 [51] datasets in contrast

to training the networks from scratch or using hand-crafted
features. Yang et al. [52] combine the outputs of a CNN
capturing spectral information and another CNN capturing
spatial information. In their solution, earlier layers of
a network pretrained on different hyperspectral imagery
collected from the same sensor are combined with new
randomly initialized layers. In [49] and [52], the finetuning
strategies consider both the source and target datasets
being from the remote sensing domain. In contrast, this
work aims at answering the question whether finetuning
strategy can improve classification performance when the
source and target domains are different. Cheng et al. [53]
develop a two-phase approach, where they use the CNNs
that were pretrained on the ImageNet dataset (natural
images) as off-the-shelf feature extractors to extract spa-
tial features from hyperspectral imagery, followed by a
metric learning-based feature fusion with spectral features
approach to improve the classification performance. In
contrast, we evaluate a broader spectrum of finetuning
approaches in addition to treating the pretrained CNNs as
feature extractors. In addition, the dataset used in this work
is based on NAIP imagery (upto four spectral bands) in
contrast to the hyperspectral imagery used in [52] and [53],
which has a significantly larger number of spectral bands.
Chew et al. [54] also use ImageNet pretrained network
albeit purely as a feature extractor for crop classification
using drone (UAV) imagery. The extracted features are
then fed to a feed-forward neural network for classifi-
cation. In contrast, in this work, we evaluate a broader
spectrum of finetuning approaches. Although, Gadiraju
and Vatsavai [55] evaluate finetuning strategies on NAIP
imagery, they do not show the impact of increasing data
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size. In addition, they do not study the number of layers to
be frozen as we presented in this work. While Nowakowski
et al. [56] perform similar studies as this work, they do
not study the impact on finetuning strategies with increas-
ing dataset size as we presented in this article. Other
notable examples of inductive transfer learning include
metalearning-based solutions [57], [58]. While in this
article, we focus purely on inductive transfer learning and
finetuning in deep neural networks, we provide a brief
window into research in other types of transfer learning as
follows.

Multitask learning focuses on learning multiple-related
tasks simultaneously. As described in [39], the tasks can
be related or unrelated. As described in [59], the additional
information provided by learning multiple related tasks
together results in an inductive bias, which allows the
models to prefer one hypothesis over the other thereby
improving the generalizability of the models. As described
in [39], the typical goal of multitask learning is to de-
tect common features between the multiple tasks. More
specifically in terms of multitask learning using deep
learning, the parameter sharing between the tasks can
be hard parameter sharing, where the data pertaining
to all the tasks initially share a common network before
the task-specific layers are incorporated, or soft param-
eter sharing, where each task does not share networks,
and the distance between parameters is reduced using
methods such as [» regularization. Benedetti et al. [60]
build a multitask solution for crop classification that uses
a two-stream neural network, with the spatial stream
using high spatial resolution imagery and the temporal
stream using high temporal resolution imagery. They use
a custom loss function, which is a weighted sum of
losses of the spatial, temporal, and combined outputs.
Bischke et al. [61] use a cascading multitask loss to
achieve a better semantic segmentation for segmenting
buildings from satellite imagery. Liu and Shi [62] use
multitask learning with multiple hyperspectral imagery
datasets to improve the performance. Dobrescu et al. [63]
use multitask learning to learn multiple characteristics
of the plant such as leaf count and phenotype counting
simultaneously.

Transductive transfer learning [39]: In transductive trans-
fer learning, the source and target tasks are the same, while
the source and target domains are different. The specific
case where the probability distributions of the source and
target domains are different involves methods such as
domain adaptation (DA), covariate shift, and selection
bias.

DA is a well-known strategy that aims at finding fea-
tures invariant to the differences in the source and target
domains [43]. This helps alleviate the high variability
challenge. Elshamli et al. [64] provide a detailed overview
over the various DA methodologies adapted by the remote
sensing community to overcome the variability challenge.
Othman et al. [65] apply DA by adding additional fully
connected layers on top of pretrained deep CNNs and

reduces the shift in domains by incorporating regulariza-
tion in the form of maximum mean discrepancy (MMD)
and graph Laplacian. Li et al. [66] adopt a two-stage
deep DA—in the first stage, MMD is used to reduce the
domain shift between the labeled source and unlabeled
target domains. In the second stage, the network learned
in the previous stage is used with the labeled source data
and labeled target data and pairwise loss is used to reduce
the distance between the domains. Recently, generative
adversarial networks (GANs) have become popular for
DA. Jiaet al. [35] develop a purely temporal LSTM-based
solution that uses attention to capture the critical time peri-
ods in the crop phenology contributing to the classification
(also known as discriminative period [35]). They use un-
supervised DA in the form of a cyclic GAN that learns
a transformation function that maps the data in the target
domain to a similar distribution in the source domain. Yu
etal. [67] also perform unsupervised DA using adversarial
domain learning for alignment of features between the
source and target domains.

