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A New Remote Sensing Change Detection Data
Augmentation Method Based on Mosaic Simulation

and Haze Image Simulation
Zhipan Wang , Di Liu, Zhongwu Wang, Xiang Liao, and Qingling Zhang

Abstract— The quality of optical remote sensing images is largely
affected by clouds and haze. In addition, the mosaicking image of
multiple remote sensing images, due to objective factors such as
acquiring time or climate conditions, will lead to large spectral
differences in the area around the seamline. The aforementioned
scenarios will seriously affect the accuracy of change detection
models based on deep learning. However, there is still a lack of
methods to address such issues. To solve these problems, from the
perspective of training samples, this article proposed a simple but
effective data augmentation method to improve the generalization
ability of the deep change detection model in the region of haze
cover and the seamline. First, from the characteristics of the optical
remote sensing image itself, two image simulation methods are
designed to conduct data augmentation, named mosaic simulation
and haze image simulation. Then, the newly augmented training
samples are mixed with the original training samples and then input
into a deep learning model for model training. Finally, the change
detection results indicate that the proposed data augmentation
method can effectively improve the generalization ability of the
change detection model in the region of haze cover and seamline,
which has high practical value for improving the deep learning
model’s performance in real-world scenarios and also provides
a simple but effective algorithm reference for other intelligent
interpretation tasks from the perspective of training data.

Index Terms—Change detection, data augmentation, high-
resolution remote sensing image.

I. INTRODUCTION

R EMOTE sensing images have the advantages of large
width, continuous and frequent observation, and low cost,

making them become the main data source for monitoring large-
area change detection. Deep learning-based change detection
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algorithms have become themainstream algorithms for remote
sensing change detection [1] due to their excellent performance
and generalization ability, especially compared with traditional
machine learning methods.

At present, most of the existing deep learning-based change
detection methods are applied to high-resolution remote sensing
imagery without cloud contamination. Researchers have paid a
lot of attention to model architecture design [2] but less con-
sidering that optical remote sensing images are usually polluted
by haze or thin clouds in real-world scenarios, which greatly
reduces the clarity of objects and then affects the model detection
accuracy. In addition, several high-resolution remote sensing
images are often required to mosaic into a large image for the fol-
lowing large-area applications tasks, and the spectral difference
along the seamlines regions in mosaicked images is often very
obvious. As a result, the performance of change detection models
trained on ideal quality samples usually decreases significantly
when applied in complex real-world scenarios. Therefore, how
to improve the generalization ability of deep learning-based
change detection models in complex scenarios is a very valuable
but challenging scientific and engineering problem.

Deep learning methods are essentially data-driven, and their
performance largely depends on the labeling accuracy and the
quantity of training samples. However, in practical application
scenarios, it is very challenging to obtain enough training sam-
ples in most cases, and high-quality training samples require a
lot of manpower and material resources. To address the problem
of model overfitting, caused by insufficient training samples,
data augmentation has been proven to be a very effective means
[3]. Existing data augmentation methods can be divided into two
categories: basic image manipulation and deep learning methods
[3]. Basic image manipulation mainly includes image processing
methods such as rotation, flipping, Gaussian noise, random
erasing, and mixing images [4], [5], [6], [7], [8], [9], [10]. Deep
learning methods improve model generalization ability by learn-
ing, such as the generative adversarial network (GAN), which
learns the latent probability distribution of existing samples [11],
[12], [13], [14], [15] to generate new samples by oversampling.
However, data augmentation based on deep learning methods
has two limitations. On the one hand, the quality of new samples
is difficult to guarantee, and the generated new training samples
may deviate from expectations. On the other hand, the newly
generated samples are poorly interpretable, which may lead to
even worse detection accuracy.
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For change detection tasks in real-world scenarios, two key
issues must be considered. The first one is, in haze-covered
cloudy tropical and subtropical regions, optical remote sensing
images are easily affected by clouds and haze, and it is difficult
to obtain high-quality cloud-free images in some areas even for
several months. Thus, researchers usually use cloud masking or
cloud removal methods to improve the quality of images. The
main idea of the cloud masking method is that cloud-covered
parts in an image are invalid areas, thus masking them and
keeping the ideal pixels is a natural idea. At present, there are
many cloud masking methods, such as the Fmask algorithm
[16]. The cloud removal methods, especially in the area covered
by thin clouds, believe that cloud interference only partially
affects the recognition of ground objects. If thin clouds can
be removed, then the model performance in such regions can
be improved. Most of the traditional cloud and haze removal
algorithms are inspired by the dark channel prior algorithm
[17]. With the development of deep learning, the cloud and
haze removal algorithm based on deep learning has gradually
become mainstream, and the thin cloud removal effect is greatly
improved compared with traditional methods. However, the deep
learning method is highly dependent on high-quality samples
and requires a large amount of computation. Both cloud masking
and cloud removal methods require preprocessing of remote
sensing images, which will reduce the computation efficiency
and increase the complexity of the whole process.

