
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023 4287

Identification and Evolution of Soil Organic Carbon
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Abstract—This article aimed to investigate the feasibility of using
imaging spectroscopy (IS) to predict soil organic carbon density
(SOCD) either directly or indirectly through soil organic carbon
(SOC). Three methods, partial least square regression, support vec-
tor machine (SVM), and random forest, were utilized to calibrate
the models and map the SOCD. The results showed that direct
prediction was better than indirect prediction and the best model
SVM had high R2 of 0.94 and 0.93 for calibration and validation,
respectively. The measured SOCD was mainly concentrated in the
surface soil layer from 0 to 40 cm, and the deeper layer tended
to be gentle. The continuous depth variation trend of SOCD in
the topsoil (0–40 cm) was relatively close to the measured values,
while in the deeper layers (below 40 cm), it was much higher than
the measured values. This article also found that the best fitting
function of measured SOC stocks over time varied from linear to
power and then to logarithmic with increasing depth, indicating
less efficient accumulation of SOC in deep soil compared to topsoil,
resulting in an overall decrease in SOC accumulation rate across
soil depth. The best temporal functions for the predicted values
differed from the measured values at each depth, but the changing
trends of the three functions were basically consistent. It suggests
that IS technology has the potential to quantitatively reveal the
process of coastal soil evolution and offers a new insight for the
rapid monitoring of soil property changes.

Index Terms—Coastline change, imaging spectroscopy, organic
carbon density, soil chronosequence, soil evolution, soil profile.
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I. INTRODUCTION

SOIL organic carbon (SOC) is a crucial indicator of soil fer-
tility and has a direct impact on crop and vegetation yields

in terrestrial landscapes worldwide [1]. Increasing SOC stocks
can offset some of the effects of fossil fuel carbon emissions and
contribute to mitigating the greenhouse gas effect [2]. Therefore,
SOC is often regarded as one of the most essential components
to address the issues related to world food security and global
climate change [3], [4], [5]. Understanding the dynamic changes
in the regional SOC is conducive to regulating farming practices
and land management strategies in many countries including
China [6].

Until recently, studies on SOC have mainly focused on the
surface layer (0–30 cm), with limited understanding of the deep
soil profiles [7]. However, more than 50% of the organic carbon
is stored at the depth between 0.3 m and 1 m [5], hence, soil
sampling from an appropriate depth is essential for accurately
calculating the rate, and potential of the soil profile in SOC
sequestration [8], [9]. In addition, despite their high accuracy,
the determination of SOC density (SOCD) relies mainly on
conventional methods, which require considerable manpower
and resources, and have the disadvantages such as longer time
sampling with, higher sampling cost, as well as pollution [10].
The development of remote sensing technology has addressed
these limitations, enabling real-time, rapid quantitative monitor-
ing of soil properties. This capability holds greater importance
for quickly obtaining soil information under the ongoing global
climate change scenario [11], [12], [13].

Reflectance spectroscopy has been widely used to estimate
SOC and other properties worldwide [14], [15], [16], [17], [18],
[19], [20]. However, interestingly the reflectance spectroscopy
has been rarely used to estimate the SOCD directly; and it
cannot map the SOCD for a certain soil profile. Hence, imaging
spectroscopy, as a new technique with high spectral and spatial
resolution, has become an effective method for mapping soil
properties mostly for profiles with fine spatial resolutions [21],
[22], [23]. As a promising soil analysis tool [24], imaging spec-
troscopy can also effectively compensate for the disadvantages
arose the fixed-depth sampling and obtain continuous depth
functions for soil properties [25]. Lately, imaging spectroscopy
has been successfully applied to a soil property analysis [21],
[26] and a profile mapping system [23], [27], [28]. For instance,
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Sorenson et al. [29] and Xu et al. [30] mapped SOC and carbon
components for soil profile, and extracted their vertical distribu-
tion patterns. Their mapping of SOC suggests that imaging spec-
troscopy helps capture both vertical and lateral variations of soil
properties more quickly and efficiently. Today, the advancement
of mapping technology has become an essential component of
the digital soil morphometrics, and widely believed that it would
help estimate, and map SOCD profiles including the SOC stock
time- and cost-more efficiently [31].

Apart from mapping, carbon contents and properties in soil
spectra are modelled using various calibration methods, which
include linear models, such as multiple linear regression, princi-
pal components regression, and partial least squares regression
(PLSR) [30], [32], [33], [34], [35]. In addition, nonlinear models,
such as support vector machine (SVM), random forests (RF),
and artificial neural networks, are often used to predict soil
properties [32], [36], [37], [38]. Despite having the development
of robust modelling, many scholars have explored biases in the
accuracy of model predictions in SOC. For example, Hobley
et al. [39] used laboratory imaging spectroscopy and various
machine learning methods to predict the distribution of arable
land SOC, and found that the RF method relatively produce
good performance than other methods. Xu et al. [32] compared
the accuracy of PLSR and various machine learning methods
for predicting SOC and carbon components and found that SVM
generated the best prediction result. However, the optimal model
suitable for predicting soil properties varies under different soil
formation conditions and requires the development of a specific
prediction model for each soil property for the selected study
area [13], [30], [32], [40].