As described earlier, we will focus more on the inductive
transfer learning approaches. More specifically, we evalu-
ate several finetuning strategies to overcome the challenge
of limited labeled data and high variability. In the next
section, we discuss the methodology of these finetuning
strategies.

IV. METHODOLOGY

As described in the previous section, in this article, we fo-
cus on supervised finetuning methods for crop classification.
As shown in Fig. 3, in supervised finetuning, the focus is on
transferring relevant knowledge learnt on a large dataset to train
on a smaller dataset. Typically, the domains of the source and
target domains remain similar. However, in this work, we focus
on evaluating whether information can be transferred even when
the source and target domains are dissimilar. The primary focus
is on identifying whether information can be transferred, and if
yes, how many layers of information can be transferred. In this
section, we describe the following four training strategies we
use in this article.

1)

2)

Random weight initialization: This strategy is the tra-
ditional method of training deep neural networks from
scratch. We train the network from scratch only using the
available training data where the weights of the deep neu-
ral network under consideration are initialized randomly.
The main goal of this experiment is to evaluate perfor-
mance of deep neural networks when trained from scratch
using limited labeled data. In the rest of this article, we
will refer to this strategy as s;. In short, no information is
transferred in this strategy from source to target domains.
Finetuning strategies: As described in [44], the earlier
layers of a deep CNN represent/identify simple generic
features such as edges, while more task specific features
are identified by the deeper layers. As a result, a deep
neural network trained on a large dataset can identify cer-
tain features much easier than when training the network
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from scratch using random initial weights. The number

of identifiable features depends upon the similarity of

the source and target domains and tasks. Some common
finetuning practices are as follows.

a) Using the pretrained weights of the CNN and not
training them (also known as freezing the layers) on
the target dataset, while only training the final classifi-
cation layer(s). In other words, this strategy treats the
deep neural network purely as a feature extractor. In
the rest of this article, we refer to this strategy as (s2).

b) Freezing specific layers of the CNN such as the earlier
layers and training only the later layers to detect task
specific features. In the rest of this article, we refer
to this strategy as (s3). To evaluate this strategy, we
perform multiple experiments where we progressively
increase the number of frozen layers in the network,
starting from the first three layers to the penultimate
layer. These experiments help us answer the question
of how many layers of information can be transferred
when the source and target domains are different. It
should be noted here that when all the convolutional
layers of the network are frozen, this experiment re-
duces to scenario ss. It should also be noted that the
layers being trained use the pretrained weights for
initialization.

c) Freezing none of the layers of the CNN and training
the network from scratch using the target dataset and
using the pretrained weights purely for initialization.
In the rest of this article, we refer to this strategy as
(54).

In the next section, we describe the experimental setup and
discuss the outcomes of the experiments.

V. EXPERIMENTS AND RESULTS

In this section, we first describe the dataset used in this article.
This is then followed by the experiments designed to evaluate
the various training strategies.

A. Dataset

The dataset used in this article extends the spatial component
of the dataset proposed in [68]. The original dataset [68] con-
sisted of image patches collected during the crop growing season
from the states of Iowa, Illinois, Georgia, North Dakota, Okla-
homa, Alabama, Colorado, and Montana from the year 2017.
Over 7000 additional image patches for corn, soy, and cotton
were collected from North Carolina for the year 2016, and were
randomly added to the train and test sets of the dataset. The new
image patches introduce challenges discussed in Section I-A
such as geographical and annual variations and noise due to the
presence of other classes such as built up area. Table I gives the
train, validation, and test split for updated dataset. To collect this
additional data from North Carolina, we use the Cropland Data
Layer (CDL) [12] [produced by the United States Department
of Agriculture (USDA), National Agricultural Statistics Service
(NASS)] as an alternate for ground truth, since manual surveying
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TABLE I
NUMBER OF TRAINING, VALIDATION, AND TESTING IMAGE PATCHES PER
CLASS FOR THE DATASET

Crop #Train ~ #Validation ~ #Test
Corn 8 049 2245 3560
Soy 8053 2245 3562
Cotton 8051 2245 3565
Spring wheat 6 737 2 245 2247
Winter wheat 5 839 1946 1947
Barley 3903 1301 1302

and collection of ground truth over such large coverage area is
a challenging operation.