The other problem is the large spectral differences along
the seamline regions in mosaicking images. The width of a
single high-resolution remote sensing image is usually small;
therefore, it is necessary to mosaic multiple images into a large
image for large-scale change detection. As we know, the spectral
difference between different images may be enormous due to
seasonal rotation, observation angle of satellites, etc., therefore,
such a phenomenon will increase the commission and omission
alarms in the final change detection result based on deep learning
models. Although the problem of spectral difference can be elim-
inated to a certain extent by using the uniform color algorithm
[18], it is still difficult to achieve a smooth transition like a
natural image along seamlines. Furthermore, the computation
capacity is also relatively high for change detection tasks, and
too complicated preprocessing step will decrease the automation
level of the whole change detection task.

We can rethink the essence of deep learning from another
perspective. Deep learning simulates the way of thinking like
a human brain, and haze only reduces the recognizable level
of ground objects, but for human eyes, ground objects are still
can be identified in remote sensing images. Therefore, we can
imagine that if a deep learning model learns enough semantic
information from the haze or thin clouds covered regions or
seamline regions with large spectral differences, its generation
ability will be improved. Thus, a simple but effective way
is to generate sufficient new training samples from haze/thin
cloud-covered images or image parts along seamlines with large
spectral differences. In this article, a new data augmentation
method for remote sensing change detection in real-world sce-
narios is proposed, which improves the detection accuracy of a
deep learning model in areas covered by haze/thin clouds or large

spectral differences along seamlines. Moreover, it also provides
ideas for object detection or land cover classification in other
real-world scenarios.

The main contributions of this article are as the following.
1) To the best of our knowledge, we are the first one who

proposes a data augmentation method to improve change
detection model accuracy in complex areas. Our data
augmentation method contains mosaic simulation and
haze image simulation, which are easy to implement, and
can also be integrated into remote sensing image change
detection algorithms.

2) Our data augmentation method is also suitable for other
downstream tasks, such as object extraction in a haze
coverage area, and it also provides a new method reference
for other intelligent interpretation frameworks from the
perspective of training data generation.

The rest of this article is organized as follows. Section II
introduces the related works of data augmentation. In Section III,
the details of the proposed method are presented. The change
detection result based on various data augmentation methods
is displayed in Section IV. In Section V, a further discussion of
the proposed method is presented. Finally, Section VI concludes
this article.

II. RELATED WORK

Data augmentation is utilized to improve the generalization
ability of deep learning models [17], such as image classifica-
tion, object detection, semantic segmentation [19], and instance
segmentation [21]. Data augmentation is not the only way to
improve the generalization ability of deep learning models, other
methods such as dropout [22], and batch norm [23] are proven
effective. In addition, model architecture can also prevent model
overfitting. However, although data augmentation is usually used
to improve model performance from the perspective of data, it
can also be integrated with model architecture, such as dropout
[22], to further improve model performance and reduce the risk
of model overfitting. Therefore, we do not discuss the influence
of model structure in this article. Data augmentation methods can
be divided into two main categories: basic image manipulations
and deep learning methods [3].

1) Basic image manipulations: It mainly uses the basic image
operation for data augmentation, such as geometric trans-
formations [24], color space augmentation [25], kernel
filter [26], random erasing [8], and mixing images [4].

Geometric transformations usually use image rotation, image
flip, and other methods to accomplish, which is suitable for
semantic segmentation tasks. Color space augmentation mainly
uses image channel transformation, such as converting the orig-
inal RGB three-channel image into a single-channel image,
transforming the original RGB image into HSV, YUV, and other
color spaces, or randomly exchanging RGB channels. Color
space augmentation is relatively suitable for image classification
tasks, but it is not completely suitable for pixel-level segmen-
tation tasks, especially for remote sensing images. Because the
random exchange of band information will change the original
features of objects, such as forests in the false-color image
is red, a random exchange between the visible band and the
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near-infrared band will make forests and other objects lose their
original spectral information, and then may affect the model
performance.