The coastal soil in the north of Jiangsu Province of China
developed from the sediment of the Yellow and Yangtze Rivers
over the past 1000 years and has typical soil formation from the
parent materials. Many scholars have studied the centennial or
millennial scale dynamics of soil organic carbon in this region
using traditional methods [9], [41], [42], yet there is limited
research evaluating the potential of imaging spectroscopy tech-
nology for investigating soil evolution processes. The objectives
of this article are as follows:

1) establish prediction models of optimal SOC content and
density by using SPXY sample set partitioning methods
combined with PLSR, SVM, and RF model;

2) directly and indirectly predict the profile SOCD by using
imaging spectroscopy;

3) compare vertical distribution of SOCD and evolution of
the SOCs between predicted and measured values at the
millennium scale coastline change in the region.

II. MATERIALS AND METHODS

A. Field Sample Collection and Processing

The study area was in the coastal plain of Dongtai,
Jiangsu Province, which has a subtropical monsoonal climate
(mean annual temperature 14.6 °C; mean annual precipitation
1042.3 mm). The soil, east of the Fangong Dike, is saline soil,
which developed from the sediments transported by the Yellow

and Yangtze Rivers over the past 1000 years. Historical changes
of the coastline are shown in Fig. 1(a) [9], [43]. Ten soil pits were
nearly vertical to the historical coastline from east to west. The
age of soil formation in each profile can be estimated according
to the history of the coastline. The detailed information on the
sampling sites can be found in Supplementary Table I. The intact
profiles were sampled and stored in rectangular wooden boxes
(100 cm in length, 20 cm in width, and 5 cm in thickness) [see
Fig. 1(b)]. In each soil pit, 10 layer samples were collected
for the SOC determination at fixed depth interval: 0–5 cm,
5–10 cm, 10–15 cm, 15–20 cm, 20–30 cm, 30–40 cm, 40–50 cm,
50–60 cm, 60–80 cm, and 80–100 cm [see Fig. 1(c)]. A total of
100 soil samples were obtained from 10 sampling sites. The
samples for bulk density (BD) determination were collected
from the center of each depth interval using a steel cylinder
(100 cm3 volume).

B. Image Spectroscopy Measurement and Preprocessing

1) Image Spectroscopy Measurement: The image spec-
troscopy for the profiles were recorded using an INFINITY
V10E imaging spectrometer (Lumenera, Canada) in a dark
room. The wavelength ranged between 389 and 1045 nm, and
256 bands were collected. The collection steps were performed
in the laboratory: four halogen lamps were used as the light
source, the air-dried soil profiles were placed on a mobile
platform, and a wooden ruler of 1 m was placed on the side of the
wooden box [see Fig. 2(b)]. The profile images were acquired
after black and white corrections.

2) Identification and Removal of Invalid Pixels: The images
were geometrically corrected to remove wooden borders and
to retain the original images with a fixed width (400 columns)
[see Fig. 2(c)]. Soil profiles were air-dried because the soil
water content may affect the model performance [24], [44], [45].
However, the loss of water in the profile can lead to cracks [see
Fig. 3(a)], which will cause errors. The spectroscopy curves of
soil and crack are obviously distinct, as shown in Fig. 3(b). The
soil reflectance increases significantly between 389–600 nm, and
then rises with slight fluctuations. However, the reflectance for
crack or shadow pixels is generally low. Therefore, the pixels
with reflectance below 0.15 at 600 nm were defined as invalid
pixels. This reflectance threshold was fine-tuned according to
the interprofile variability to classify the invalid pixels.

3) Computation of Average Spectral Curves for the Layer
Samples: The average spectral curves were extracted by aver-
aging the reflectance of valid pixels in the corresponding depth
interrval (0–5 cm, 5–10 cm, 10–15 cm, 15–20 cm, 20–30 cm,
30–40 cm, 40–50 cm, 50–60 cm, 60–80 cm, and 80–100 cm).
These averaged curves were used as the original spectral data
for corresponding layer samples [see Fig. 2(d)].

4) Pre-Processing of Spectral Curves: In the process of spec-
tral data collection, certain noise may be generated because of
the laboratory environment and the instrument. Then, spectral
curve of each pixel in profile image was smoothed and the av-
erage spectral curves were smoothed using the Savitzky–Golay
method (three orders of 25 points) to remove noise. The bands
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Fig. 1. (a) Sampling location. (b) Process. (c) Depth.

TABLE I
BASIC STATISTICS FOR SOIL PROPERTIES IN COASTAL JIANGSU (CHINA)

at both ends were removed. We retained the data for 230 bands
between the range of 410–1000 nm.