Similar to the original dataset, the CDL imagery for the state
of North Carolina is parsed to find 8 x 8 patches of corn, soy,
and cotton classes. Care is taken to ensure that over 80% of
the collected patch belongs to the specified class. Then, the
corresponding NAIP image patches (240 x 240) for the same
geographic location are extracted. Since CDL data are at 30-m
resolution and the NAIP imagery is at 1-m resolution, the 8 x 8
CDL image patches cover the same area as the 240 x 240 NAIP
image patches.

B. Hardware and Software Configuration

We perform our experiments on NVIDIA RTX GPUs on the
ARC cluster [69] and a ThinkStation P920 workstation with
NVIDIA GV100. For building, training, and evaluating the deep
learning model, we used the Tensorflow [70] deep learning
library.

C. Experiments

In this section, we describe various experiments to evaluate
the training strategies s; — s4 described in Section I'V. In order
to study how the performance of each of the strategies s; — sy
changes with changes in dataset size, we create four different
subsets of the training data: Dy, D>, D3, and D, containing
roughly 25%, 50%, 75%, and 100% of the original training data.
Fig. 5 shows the sizes of each of these subsets of training data.
Care is taken to ensure that sampling is performed in a stratified
manner. It should be noted here that the size of training data
increases from D4 to Dy, but the test data remains the same. All
the experiments are evaluated on a test set consisting of 16 183
images.

For each of the four strategies discussed previously (s; to
s4), we perform training using each of the D;—D, datasets
and we perform prediction on the original test set consisting
of 16 183 images. In each experiment, we preprocess the data,
followed by training and inference, and finally, we evaluate our
predictions. While we follow the same preprocessing procedure
for all the experiments, specific parts of the training procedure
differ depending upon the training strategy. We describe each
step in detail as follows.

1) Preprocessing: In all the experiments, for both training
and inference, the collected images, which are originally 240 x
240 are resized to 224 x 224 to match the input shape of the
deep neural network. Then, the image features are normalized to
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Fig. 4.  Architecture of the VGG16 Network [30].

Fig. 5. Dataset size versus number of training instances.

prevent numerical overflow. We describe the training procedure
as follows.

2) Training: In each experiment, we perform training for 32
epochs. Given the limited amount of labeled data, deep neural
networks are prone to overfitting. In order to avoid this, we add
a dropout layer [71] for regularization. In addition, we also use
early stopping [72] as another means of regularization. Early
stopping ensures that if the validation loss does not improve for
over eight successive epochs, the training procedure is termi-
nated. We use categorical cross entropy loss and the Adam [73]
optimizer in the training. In each experiment, we perform a grid
search on the initial learning rate for the Adam optimizer and
the dropout rate to identify the optimal hyperparameters. The
hyperparameters that achieve the highest validation accuracy
are picked.

Based on the findings in the previous work [55], we choose
the VGG network as our backbone network. Fig. 4 shows the
architecture of the VGG16 [30] network. The VGG16 network
has 13 convolutional layers interspersed with five pooling layers
for dimensionality reduction and three fully connected layers
(classification layers). As described earlier, we use the pretrained
network that was trained on 1000 classes of the ImageNet
dataset [4]. We remove the three final classification (fully con-
nected) layers and replace them with a Global Average Pooling
layer, followed by two fully connected layers FC; (512 units)
and FC; (256 units) with ReL.U activation followed by a fully
connected layer (six units, equal to the number of classes) with
softmax activation to achieve the predicted probabilities. FC;
and FCy have a dropout layer in between for regularization.

Next, we discuss the specific training procedures for each of
the four strategies.

1) Strategy si: Asdescribedin Section IV, in this strategy, the
network is being trained from scratch, and no information
is being carried over from the pretrained model. This
is achieved by randomly initializing the weights of the

gl (gl o] 2] 1818l ls] [2] [2] |2
3| 18||8 3| 188 gl &2
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neural network and then training the entire network on the
dataset. We perform four experiments using this strategy
to help us understand the importance of the dataset size
on model performance. Each experiment involves training
the model using strategy s; on each of the four datasets
Dl, Dg, D3, and D4.

2) Strategy so: As described in Section IV, this strategy treats
the network purely as a feature extractor. Only the final
classification layers (FC; and FCs) are trained and we
use the ImageNet pretrained weights for the rest of the
layers. Similar to the experiments performed on s, four
experiments are performed using strategy s on datasets
D1 to D4.