Kernel filter [26] mainly utilizes image filtering to sharpen
and blur training samples to generate new samples, such as the
PatchShuffle method [26]. For example, researchers conducted
experiments on the CIFAR-10 dataset by using the PatchShuffle
method, and the error of prediction was reduced by 0.67%.
Essentially, the convolutional neural network is also a filtering
method, so the kernel filter data augmentation method is not very
obvious for absolute accuracy improvement [17]. The Random
erasing method mainly processes the training samples by ran-
domly removing small blocks to avoid the model paying much
attention in a local area, thereby reducing the risk of overfitting.
For remote sensing change detection, the random erasing method
cannot be used directly because it may remove the changing
area and cause the model to learn wrong semantic information.
Mixing images are widely used in object detection. For instance,
the YOLOv4 in [20] proposed a new data augmentation method,
which mosaics four images into one to effectively improve object
detection accuracy. However, for pixel-level segmentation tasks,
mixing images will lead to spatial information discontinuity,
which may negatively affect model accuracy.

Generally speaking, the mathematical principle of basic im-
age manipulations is clear and simple, and it can simulate the
actual distribution of data to a certain extent. Therefore, most
of the current remote sensing change detection models based
on deep learning [27], [28], [29], [30], [31], [32] utilize basic
image manipulations as the preprocessing step to improve model
generalization ability.

2) Deep learning methods: It is similar to mixing images,
but it uses a learned approach for data augmentation. Such
methods mainly contain adversarial training [33], GANs
[34], neural style transfer [35], and metalearning [36].

Adversarial training uses two or more deep learning models
for adversarial training, which can effectively reduce commis-
sion errors. GAN can produce new training samples from noise
by learning general knowledge from a large number of training
samples. The principle of the neural style transfer is ingenious,
it can keep the main content of training samples unchanged but
only change the style form to generate new training samples to
improve the performance of a model. Metalearning improves
the generalization ability of a model by adding one-dimensional
or multidimensional data and performing mixed training with
original samples.

As a whole, data augmentation methods based on deep learn-
ing are effective in image classification but they are also not
completely suitable for remote sensing change detection, be-
cause they may change the pixel distribution of an input image,
which may cause a label image to mismatch the training images.
Furthermore, methods of this kind are also very time-consuming
and difficult to converge [17].

Let us rethink the original purpose of data augmentation,
its essence is to simulate the true distribution of training data,
and improve the performance of a model on the test dataset
[17]. Optical remote sensing images are often contaminated
by haze and large spectral differences along seamlines regions.

Fig. 1. Proposed data augmentation method for change detection.

Therefore, from the perspective of training data, we can effec-
tively improve the model generalization ability and detection
accuracy by new training samples that are generated by simu-
lating haze cover and seamlines.

III. PROPOSED METHOD

The flowchart of the proposed method is displayed in Fig. 1.
We can see that each two time-phase change detection train-
ing samples will be augmented by several data augmentation
methods, such as image rotation, scale transformation, and haze
simulation. Then, the augmented samples are mixed up with the
original samples, and finally, all of them will be sent to the deep
learning model for training to improve the model generalization
ability.

A. Mosaic Simulation

To improve the detection accuracy of the deep change de-
tection model along seamlines regions, we have developed a
data augmentation method, named Mosaic Simulation. As we
discussed previously, the pixel spectral difference on both sides
of the seamline from two adjacent images is often enormous in
a large mosaiced image. Taking advantage of this fact, we can
use random subregion spectral transformations to accomplish
mosaic simulation.

First, for an arbitrary training sample, we randomly generate a
seamline in the horizontal or vertical direction, and the seamline
is determined as follows:

line = random(0, imgsize) (1)

where random represents generating a random value between
0 and imgsize. imgsize stands for the size of input images. The
generation of random lines is divided into two cases: the first one
is to select rows for spectral transformation, and the other one
is to select columns for spectral transformation. For any input
training sample, the aforementioned two methods are randomly
selected due to realistic multiple images mosaic situations; the
mosaicking operation will not be stitched in only one direction,
thus we randomly select the horizontal subregions or the vertical
subregion to perform the spectral transformation. The spectral
transformation is as follows:

Transform Value = scale × [0, pixel Value] (2)

where Transformvalue denotes random linear transformation in
the interval [0, pixelValue], and the scale represents the spectral
stretching ratio, which significantly controls the brightness of
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Algorithm 1: Mosaic Simulation.
Input: bi-temporal images Dsample_T1, Dsample_T2

Output: Daug

1: Initialize Dsample, random select from Dsample_T1,
Dsample_T2

2: // Iterate each sample in Dsample

3: for Daug in Dsample:
4: Generate mosaic line by (1)
5: Subrange pixel value transform by (2)
6: Image saving: new training sample, Daug

7: end for

the subregion. With such a spectral transformation method, the
seamline effect can be simply simulated. In a whole training
dataset, the new training samples are generated with the mosaic
simulation method as follows.