5) Division for Calibration and Validation Sets: The SPXY
method was used to select the calibration and validation sets
based on the independent variable (spectral information) while
considering the Euclidean distance from the dependent variable
(soil properties) [46]. The distance equations are as follows:

dx p, q =

√√√√
N∑
j=1

[xp (j)− xq (j)]
2 ; p, q ∈ [1, N ] (1)

dy p, q =

√
(yp − yq)

2 = |yp − yq| (2)

dxy (p, q) =
dxp, q

maxp,q∈[1,N ]dxp, q
+

dyp, q

maxp,q∈[1,N ]dyp, q
(3)

where xp, xq represent two different samples; N represents the
number of features of the sample. The distance calculated using
(6) was used to select calibration and validation samples. In this
article, the ratio of the calibration and validation sets was 7:3
[see Fig. 2(e)].

C. Chemical Analysis

After air-drying and ground, the soil samples were sieved by
a 0.15 mm mesh sieve. SOC content was determined using the
potassium dichromate oxidation-external heating method. The
samples for bulk density were weighed after drying in an oven
for 48 h at 105 °C. The following formula was used to calculate

the BD:

BD =
mt −ms

v
(4)

where mt and ms are the mass of the steel cylinder with the
drying soil sample and mass of the empty steel cylinder (g),
respectively, and v is the volume of the steel cylinder (100 cm3).

The soil organic carbon density per centimeter (SOCDicm,
g m−2) of layer i refers to the SOC storage of 1 cm interval per
unit area. The calculation formula is shown in

SOCDicm = SOCi × BDi ×A× (1− Ci) /10. (5)

SOCDi for soil layer i was calculated using

SOCDi = SOCi × BDi ×Di × (1− Ci) /10. (6)

The SOC stock (SOCsi) from surface to certain depth was
calculated using

SOCsi =

n∑
i=1

SOCDi (7)

where i is the number of soil layer; SOCi, BDi, Di, and Ci

represent the SOC content (g kg−1), soil BD (g cm−3), soil depth
(cm), and the volume (%) occupied by gravel larger than 2 mm,
respectively; A represents 1 cm; Ci is negligible because there
are no coarse particles in this article area; and 10 is the unit
conversion factor.
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Fig. 2. Flowchart of mapping and analysis for soil profiles via IS. (a) Soil profile. (b) IS scanning system. (c) IS data cubes. (d) Averaged spectra and SOC
determination. (g) Vertical distribution for SOCD and chronosequence for SOCs. (f) SOC/SOCD maps. (e) Model development.

Fig. 3. (a) Identification and removal of invalid pixels. (b) Spectroscopy of
normal soil and cracks pixel.

D. Model Development

1) Indirect and Direct Prediction of SOCD: Indirect predic-
tion of SOCD involves predicting the organic carbon content
using imaging spectroscopy, and then combining it with soil
bulk density data to calculate the SOCD. Direct prediction of
SOCD refers to directly establishing a regression model between
imaging spectroscopy and SOCD.D.B. Predictive models and
model evaluation.

The calibrations were built with PLSR, SVM, and RF [see
Fig. 2(e)]. PLSR was proposed by Wold et al. [47]. This method
combines typical correlation analysis, principal component anal-
ysis, and multiple linear regression analysis, effectively solving
the multicollinearity problem among independent variables. Its
discriminant equation is as follows:

R2
i+1 −R2

i ≤ P (8)

where i represents the current number of principal components;
P is a preset value usually set to 0.05; If the difference between

R2
i+1 and R2

i is less than P when adding a new principal
component to the regression model, only the first i principal
components are selected to build the model.

SVM can generalize unknown samples for applications such
as identification classification, regression modeling, and time
series prediction [48]. In this article, the grid search method was
used to search the model parameters c and g for the Gaussian
radial basis function, and the 10-flod cross-validation was used
to determine the best model parameters to minimize the root-
mean-squared error (RMSE).

RF can improve prediction accuracy without significantly
increasing the amount of computation and is one of the best
data mining algorithms available [39]. In this article, the mtry
parameter was set to its default value, and the best value of the
parameter ntree was selected through 10-fold cross-validation
and grid search method.

In this article, three metrics were used to compare the model
accuracy: determination coefficient (R2), RMSE, and RPIQ
(RPIQ is the ratio of IQ to RMSEp, IQ is the difference between
the third quartile (Q3), and the first quartile (Q1) of the sample
observations). The higher R2 and RPIQ and lower RMSE, the
better model is [49], [50]. RPIQ is a more objective index than
RPD for the model evaluation of non-normally distributed soil
data [49], [50]. The subscript C represents the modeling results
of the calibration set. The subscript P represents the independent
validation results.