3) Strategy s3: As described in Section IV, this strategy
evaluates how much information is transferable between
the two domains. For each dataset, D1—D,, we perform
multiple experiments where we freeze specific layers of
the network and train the rest of the layers. In other words,
in this strategy, we treat the number of frozen layers also
as a hyperparameter.

4) Strategy s4: As described in Section IV, this strategy
focuses on training the model from scratch. The difference
between this strategy and s is that the weight initialization
is using the ImageNet pretrained weights. This strategy
helps us understand the importance of weight initializa-
tion.

The outcomes of these experiments are discussed in Sec-
tion V-D. Once training is completed and optimal hyperpa-
rameters are identified, we evaluate the outcomes described as
follows.

3) Evaluation: We evaluate the methods by comparing their
error rates. In addition, we also extract the features from the
global average pooling layer for the best performing run of each
experiment and use the t-SNE (t-distributed stochastic neighbor
embedding) [74] for visualizing the separation ability of the
trained network.

We discuss the outcomes of these experiments in the following
section.

We describe how each of the aforementioned experiments
were evaluated, and discuss the outcomes of these experiments
in the following section.

D. Evaluation and Discussion

Once the optimal hyperparameters have been identified for
each strategy, we perform training and inference using the op-
timal hyperparameters five times and calculate the mean and



GADIRAJU AND VATSAVAIL: REMOTE SENSING BASED CROP TYPE CLASSIFICATION VIA DEEP TRANSFER LEARNING

4707

TABLE II
ERROR RATES REPORTED FOR EACH OF THE TRANSFER LEARNING STRATEGIES

Experiment

D1 Error rate

D5 Error rate D3 Error rate Dy Error rate

s1 Training the CNN

from scratch using random weight 23.1140.68 18.884+0.76 16.57+0.65 14.73+0.77
initialization
82 Us“lfg the CNN purely as a 31.63+£1.12  28.3240.45 27.3040.22 25.4140.47
eature extractor
53 Freezing early layers in the CNN, 1) 5 11.874046  10.8940.3 9.82+0.32
training the remaining layers ) ) ) ) ) ) )
$4 Training the CNN from scraich 14.5141.16 11.6940.48 10.4240.42 9.56--0.34

with pretrained weights as initialization

Each experiment is run five times and the average and the standard deviation are noted.

The bold values indicate lowest error rate.
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t-SNE plots for all the experiments for all versions of the dataset. Each row corresponds to an experiment (as indicated by the first column on the left), and

each column refers to one of the dataset versions (as indicated by the first row on the top). It can be clearly seen that training using the s2 strategy does not produce
well-separable features. In the strategy s1, the separability improves as the size the dataset increases from Dj to Dy. s3 and s4 produce well-separable features.

standard deviation of the error rates for each of these runs.
Table II depicts the error rates obtained for the four approaches
described in the previous section. In addition, Fig. 6 shows the
t-SNE plots for all the outcomes of experiments from Table II.
Each row in the table corresponds to one of the strategies
(s1 — s4), while each column corresponds to dataset (D1 — Dy)
used for that approach. In the rest of this section, we will refer
to the combination of training strategy and the corresponding
data subset using the (s; — D;) notation, referring to applying
the training strategy s; on data subset D,.

1) In all four strategies, we can clearly see the improvement
in performance with increasing the size of the training
data from D; to Dy. In the strategy s;, where we train
the CNN from scratch using random weight initialization
(and therefore, not transferring any information from the
source domain), this improvement is clearly evident, there
by proving the importance of large labeled datasets when
training deep neural networks from scratch. In addition,
we can observe the improvement in separability of classes
from top left to bottom right in Fig. 6. The number of
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Fig. 7. Confusion matrices of all the experiments for all versions of the dataset. Each row corresponds to an experiment (as indicated by the first column on

the left), and each column refers to one of the dataset versions (as indicated by the first row on the top). In general, training using the s2 strategy produces large
number of misclassifications across all classes. In the strategy s1, the number of misclassifications reduce as the size the dataset increases from D1 to Dy. s3 and
s4 produce less misclassifications.

misclassifications for each class can also be seen to reduce 3) Based on the aforementioned observation, we next study

in Fig. 7.