B. Haze Image Simulation

How to simply simulate the effect of haze or thin cloud
coverage on a cloud-free sample image? Inspired by the dark
channel prior algorithm [37], [38], [39], [40], [41], [42], we
have developed a simple haze image simulation method. First,
let us revisit the simulation equations for haze images

I (x) = J (x) t (x) +A (1− t (x)) (3)

where I(x) denotes a hazy image, J(x) denotes a haze-free image,
t(x) denotes the transmittance image, A is the atmospheric light
value, and x is the single pixel in the whole image [37].

Our ultimate goal is to simulate the real sample image as a
hazy image. According to the above formula, once we know the
transmittance image t(x) and atmospheric light value A, a real
sample image can be simulated as the effect of haze coverage.
To simulate the coverage of haze and mists on a real image,
we obtained 15 scenes of GF1-PMS and GF2-PMS true color
images in multiple geographic regions, such as in the southeast
coast, central, northwest, northeast, and southwest of China. All
high-resolution remote sensing images are downloaded from
China Resource Satellite Center (http://www.cresda.com/CN/),
and 400 image blocks with 512 × 512 pixels of various real
haze-covered scenes are manually cropped from the image as a
hazy image dataset. It is worth noting that this haze image dataset
do not contain thick clouds because the spectral values of the
ground objects under thick clouds have been completely lost.

In hazy or thin cloud-covered areas, the morphological feature
of the ground object is similar, thus 400 hazy or thin cloud-
covered images are enough to represent all kinds of scenes.
For an arbitrary input training sample, we first randomly select
an image I(x) from the hazy image dataset to construct the
transmittance image t(x) and atmospheric light value A, and then
use the dark channel prior algorithm to separate the haze image
J(x) from the input image I(x). Finally, the separated haze image
J(x) is added to the haze-free training sample image; therefore,
a sample image covered by haze can be regenerated.

Based on [37], we can get atmospheric light value A. As
described in [37], the pixel value of each channel is first sorted

Algorithm 2: Haze Image Simulation.
Input: Thin cloud image dataset DthinCloud

Input: Sample image Dsample

Output: Daug

1: Initialize DthinCloud and Dsample. Dsample is generated by
random selected from Dsample_T1, Dsample_T2

2: // Iterate each sample in Dsample

3: for Daug in Dsample

4: Get t(x) image based on (8)
5: Generate a new sample based on (3)
6: Image saving: new training sample, Daug

7: end for

in ascending order, and then the average value of the top 1%
pixels is selected as the atmospheric light value A. Once the
atmospheric light value A is known, we can transform (3) into
(4) as follows:

Ic(x)

Ac
= t(x)

Jc(x)

Ac
+ 1− t(x). (4)

In (4), C represents the band number of an image. For a
true-color image, C is 3. Assuming that the local area of the
transmittance image t(x) is invariant, we continue to transform
(4) into (5)

miny∈Ω(x)

(
minc

Ic(x)

Ac

)

= t(x)miny∈Ω(x)

(
minc

Jc(x)

Ac

)
+ 1− t(x). (5)

According to the dark channel prior theory, the value of
the dark channel image in the area without haze coverage is
approximately equal to 0, which satisfies the following equation:

Jdark = miny∈Ω(x)

(
minc

Jc(x)

Ac

)
= 0. (6)

We substitute (6) into (5), then the estimation equation of
transmittance image t(x) can be expressed as

t(x) = 1− miny∈Ω(x)

(
minc

Ic(x)

Ac

)
. (7)

To keep the image with certain cloudiness, we introduce an
identity parameter w (0 < w < 1), then the transmittance image
t(x) calculation formula is expressed as

t(x) = 1− w × miny∈Ω(x)

(
minc

Ic(x)

Ac

)
. (8)

In the training dataset, the new training samples are generated
with haze image simulation as follows.

Based on mosaic simulation and haze image simulation al-
gorithms, a new training sample is generated, and the effect is
shown in Fig. 2. In Fig. 2, we can see that the haze coverage
effect in a real-world scene is simulated to a certain extent. If
the newly generated samples and the original samples are mixed
for training, will the model accuracy be effectively improved in
the haze cover scene? We will discuss and analyze the effect in
detail in Section IV.

http://www.cresda.com/CN/


WANG et al.: NEW REMOTE SENSING CHANGE DETECTION DATA AUGMENTATION METHOD 4583

Fig. 2. Data augmentation. (a) T1 and T2 images. (b) Cloud template image
with different thicknesses. (c) Data augment by mosaic simulation. (d) Data
augment by haze image simulation.