The best model was used to map SOC or SOCD for profiles
[see Fig. 2(f)]. Then, the predicted values for 1 cm, 5 cm,
and corresponding intervals were extracted by averaging the
corresponding pixel values and used to validate the results
and analyze the vertical distribution and chrono-sequence
[see Fig. 2(g)].
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Fig. 4. (a) Distribution of SOC, (b) SOCDicm in soil profiles and the average (c) SOCDicm changing with time.

III. RESULTS

A. Characteristics of Soil Properties

1) Identification of SOC Variation: The soil properties are
shown in Table I. The SOC content of coastal soil in northern
Jiangsu was recorded generally low. The mean value, was 4.41 g
kg−1with a large difference in range (1–17.03 g kg−1). The
coefficient of variation (CV) was as high as 77.21%. The BD,
(1.09–1.62 g cm−3) had the standard deviation and CV were
0.11 and 7.75%, respectively. The soil organic carbon density
(SOCDicm) ranged from 0.13 to 1.86 g m−2 with a CV of
70.85%. Among 10 soil profiles studied, the highest and the
lowest SOCs were 59.47 g m−2 and 23.88 g m−2. Kurtosis
can describe the steepness of the data distribution pattern, with
three representing a normal distribution and 1.8 representing a
uniform distribution. Skewness measures the degree of skewness
of the data distribution, with zero representing a normal distribu-
tion. None of the soil properties satisfied the normal distribution.

2) Variation of SOC in Soil Profile: The SOC content in
the coastal Jiangsu was found to be varying with depth, but
in certainty and in a regular basis [see Fig. 4(a)]. Except for
DT09, the SOC content in the profiles decreased with depth,
and tended to be gentle in the deep layer. The anomaly in
DT09 may be related to the buried peat layer. In addition,
the vertical distribution of SOC in the profiles with different
soil formation ages differed significantly. The profiles with a
short soil formation age exhibited low SOC accumulation and a
relatively uniform vertical distribution.

With an increase in soil age, the accumulation of SOC grad-
ually extended to subsurface layers. The SOC accumulation in
profile DT10 was more significant than that in the other profiles.

The vertical distribution of SOCDicm showed the same trend
as SOC [see Fig. 4(b)]. The SOCDicm decreased along with
depth. In general, SOCDicm in older profiles were higher than
those in younger profiles for the upper 40 cm. For the entire
profile, the average SOCDicm ranged from 0.27 g m−2 (DT02)
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TABLE II
STATISTICS OF ORGANIC CARBON CONTENT OF SOILS DIVIDED BY SPXY METHOD

Fig. 5. Modeling results for SOC content [(a) PLSR; (b) SVM; (c) RF].

to 0.60 g m−2 (DT10) and generally increased with soil age. The
power and logarithmic functions showed comparable results,
better than linear function, which indicated the decreasing rate
of SOC sequestration in this chronosequence [see Fig. 4(c)].

B. Prediction of SOC Density by Spectroscopy

1) Indirect Prediction of SOC Density by Spectroscopy:
Imaging spectroscopy was commonly used for estimating SOC
content with high estimation accuracy, and SOC content can be
converted to SOCD data by BD [23], [27], [29], [30]. Therefore,
we first established a SOC estimation model based on averaged
spectra and mapped the SOC content for profiles using imaging
spectroscopy, and then obtained the SOCD map combined with
the corresponding BD for layer samples.

a) Statistical analysis of SOC content in sample sets:
Table II showed the SOC content statistics of the sample set
divided by the SPXY method. The mean and standard deviation
of the SOC content in the model set were 4.84 g kg−1 and 3.55 g
kg−1, respectively. The kurtosis and skewness were 1.60 and
1.10, which had only had a little difference from that of the total
sample set. The content of the SOC in the prediction set varied
from 1.09 g kg−1 to 9.20 g kg−1, and the mean and standard
deviation decreased to 3.40 g kg−1 and 2.85 g kg−1, respectively.
The spatial heterogeneity increased, and the CV was 83.92%.
The kurtosis was -0.95, indicating that the data distribution was
relatively flat compared with the normal distribution.

b) Modeling results for SOC content: Three methods
(PLSR, SVM, and RF) were used to establish SOC content
prediction model, and the prediction accuracy was compared
(see Fig. 5). The results demonstrated that the R2

c of RF was
the highest at 0.93 but that R2

p was low (0.80). Comparatively,
the R2

c of SVM and PLSR were second to RF, 0.88 and 0.73,
respectively. But the R2

p of SVM was higher than that of RF, at
0.92. The RPIQ of SVM was higher than that of the PLSR and
RF, indicating that SVM was more suitable to map SOC content
for profiles.