2) Using the ImageNet pretrained model purely as an off-the-
shelf feature extractor in so consistently performs poorly
for all the datasets D;—D4. In contrast, training from
scratch using random weight initialization with a small
dataset (s; — Dy) still outperforms training on a much
larger dataset with so (i.e., ss — Dy). This clearly indicates
that deep CNNs cannot be used as purely off-the-shelf
feature extractors when there is a difference between the
source and target domains. We can clearly see the poor
separability between the features in the corresponding
t-SNE plots for the strategy so. We can also see com-
paratively much larger number of misclassified labels for
all the classes for the strategy s- in Fig. 7.

whether a portion of the pretrained network trained on a
dataset from a different domain can be used for training
in the strategy ss. As described earlier, in the strategy ss,
we perform multiple experiments where we progressively
increase the number of frozen layers in the network. Fig. 8
demonstrates the error rates on the test datasets for the
strategy s3, where the x-axis represents the number of
frozen layers and the y-axis represents the error rate on
test data. A clear upward trend can be noticed for all
four datasets D; — D, as the number of trained layers
decreases (in other words, as the number of frozen lay-
ers increases). This reinforces the earlier inference that
not all layers’ features are transferable from deep CNN
pretrained on a dataset from a different domain. The best
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Fig.9. Examples of crop image classification. Best overall average classifica-

tion accuracy for s4 — D4 = 90.44%, overall average error rate for s4 — Dy =
9.56%.

error rate for s3 for all datasets was observed with the
early two convolutional layers of the VGG network being
frozen. This proves that early layers in a deep CNN learn
more generic features, while the latter layers learn more
task specific features. We perform training and predic-
tion on the deep neural network by freezing the early
two convolutional layers in addition to the other optimal
hyperparameters—initial learning rate and dropout rate.
The mean and standard deviation of this approach are
listed in Table II.

4) Instrategy s4, where we train the entire network using the
ImageNet weights purely as an initialization demonstrates
a similar performance to strategy ss. In comparison to

Comparison of error rates on test data with increasing number of layers frozen.

the strategy s1, this shows the importance of good weight
initialization. It also demonstrates that with good weight
initialization or using finetuning, we can achieve equiva-
lent predictive performance using a significantly smaller
dataset than when training deep neural networks from
scratch using random weight initialization. This is clearly
demonstrated when comparing s; — Dy and s4 — Ds.
This can also be seen in the confusion matrices in Fig. 7.
Training from scratch using random weight initialization
(s1) requires significantly larger datasets to achieve good
performance and this introduces computational overhead
due to the size of the large dataset.

Finally, Fig. 9 shows some examples of correctly and incor-

rectly classified images for the various classes.

VI. CONCLUSION

In this article, we discuss various challenges associated with
performing crop classification using remote sensing imagery.
We highlight how limited labeled data, when combined with the
high variability in the remote sensing data limit the performance
of traditional machine learning approaches and modern deep
learning approaches. We discuss in detail the various deep
transfer learning methodologies employed in literature to al-
leviate these challenges for deep neural networks. We evaluated
several finetuning strategies using the VGG16 Network using a
benchmark dataset.

Based on our experiments, we make the following observa-
tions.

1) When finetuning deep neural networks using a pretrained
network from a different domain, the pretrained network
is unsuitable to be used purely as an off-the-shelf feature
extractor (strategy sg).

2) Instead, when we evaluated whether a portion of the pre-
trained network is transferable (by freezing these layers),
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we observed an increasing trend in the error rate as the
number of frozen layers increases. We observed that freez-
ing the early layers of the deep neural network achieved
the best performance.

3) We also observed that the strategy s4, where we only
use the pretrained weights as a good weight initialization
performed significantly better in comparison to training
from scratch using random weights. This indicates the
importance of a good weight initialization for deep neural
networks.

4) Finally, strategies s3 and s4, when compared with the
strategy s; clearly demonstrate the advantage of using
a pretrained network trained using a different domain
dataset. We can achieve the same level of performance
using s3 and s4 using a much smaller dataset (D) in
comparison to training from scratch with random weight
initialization (s1) using a significantly larger dataset (Dy).
s1 requires a much larger dataset to achieve comparable
performance as s3 and s4, which makes s; computation-
ally more expensive as well.

Our experiments and study can provide a good starting point
for those researchers who are seeking to build effective deep
learning solutions for the remote sensing and agricultural do-
mains with limited labeled data. When very limited data are
present, either using the pretrained weights as an initialization or
freezing early layers of a network trained from a different domain
is a good strategy to achieve significantly better performance
than when training the model from scratch or using the pretrained
models purely as a feature extractor.

While this article has focused on a single data source, with
the increasing number of data sources available for the same
region at multiple spatial and temporal resolutions and modal-
ities, our next research will focus on building deep learn-
ing solutions that can combine the most useful information
from each of these sources to improve the overall predictive
outcomes.
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