C. Accuracy Assessment

We used Recall, Precision, F1, and over accuracy (OA) for
accuracy assessment [43]. The Recall indicator reflects the
omission error of positive samples, The higher the value, the
lower the omission of positive samples. The Precision indicator
reflects the commission error of positive samples, The higher
the value, the lower the commission error of positive samples.
The F1 metric is a combination of Recall and Precision metrics,
which visually evaluates the comprehensive performance of the
algorithm, while the OA metric is a standard classification accu-
racy evaluation, which visually reflects the detection accuracy
of positive and negative samples. The mathematical calculation
formula for the above indicators is as follows:

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1 =
2× Recall × Precision

Recall + Precision

OA =
TP + TN

TP + TN + FP + FN
(9)

where TP indicates that the predicted pixel result is a positive
sample and the ground truth pixel is also a positive sample. TN
indicates that the predicted pixel is a negative sample and the
ground truth pixel is also a negative sample. FP indicates that
the pixel in the ground truth image is a positive sample but is
predicted as a negative sample. FN indicates that the pixel in
the ground truth image is a negative sample but is predicted as
a positive sample.

IV. EXPERIMENTAL DETAILS

To verify the effectiveness of the proposed data augmen-
tation method, a large-scale real-world scene of bitemporal
high-resolution images in Sipsongpanna was conducted (see
Fig. 3), and we will evaluate the effectiveness of the proposed
data augmentation method from the qualitative and quantitative
perspective.

Sipsongpanna is located in Yunnan Province, China; it be-
longs to the tropical monsoon climate, with mostly primary

Fig. 3. Study area. (a) DEM and landcover map of Sipsongpanna. (b) Mo-
saicking image of Sipsongpanna, the left, and right maps are 2020 and 2021
images, respectively.

forests and excellent natural conditions, and the famous Sipsong-
panna Primeval Forest Park is located here. According to the his-
torical remote sensing image coverage experience, it is difficult
to obtain high-quality optical remote sensing images here, thus to
generate the high-quality base map at each time phase, multiple
data sources are used, including 2m GF1-PMS, 1m GF2-PMS,
and 2m GF6-PMS. In this study, all high-resolution remote
sensing images are acquired from http://www.cresda.com/CN/
and are preprocessed by geometric correction based on Ar-
cGIS10.6 software. Only true-color bands are preserved for the
final change detection task. The acquisition time of bitemporal
images is in the summer season of 2020 and 2021, respectively.
The final image size of each time phase in 2020 and 2021 is
67 827 × 88 524 × 3 pixels.

In most cases, Sipsongpanna is usually covered with haze or
thick clouds. The bitemporal images are displayed in Fig. 3.
We can see that the mosaicking image of 2021 is stitched by
multiple images of different time phases, the spectrum around
the seamline area is quite diverse, and the lower-right region
in the whole image is covered with haze and thick clouds. To
evaluate the deep learning model performance, the ground truth
image is generated by human visual interpretation.

A. Dataset and Study Area

First, we produce a deforestation detection dataset to train
a deep learning model. The spatial resolution of this dataset is
2 m (the main data sources are GF1-2m, GF2-1m, and GF6-2m.
GF2 is resampled to 2 m using the nearest neighbor sampling

http://www.cresda.com/CN/
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TABLE I
PARAMETER SETTING OF DIFFERENT DATA AUGMENT METHODS

method), and the production time of the former time-phase im-
age is 2019, and the latter time-phase image is 2020. The sample
collection area is mainly located in the Yangtze River Economic
Belt of China, including 11 provinces, such as Hunan Province,
Hubei Province, Jiangxi Province, Jiangsu Province, Guizhou
Province, and Guangxi Province. The quantity of samples is
8002 true-color images, and the image size of each sample is
512 × 512 pixels.

B. Change Detection Method and Implementation Details

Most of the existing deep learning-based change detection
methods are based on fully convolutional neural networks from
the pixel-level segmentation aspect to obtain binary change
results [43]. From the perspective of the deep learning model
architecture, the encoding–decoding structure is the mainstream
model structure, it is simple and elegant, and it also can easily
implement the end-to-end change detection task. To fairly com-
pare the accuracy improvement of the new data augmentation
method, SNUNet in [43] is used as our baseline change detection
method. SNUNet is a dense feature connection model with
a siamese structure, its main contribution is to improve the
segmentation accuracy in small targets and boundary areas by
designing an ensemble channel attention module.

Our operating system is Win10 with AMD 5600x CPU and
64GB RAM, and the GPU is a TeslaV100 with 32GB memory.
The deep learning library is Pytorch1.8.1, Adam is used as the
model optimizer, the initial learning rate is 0.0001, and the total
training epoch is 60. For every 10 epochs, the initial learning
rate will drop to 1/10 of the original learning rate. Due to the
limitation of GPU memory and computational efficiency, the

batch size is set to 22. Once the model is trained, the model
inference is carried out with half-precision to save GPU memory
and improve processing efficiency.