Fig. 6. Estimation results of organic carbon content in profiles with different
soil formation ages.

c) Mapping results of SOC content in profiles: The SVM
model was used to map the SOC content for the profiles, and the
results were shown in Fig. 6. There were significant differences
in the vertical distribution of SOC in profiles of different age.
The SOC contents in DT01 and DT02 were relatively low with
mean value 4 g kg−1. The low carbon content could be due to
the shorter time of soil formation, especially in DT02 profile. In
DT03, DT04, DT05, DT06, DT07, and DT08, the SOC content
in the surface layer (30 cm) ranged from 4–8 g kg−1. The SOC
content in DT09 at 0–40 cm layer ranged from 4–8 g kg−1 while
in DT10 at 0–15 cm layer was measured above 8 g kg−1 and
at 15–40 cm layer, ranged from 4–8 g kg−1. Interestingly, the
SOC content in the 40–100 cm layer was less than 4 g kg−1

in almost all profiles. The SOC contents in DT01, DT03, and
DT04 increased slightly at 90–100 cm depth, because of the
organic residues buried during deposition. The mapping results
showed similar vertical distribution and temporal trend of the
SOC content as the measured values presented in Fig. 4(a). It
is s clear that the SOC was found to be more concentrated in
the surface layer, decreased along with depth and eventually
stabilized for ageing.

d) Indirect mapping of SOCDicm for profiles: The
SOCDicm distribution was calculated by combining the SOC
map with the corresponding BD (see Fig. 7). As shown in Figs. 6
and 7, the vertical distribution of the SOC content and density in
the profiles were roughly similar. The SOCDicm in the younger
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Fig. 7. Indirect estimation results of SOC density for profiles with different
soil ages.

Fig. 8. Correlation between SOC content and SOCDicm.

profiles, DT01 and DT02, was low and relatively consistent with,
less than 0.50 g m−2. The SOCDicm content at 0-25 cm depth of
the older (formed during 100 to 500 years ago) profiles such as
DT03, DT04, DT05, DT06, DT07, and DT08, the was relatively
higher than the younger profiles. The DT09 and DT10 soil
profiles of 600 and 940 years old, where the SOCDicm content
was measured highest at 0–35 cm depth. Except for DT01 and
DT02, the vertical distribution of SOCDicm varied significantly
with depth, and most of the SOCDicm at 35–100 cm depth was
less than 0.5 g m−2.

2) Direct Prediction of Soil Organic Carbon Density by
Spectroscopy:

a) Correlation between SOC content and SOC den-
sity: Fig. 8 shows the correlation between SOC content and
SOCDicm. The fitting results for the linear and power functions
were R2 values of 0.98 and 0.99, respectively. It indicated
that there was a strong correlation between SOC content and
SOCDicm. In theory, SOCDicm could be predicted directly using
imaging spectral data.

Fig. 9. Modeling results of SOCDicm (a) PLSR; (b) SVM; (c) RF.

b) Statistical analysis of SOCDicm in sample sets: The
same sample sets as before were used for calibration and pre-
diction sets (see Table III). The mean and standard deviation of
the modeling set were 0.64 g m−2 and 0.40 g m−2, respectively,
and the kurtosis and skewness were -0.58 and 0.42, which had a
small difference with the total set. The CV was 62.55%, which
was smaller than the total set. The SOCDicm of the prediction set
varied from 0.13 to 1.80 g m−2, with an average value of 0.50 g
m−2 and a CV as high as 93.27%. The kurtosis and skewness
were 0.49 and 1.23, indicating that the data was skewed to the
right compared to the mean value.

c) Modeling results of SOC density: The smoothed spec-
tral data and SOCDicm were used to build PLSR, SVM, and
RF models and the prediction performance was compared (see
Fig. 9). The modeling and prediction performance of SVM
was higher than those of PLSR and RF, up to 0.94 and 0.93,
respectively. The RPIQ for SVM was 5.96, which was much
higher than those of the other two models. The SVM got the
best model for this article, which was suitable for mapping the
SOCDicm for the profiles.

d) Mapping results of SOCDicm in profiles: The SVM
model was used to map the SOCDicm for the profiles directly
(see Fig. 10). The SOCDicm of the invalid pixel was expressed
as the average of the nearby values. The results (see Fig. 10)
were similar with the maps predicted indirectly by SOC and BD
(see Fig. 7). The SOCDicm was low and there was no significant
difference in the vertical distribution in younger profiles (DT01
and DT02). In other profiles, the SOCDicm of the surface and
subsurface soil were significantly different. These SOCDicm

maps also showed that the vertical distribution of SOCDicm

in profiles with different ages differed significantly. And the
amount and accumulation depth of SOC increased with age.

3) Evaluation of Mapping Results: To evaluate the map-
ping accuracy for SOC and SOCDicm, the maps for SOC and
SOCDicm were averaged according to the sampling depths.
Then, the averaged mapping values for the 100 layer samples
were compared with the measured values. The results showed
that the R2 and RMSE of the predicted SOC content reached
0.77 and 2.07 g kg−1, and the RPIQ was 2.79, indicating that the
model produced a good mapping result for SOC [see Fig. 11(a)].
The R2 for indirect prediction of SOCDicm was 0.68, RMSE was
0.27 g m−2, and RPIQ was 2.85, respectively, indicating that
the indirect mapping of SOCDicm by the model was generally
effective [see Fig. 11(b)]. The mapping result for direct predic-
tion of SOCDicm (R2 = 0.78, RPIQ = 2.83) was slightly better
compared to the indirect prediction [see Fig. 11(c)]. These three
scatter plots also showed a phenomenon: the high value tend
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TABLE III
STATISTICS OF ORGANIC CARBON CONTENT OF SOILS DIVIDED BY SPXY METHOD

TABLE IV
PREDICTION OF SOIL ORGANIC CARBON/MATTER CONTENT BASED ON LABORATORY IMAGING SPECTROSCOPY

to be underestimated and low value tend to be overestimated.
As a result, the vertical variation for SOC and SOCDicm in the
profiles was underestimated.

The SOCsi is the accumulated SOCDi from surface to certain
depth (ith layer), representing the amount of SOC stock within
certain depth in the profile. The R2 was 0.84 and the RPIQ
was 2.45, indicating that the map for SOCDicm can be used
to estimate SOC stock for the profiles with better accuracy
[see Fig. 11(d)]. The SOCsi were underestimated within 40 cm
and then the values were overestimated beyond 40 cm due
to the phenomenon of overestimation for low values and the
underestimation for high values. That is, the underestimation
for high SOCDicm led to the underestimation within 40 cm soil.
The overestimation for low SOCDicm and the greater thickness
of subsoil led to the overestimation for SOCSi for deeper soil
and the whole profile.

C. Temporal Function of SOCs Accumulation

According to the relationship between soil formation age and
SOCs at different depths, the evolution of SOCD in this region
can be inferred on a millennium scale (7). The scatter diagrams
between the measured and predicted SOCs at different depths
and soil ages are shown in Fig. 12. The R2 values for the linear,
logarithmic, and power functions were used to determine the best
fitting results for SOCs and soil age. In general, the measured
SOCs were greater than the predicted values for surface soil
within 20 cm, and the predicted SOCs were greater than the
measured values for deeper soil (>50 cm).

The temporal function of measured SOCs varies continuously
with the sampling depth. The accumulation of surface SOCs
continued at a stable rate and was roughly linear on a millennial

time scale. With increasing soil depth, the fitted function of SOCs
with time was closed to a power function and then changed to
a logarithmic function, indicating that the deep soil could not
reach the organic carbon stock accumulation rate of the surface
soil, thus slowing the rate of SOCs accumulation in the whole
soil profile. For the predicted values of SOCs, the linear function
was the best fit for all soil depths, which was a result of the
overestimation of low values and underestimation of high values
of SOCD from the spectral data.

IV. DISCUSSION

A. Calibration Methods and Their Performance

Many scholars have used imaging spectroscopy to predict
SOC/SOM (see Table IV). PLSR was used in earlier studies
while SVM or RF has been used in recent studies. Our research
indicates that the models established by SVM and RF methods
are superior to PLSR, which is consistent with previous research
results (see Table IV). This is mainly because machine-learning
techniques can effectively handle the nonlinear relationship
between spectral features and soil properties [34]. However, al-
though these nonlinear models have higher predictive accuracy,
there is a “black box” problem where the model structure is
complex and the transparency is generally low [51], making it
difficult to reveal the functional relationship between spectra and
soil properties. It is also difficult to understand the contribution
of each band to property prediction in model construction.
Linear models have lower predictive accuracy but simpler struc-
tures and typically have lower computational costs [13], [30],
which are advantageous for identifying response characteristics
between spectra and properties from large amounts of data.
Therefore, the predictive performance of different models is
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Fig. 10. Estimation results of organic carbon density in profiles with different
soil formation ages. (a)-(j) Represent the mapping results of SOCD for DT01 to
DT10 based on the best model.

related to their underlying mechanisms, and each method has
advantages and disadvantages that must be considered based on
research purposes and data availability [32].

Previous studies showed that the imaging spectroscopy could
effectively map the SOC content for profiles [22], [27], [29],

Fig. 11. Scatter plot of mapped and measured SOC, SOCDicm, and SOCsi
(a) SOC; (b) indirect mapping for SOCDicm; (c) direct mapping for SOCDicm;
(d) SOCsi.