From the characteristics of remote sensing images, we select
several corresponding data augmentation methods for compari-
son and then analyze the impact of different data augmentation
methods on the accuracy of change detection. In remote sensing
images, scale, and spectrum are the most prominent features. The
ground objects on remote sensing images with different spatial
resolutions are quite different, such phenomenon is also the
most significant difference between remote sensing images and
natural images. Both scale transformation and image rotation
will change the original position information of the input image,
which has a positive impact on improving the generalization
ability of the change detection model.

To simulate the spectral differences of ground objects un-
der different lighting conditions, the commonly used means is
brightness transformation. Therefore, we adopt three methods
to simulate spectral difference, and they are image rotation,
scale transformation, and brightness transformation [3]. The
implementation details of different comparison algorithms are
given in Table I.

To compare the performance of data augmentation methods
fairly, we have built three comparison methods (see Table II).

1) Method 1: Image data augmentation with random rotation,
scale transformation, and brightness transformation on a
training sample in sequence, then mix the new samples
with the original samples for the next step of model
training.

2) Method 2: Image data augmentation with random rota-
tion, scale transformation, brightness transformation, and
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TABLE II
COMPARISON METHODS

Fig. 4. Deforestation detection in haze-cover scenarios. (a) T1 image. (b) T2
image. (c) Change detection with data augment Method 1. (d) Change detection
with data augment Method 2. (e) Change detection with our data augment
method. (f) Ground truth.

mosaic simulation on a training sample in sequence, then
mix the new samples with original samples for the next
step of model training.

3) Ours: Image data augmentation with random rotation,
scale transformation, brightness transformation, mosaic
simulation, and haze image simulation on a training sam-
ple in sequence, the next step is the same as Method1 and
Method2.

C. Qualitative and Quantitation Comparisons

1) Deforestation Detection in a Complex Scenario: To ver-
ify the change detection accuracy of the proposed data augmen-
tation method in a complex scenario, we selected 1024 images
(each image size is 512 × 512 pixels) from the Yangtze River
Economic Belt of China for accuracy evaluation. All remote
sensing images were obtained from the China Resources Satel-
lite Center (http://www.cresda.com/CN/), and the resolution of
the base map image is 2 m, the former time phase image is in
2020, and the latter time phase image is in 2021. To evaluate the
accuracy efficiently and reasonably, several change detection
results are shown in Fig. 4.

In Fig. 4, our change detection result is visually better than
other methods. Data augmentation with Method 1 does not use

TABLE III
ACCURACY EVALUATION

mosaic simulation or haze image simulation, thus the trained
change detection model cannot detect the slight deforestation
change in the haze cover region, and there is also a little false
detection result in the edge and seamline area. In addition to
the means used in Method 1, mosaic simulation is adopted
in Method 2. From the visual perspective, the trained change
detection model can detect deforestation change in the seamline
area but it still produces a few false detected results in the
haze coverage area. Generally speaking, Method 2 is better
than Method 1. In a word, from the qualitative perspective,
mosaic simulation and haze image simulation are used in our
data augmentation method at the same time; as we can see from
Fig. 4, we have obtained the best deforestation detection results,
especially in the haze coverage and seamline regions.

The quantitative accuracy assessment result is displayed in
Table III. It can be seen that compared with Method 1 or Method
2, our data augmentation method has achieved relatively higher
accuracy, it also proves the effectiveness of mosaic simulation
and haze image simulation data augmentation methods. More-
over, from the practical aspect, although mosaic simulation or
haze image simulation increases the preprocessing time to a cer-
tain extent, it provides a cheap and effective solution to improve
the model generalization ability in low-quality scenarios.

2) Deforestation Detection in a Real-World Scenario: The
deforestation detection results in Sipsongpanna with different
data augmentation methods, as shown in Fig. 5.

As a whole, our method effectively reduces the commission
alarms in the low-right region. The deforestation area of Method
1 is 25.15 km2, the deforestation area of Method 2 is 15.92 km2,
our deforestation area is 12.11 km2, and the GT area is 9.12 km2.
The deforestation area of our method is closer to the GT. To
display the result clearly, we enlarged the subregions A, B, and
C in Fig. 6.

In Fig. 6, we can see that the bitemporal spectral difference
in subregion A is obvious, and deep learning model trained
with data augmentation Method 1 does not detect deforesta-
tion change very well; in addition, there are more commission
alarms in the seamline area compared with other two meth-
ods due to excessive spectral differences. Change detection
results with data augmentation method 2 can effectively reduce

http://www.cresda.com/CN/
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Fig. 5. Deforestation detection result. (a) GT. (b) Method1 result. (c) Method2
result. (d) Our result. (the blue color represents ground truth, and the yellow color
represents deforestation result of different algorithms.).