[30], [33], [35], [39]. However, SOCDicm needs to be calculated
based on the BD [52], [53], [54], which is complicated and
laborious. Therefore, a question arises whether SOCDicm can be
predicted by spectral data directly with improved performance.
In this article, we compared the consistency between direct and
indirect predictions of SOCDicm with the measured values, and
the results showed that direct prediction accuracy was better
than that of indirect prediction [see Fig. 11(b) and (c)]. Three
modeling methods achieved good performance in predicting
SOCDicm (see Fig. 9), with SVM method obtaining the best
model, with R2 values of 0.94 and 0.93 for the calibration and
prediction sets, respectively. This means that it is possible to
predict SOCDicm using spectral data directly and accurately,
thus filling the gap in BD data in SOC inventory calculations,
which is of great significance for estimating global soil carbon
stocks. The 1:1 relationship indicated that all three models ex-
hibited both over- and underestimation of SOCDicm predictions
(see Fig. 9). The reason for overestimation of high values may
have been due to the limited number of soil samples with high
SOCDicm concentrations, which were only found in the top
0–10 cm layer of the DT10 profile with contents exceeding 1.5 g
m−2 [see Fig. 10(j)]. Underestimation of low values may have
been related to the weakening of the spectral prediction ability
of soil organic matter with decreasing content [55]. Zheng et al.
[13] used imaging spectroscopy combined with multivariate
regression to predict the content of five soil fertility properties
in Cixi area, and the results showed that all six models exhibited
over- and underestimation of the five soil properties, which was
consistent with this article. Since the prediction of soil properties
by spectroscopy is influenced by multiple factors such as spectral
bands, soil characteristics, and preprocessing procedures [13],
[30], [56], the underlying mechanisms of these prediction errors
were not fully understood, and further research was needed for
more accurate prediction.
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Fig. 12. Temporal function of soil organic carbon stock for different depths.

In addition, the variable soil parent material and carbon source
can also affect the model’s predictive performance [57], [58],
[59]. The soil samples selected in this article developed in the
typical parent material area of the Yellow River and Yangtze
River accumulated under the interaction of land and sea in the
past 1000 years, which has reference significance for studying
soil chronosequence in other coastal areas. However, soils devel-
oped on different parent materials from other regions may have
different applicable models and results [60], [61]. For instance,
Liu et al. [60] investigated the predictive performance of three
regression models for soil organic carbon content developed on
different parent materials (trachyte and basalt) and found that
the best model and spectral response characteristics differed.

Therefore, the model we used was applicable to this region and
was not considered globally applicable. It is, however, necessary
to collect soil samples from different regions for SOC/SOM and
type evaluations and to extend the spectral prediction model to
a larger range.

B. Variation of SOCD in Soil Profile

Many scholars have already conducted research on the vertical
variation of SOCD, and their findings indicated that the surface
soil had a higher SOCD compared to the lower layers [9], [62],
[63], [64]. In this article, we also observed a similar distribution
pattern of SOCD [see Fig. 4(a)]. The reason may be that the de-
composition of plant leaves and roots formed organic matter that
accumulated rapidly in the surface layer, leading to a significant
increase in the surface SOCD [5], [65]. Imaging spectroscopy
is an effective new method for mapping soil properties, which
allows us to observe the vertical distribution characteristics of
soil properties in more detail compared to traditional reflectance
spectroscopy [24], [30]. To evaluate and validate the prediction
results, we extracted the continuous depth variation curve of
SOCD from the soil profile mapping results, and displayed the
vertical distribution of measured values on the right side of the
profile map (see Fig. 10). The continuous depth variation trend
of SOCD in the topsoil (0–40 cm) was relatively close to the
measured values, while in the deeper layers (below 40 cm), it was
much higher than the measured values. The main reason for this
was that the model had poor accuracy in estimating the SOCD
for lower contents (less than 0.5 g m−2). The mapping results
of soil organic matter content in the soil profile by Zheng et al.
[13] showed that the best model overestimated the organic matter
content in soil samples with values lower than 5 g kg−1 to varying
degrees, consistent with this article. These results indicated
that when mapping for SOC/SOCD, the mapping results in the
low-content areas may have been unreliable. Although many
studies have conducted high-resolution mapping of various soil
properties in both vertical and horizontal directions, all the
validation results of their established models have exhibited
overestimation of high values and underestimation of low values
[13], [30], [32], [40]. Further research is needed to determine the
accuracy in estimating the content of attribute in high and low
value regions. In addition, the generalized ability of the model
may also affect the mapping effect. Steffens and Buddenbaum
[23] pointed out that a high-precision regression model does not
always represent the best mapping results. In their study, the
accuracy of PLSR was the lowest, but its generalized potential
for reasonable mapping of profile properties was the highest,
while SVM had the highest accuracy but the poorest robustness
and lower generalization potential.

This article filled the gap in the application of imaging
spectroscopy technology in soil chronosequence research by
mapping SOCD in soil profiles at different ages. The results
suggest that imaging spectroscopy technology could be used
to directly map the topsoil (0–40 cm) SOCD of older profiles
(DT03-DT10), but the predicted accuracy of younger profiles
(DT01, DT02) and lower SOCD areas (below 40 cm) needed
to be improved. Nonetheless, imaging spectroscopy technology
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provide a fast and non-destructive method for observing the
spatial structure of soil properties in profiles [30]. Compared
to the limitations of traditional fixed-depth sampling intervals,
this technology could better serve the study of profile horizon
division, dynamic changes in soil properties, and achieve better
soil survey tasks [13], [23], [30].

C. Temporal Variation of Organic Carbon Density

Soil chronosequence is of greater significance to explore the
direction and rate of overall soil evolution, providing essential
information for soil genetic theory [66], [67], [68]. In this article,
power functions and logarithmic functions were found to be
better fit the changes in 1 cm average SOCD over time compared
to linear functions [see Fig. 4(c)], indicating that the soil carbon
sequestration rate gradually slowed down over time for the
entire profile. This was mainly because the deep soil could not
accumulate organic carbon as efficiently as the topsoil, leading
to a decrease in the accumulation rate of organic carbon in the
entire depth of the soil [see Fig. 4(b)]. The best-fit function
for the topsoil (0–15 cm) was linear, but with increasing soil
depth, it became power functions and logarithmic functions (see
Fig. 12), which also supported this view. However, our results
were different from that of other soil evolution studies in which
the accumulation rate of SOM with time at different depths all
showed a linear growth trend [13]. The main reason may be
that soil with different parent materials had different carbon
sequestration capacity [69].

For the predicted values of SOCs, the linear function was the
best fit for the 0–15 cm topsoil, which was consistent with the
measured results (see Fig. 12). However, the best fitting function
for predicted values at other depths was different from the mea-
sured results, with the best fitting function for predicted values
being linear and for measured values being power function.
Traditional sampling methods were commonly used in previous
studies to analyze the direction and rate of soil evolution [69],
[70], [71], [72], making it difficult to directly compare the results
of the best fitting functions obtained from imaging spectroscopy
with those of other studies. Nevertheless, the fitting trends of
SOCs over time showed minimal differences among the three
functions for both measured and predicted values. This suggests
that imaging spectroscopy technology holds great potential for
quantitatively revealing the process of soil evolution. Despite
the current limitations in accuracy, this article provided a new
insight for the rapid monitoring of soil property changes under
global climate change scenarior. Future research should focus
on exploring more intelligent prediction models [73], [74], [75],
improve the generalized ability of the models, and reducing
the extent of overestimation and underestimation of high and
low values, respectively. This will enable more accurate soil
property mapping to support strategic planning for regional and
even national-level sustainable development goals related to soil
conservation and management.

D. Limitations and Perspectives of This Article

The results of this article indicated that utilizing imaging
spectroscopy data for direct or indirect estimation of SOCD

distribution in soil profiles was a feasible option for studying
soil evolution processes. However, there were still some limita-
tions to this approach. First, the soil samples used for chemical
analysis were grounded, which may have reduced the influence
of environmental factors. However, the surface of intact soil
profiles was much rougher and may decrease the accuracy of
estimating SOC/SOCD. Therefore, it is necessary to develop
algorithms to eliminate the light scattering effect caused by soil
surface roughness. Second, the developed model for estimating
SOCD and the fitted soil chronosequence function in this arti-
cle are only applicable to the studied region. Under different
environmental conditions, the accumulation rate and vertical
distribution of SOC may present varying results. Therefore,
it is necessary to compare the results obtained from applying
imaging spectroscopy technology to study soil evolution to the
other region.

In the future research, it is desired to collect soil profile sam-
ples under differential parent material conditions to construct
soil chronosequence and use more advanced imaging spectrom-
eters to detect more wavelengths to enrich soil information.
Additionally, it may be possible to extend the developed model
in the article to larger spatiotemporal scales. These can provide
a theoretical basis for the soil evolution and pedogenesis.

V. CONCLUSION

This article utilized PLSR, SVM, and RF methods to predict
the SOCD directly or indirectly in the entire depth (0–100 cm)
of soil profiles at different ages. The results showed that the
accuracy of direct prediction was better than that of indirect
prediction, and the SVM method produced the best model, with
R2 values of 0.94 and 0.93 for the calibration set and validation
set, respectively. The variation of measured SOCD in soil profile
showed that SOC mainly accumulates in the topsoil (0–40 cm),
with little accumulation in the deeper soil (below 40 cm). The
mapping of SOCD achieved good results in the 0–40 cm layer
of older profiles (DT03-DT10), but the prediction accuracy in
younger profiles (DT01, DT02) and deep soil layers needed to
be further improved. Power functions and logarithmic functions
were found to be better fit the changes in 1 cm average SOCD
over time compared to linear functions, indicating that the soil
carbon sequestration rate in this area gradually slowed down over
time for the entire profile. For the predicted values of SOCs, the
best temporal functions were different from that of the measured
values at most depths, but the fitting trends of changes with time
by three functions were basically consistent. It suggests that
the IS technology had the potential to quantitatively reveal the
process of coastal soil evolution. Future research should focus
on exploring more intelligent prediction models, and improve
the existing generalization in the ability and prediction accuracy
of the models.
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