TABLE IV
ACCURACY EVALUATION

commission alarms in the seamline area; however, there are still
some false detection results in the haze coverage area. With
the help of mosaic simulation and haze image simulation, our
method can effectively reduce the commission alarms; it signif-
icantly improved the model generation ability in the seamline
regions.

In subregion B, this region is mainly used to test the effect of
model detection under relatively thick cloud cover conditions.
Despite the image in this region being covered with thick haze,
the morphological and textural features of ground objects are
still discernible. As can be seen, the change detection result
with data augmentation Method 1 has a relatively high omission
alarm, and deforestation change cannot be well perceived in
most cases. For the deforestation detection result with data
augmentation Method 2, the visual effect is improved in some
regions but there are still a few omission alarms in them. Other
deforestation detection results, such as in subregion C, also prove
the effectiveness of our data augmentation method. Although
there are a few missed detection pixels in our result, the overall
accuracy improvement is obvious compared with the other two
data augmentation methods.

The quantitative accuracy evaluation of deforestation detec-
tion results in Sipsongpanna is given in Table IV. From Table IV,
we can see that our data augmentation method achieves the
highest quantitative accuracy. Thus, it supports our hypothesis

Fig. 6. Change detection result of different data augment methods. (a)–(c) Sub-
regions image of Sipsongpanna in 2020 and 2021, Ground truth of deforestation
detection, respectively. (d) Change detection by Method 1. (e) Deforestation
detection by Method 2. (f) Deforestation detection by Method 3.

that the model performance in complex scenes will be improved
by using mosaic simulation and haze image simulation.

V. DISCUSSION

Why the proposed data augmentation method can effectively
improve the accuracy of the deep learning model in complex
scenes? To answer this question, we explain it from the per-
spective of features extracted by deep learning, and we also
extend the discussion of the application scope of our new data
augmentation methods.
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Fig. 7. Visualization of the feature map. (a) T1 image. (b) T2 image. (c) GT.
(d) Feature map of the model trained by data augment method 1. (e) Feature
map of a model trained by data augment method 2. (f) Feature map of the model
trained by the proposed method.

A. Influence on Deep Learning Model Extraction Features

To analyze the reasons for the improvement of model accuracy
by different data augmentation methods, we dissect it from the
perspective of deep neural network feature extraction. Through
the visualization of intermediate features [44], the differences
between various models trained with different data augmenta-
tion methods are displayed in Fig. 7.

In Fig. 7, the feature maps of different models correspond to
the convolutional kernel with the maximum weight of the layer,
which indicates the most effective feature extraction result of the
layer, and the network layers corresponding to different models
are the penultimate output of the decoding layer of the SNUNet
network, which is sufficient to represent the high-level semantic
features of the model. It is clear to see that the trained model
based on our data augmentation method has a strong feature
extraction ability as it can perceive the change region very ef-
fectively. The trained model with the data augmentation Method
1 has the weakest feature extraction ability, while the effect
of the model trained with mosaic simulation is somewhat im-
proved, but the feature extraction results are still not yet obvious.
Fundamentally, the deep learning model is powerful enough to
learn general semantic information from a large training sample.
The previous change detection models do not take into account
that, in real-world change detection scenarios, the probability of
optical remote sensing images being covered by haze or clouds is
high, but the existing training dataset usually only contains good
quality samples; naturally, if we direct training change detection
model in this dataset, it will result in deep learning model that
cannot learn enough semantic information; thus, once the trained
model is applied to real scenes covered by haze or thin clouds,
the change detection effect is usually unsatisfactory.

Our data augmentation method can improve the deep learning
model performance in haze cover and seamline scenes. In prin-
ciple, a simple haze simulation is used to augment the samples
so that the deep learning model can learn enough semantic infor-
mation to improve the generalization ability of the deep learning
model. The implementation principle of the mosaic simulation
data augmentation method is using spectral transformation to

Fig. 8. Newly generated training samples based on the GauGAN model.

TABLE V
ACCURACY EVALUATION

implement, this means is very simple and can easily simulate
the effect of a multi-temporal image mosaic, thus improving
model performance in excessive spectral differences regions.

B. Compared With the GAN Data Augmentation Method

As we know, GAN models are also very popular for data
augmentation. Therefore, we also selected a classical sample
generator, whose name is GauGAN for further comparison
[45]. GauGAN is a generator model, which is composed of
several residual blocks, and the building change detection ex-
periment demonstrates that it can generate new high-quality
samples [45]. The source code of GauGAN can be accessed
at https://github.com/justchenhao/IAug_CDNet. Several newly
generated deforestation samples are displayed in Fig. 8.

Each semantic map (dataset in Section IV-A) in the original
training samples produced a new synthesized image based on
GauGAN, then these newly generated images would be aug-
mented by several operations, such as Image rotation, Scale
transformation, and Brightness transformation; finally, these
new images mixed up with the original sample images for
the model training step. The quantitative accuracy (dataset
in Section IV-C) between GaunGAN and the proposed data
augmentation method was given in Table V. We can see that
the GauGAN method also achieved a relatively satisfactory
change detection result. However, there are several limitations
in data augmentation methods based on GAN, such as the model
training progress being very time-consuming.

C. Experiments on the Haze-Free Scenario

How does the deep learning model perform in haze-free
scenarios? We also conduct an experiment to compare. It is worth

https://github.com/justchenhao/IAug_CDNet
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Fig. 9. Change detection in the haze-free scenario. (a) Haze remove images.
(b) and (c) Change detection result based on Method 2 in haze cover scenario
and haze-free scenario.

noting that data augmentation Method 2 in Table I was selected to
train a change detection model. To remove the haze or thin cloud
in Fig. 3, we used the dark channel prior algorithm to generate
a haze-free scenario [37]. The original image, haze-free image,
and several change detection results are displayed in Fig. 9. The
quantitative accuracy assessment is given in Table Ⅵ.

In Fig. 9, we can see that change detection results on haze
removal scenarios has been improved, and the accuracy assess-
ment in Table Ⅵ also demonstrates this point. This auxiliary

TABLE VI
ACCURACY EVALUATION

TABLE VII
ACCURACY EVALUATION

experiment gives us some useful inspiration that developing
excellent haze or fog removal algorithms for optical high-
resolution images is important to improve the change detection
model performance in these complex scenarios. However, in this
article, we are not aiming to design a new or state of art haze
removal algorithm, we want to improve model performance only
based on training samples, and the final experiment proved that
it was effective.

D. Experiments on Other Datasets

In order to test the universality of the proposed data augmen-
tation methods, we also conducted a road extraction experiment
to verify. The road extraction task does not require bitemporal
images, only one time-phase image is needed, which provides a
good reference for other pixel-level segmentation tasks, such as
building extraction [46], [47].

D-Linknet model was selected as our baseline model [48].
The training dataset was downloaded from the official website
(http://deepglobe.org/leaderboard.html). To verify the impact of
different data augmentation methods on the accuracy, we use the
Method 1 data augmentation method as a comparison, which
was mentioned in Section IV. In order to compare the extraction
difference between different data augmentation methods under
haze cover conditions, we also used the haze image simulation
method to generate new test samples. The newly generated haze
cover images and road extraction results are displayed in Fig. 10.

In the visual comparison aspect, the trained road extraction
model based on our data augmentation method is superior to the
traditional data augmentation methods, such as spectral trans-
formation and scale transformation. Interestingly, the road ex-
traction model obtained by using our data augmentation method
is effective in reducing the omission alarms to a certain extent,
such as in the haze coverage areas. Therefore, it also proves
that the haze image simulation method can be very effective
in improving the generalization ability of deep learning models
in haze-covered regions by allowing the models to pay more
attention to this complex region.

We also used Recall, Precision, F1, and OA to evaluate the
quantitative accuracy, as given in Table Ⅶ. Compared with

http://deepglobe.org/leaderboard.html
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Fig. 10. Road extraction. (a) Original image. (b) Haze image simulation. (c)
Road extraction with data augmentation method1. (d) Road extraction result
with the proposed data augmentation method (only used haze simulation). (e)
Ground truth.

Method 1, our Recall indicator is relatively higher, and the road
extraction result is also consistent with the realistic extraction
situation.

E. Limitation

However, the proposed data augmentation method still has
several drawbacks: it is only suitable for haze or thin cloud-
covered areas, and there are still a few detection errors in the
thick clouds cover regions because in these regions, the ground
objects are invisible to conduct change detection tasks.

VI. CONCLUSION

Unlike the previous change detection methods on high-
resolution remote sensing images, which are mostly improved
from the model architecture aspect, we conducted an in-depth
analysis of the training dataset and found that model accu-
racy is poor in the haze coverage and seamline regions. From
this perspective, we propose a new data augmentation method,
namely, mosaic simulation and haze image simulation, and the
subsequent experiments in real-world scenes have proved the
effectiveness of this method.

The main contribution of this study is that we do not explore
the innovation in the architecture of the deep learning model
but constructs a simple and effective data augmentation method
to improve the model performance in the haze-covered and
seamline regions, which provides a cheap solution to these
complex scenes. In addition, our new data augmentation method
is not only adapted to the change detection task but also provides
an algorithm reference for other deep learning tasks, such as
building change detection in haze-covered regions or object
detection under specific meteorological conditions.
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