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Wavelet Spatio-Temporal Change Detection on
Multitemporal SAR Images
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Abstract— In this article, we introduce the wavelet energies
correlation screening (WECS), an unsupervised method to detect
spatio-temporal changes on multitemporal SAR images. The pro-
cedure is based on wavelet approximation for the multitemporal
images, wavelet energy apportionment, and ultrahigh-dimensional
correlation screening for the wavelet coefficients. We show WECS’s
performance on simulated multitemporal image data. We also
evaluate the proposed method on a time series of 85 Sentinel-1
images of a forest region at the border of Brazil and French Guiana.
Comparisons with well-known change detection methods found
in the literature highlight the proposal’s superiority in terms of
change detection accuracy. Additionally, the introduced method
has simple architecture and low computational cost.

Index Terms—Change detection, multitemporal images, remote
sensing, simulated images, wavelets.

I. INTRODUCTION

CHANGE detection in satellite images is an important issue
pursued in remote sensing. It allows practitioners to iden-

tify and evaluate modifications on land surfaces. Its relevance
may be exemplified by changes due to human activity, such as
deforestation [1], rapid urbanization [2], and glacier melting [3].

Special attention has been given in the literature to change
detection using synthetic aperture radar (SAR) images. Known
to be unaffected by weather, cloud, and sunlight conditions,
SAR images are an essential data source in change detection
applications [4].

An issue with this type of data is that SAR’s acquisition
architecture brings a special kind of noise called speckle. This
noise typically demands additional preprocessing of the images.

Manuscript received 26 January 2023; revised 28 March 2023; accepted 17
April 2023. Date of publication 20 April 2023; date of current version 2 May
2023. This work was supported in part by FAPESP under Grant 2016/24469-
6, Grant 2018/04654-9, 2021/01305-6, and Grant 2021/04513-9 and in part
by CNPq under Grant 309230/2017-9 and Grant 310991/2020-0. The work of
Rodney V. Fonseca was supported by the Morá Miriam Rozen Gerber Fellowship
for Brazilian postdocs. (Corresponding author: Rodney V. Fonseca.)

Rodney V. Fonseca is with the Department of Computer Science and Applied
Mathematics, Weizmann Institute of Science, Rehovot 7632706, Israel (e-mail:
rodney.fonseca@weizmann.ac.il).

Rogério G. Negri is with the Department of Environmental Engineering,
São Paulo State University, São José dos Campos 12247-004, Brazil (e-mail:
rogerio.negri@unesp.br).

Aluísio Pinheiro is with the Department of Statistics, University of Campinas,
Campinas 13083-859, Brazil (e-mail: pinheiro@unicamp.br).

Abdourrahmane Mahamane Atto is with the LISTIC - Polytech Annecy-
Chambéry, Université de Savoie, 74944 Annecy le Vieux Cedex, France (e-mail:
abdourrahmane.atto@univ-savoie.fr).

Digital Object Identifier 10.1109/JSTARS.2023.3268601

Despeckling the SAR images has been the focus of research for
a long time, and techniques are varied. For instance, Bhateja
et al. [5] employ local statistics filters. Ma et al. [6] control
speckle noise through likelihood-ratio tests. The authors in [7]
and [8] reduce speckle in intensity SAR images via stochastic
distances methods. The former does it with nonlocal means,
while the latter employs Bernoulli sampling self-supervised
deep learning ideas. Sebastianelli et al. [9] denoise Sentinel-1
SAR images through deep learning based on convolutional
neural networks.

Speckle reduction has also been pursued using different
wavelet proposals. Fukuda and Hirosawa [10] denoise SAR
images by reducing the amplitude of detail wavelet coefficients
while preserving edges. Dong et al. [11] reduce speckle noise
by recursive wavelet transforms. Solbø and Eltoft [12] pro-
pose the wavelet version of the λ-MAP denoising filter in the
so-called λ-WMAP. Vidal-Pantaleoni and Martí [13] provide
several thresholding options in the wavelet analysis of SAR
images and compares its performance for speckle treatment.
Bovolo and Bruzzone [4] propose a multiscale decomposition
of the log-ratio SAR image. Gupta and R. Gupta [14] employ
wavelet representation to despeckle SAR images, coupled with
wavelet-based detection of geographical features. Liu et al. [15]
use wavelet transforms to estimate the noise variance, which is
then employed for noise reduction via weighted nuclear norm
minimization and Grey theory. Penna and Mascarenhas [16]
reduce noise by nonlocal means algorithms in the Haar wavelet
domain.

Change detection in multitemporal SAR images has been
studied with diverse methods. For example, Johnson and
Kasischke [17] employ change vector analysis (CVA), while
Bujor et al. [18] apply log-cumulants to detect spatio-temporal
discontinuities in multitemporal SAR images. Gamba et al. [19]
combine feature- and pixel-based techniques. The approach
proposed by Celik [20] is the PCA K-Means (PCAKM), where
a clustering process segregates the divergences extracted via
principal component analysis. Zhang et al. [21] employ a
sparse feature clustering network to attain unsupervised SAR
image change detection. Sentinel-1 data are studied by Mastro
et al. [22] with random forests. Zhang et al. [23] use histogram
fitting error minimization when there are few changed areas,
while Zhang et al. [24] detect changes via adaptive contourlet
fusion clustering. Iteratively reweighted MAD method
(IRMAD) is the proposal of Nielsen [25]. Li et al. [26] use slow
feature analysis and image fusion. Zhuang et al. [27] rely on the
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progressive nonlocal theory to detect changes. Several recent
studies perform change detection via different deep learning
ideas [28], [29], [30], [31], [32]. The authors in [33] and [34]
employ approaches based on probabilistic distributions for
error terms and change detection matrices. The authors in [35]
and [36] propose change detection methods based on clustering.
The authors in [37] and [38] discuss the varied nonlocal mean
filters. Compressed projection and image fusion are employed
by Hou et al. [39]. Invariant slow feature analysis (ISFA) is em-
ployed by Wu et al. [40]. Deep slow feature analysis for change
detection is the subject of [41]. Chen et al. [42] propose a change
detection method driven by adaptive parameter estimation.

Besides the methodological differences in the aforementioned
works, emphasis may be put on the area of potential applications.
Lin et al. [43] discuss the performance of different methodolo-
gies for landslide detection through multitemporal SAR images.
The authors in [44] and [45] present results of unsupervised
change detection for urban areas. Change detection in multitem-
poral hyperspectral images is discussed in [46], [47], and [48].

Change detection analysis is classified either as supervised
(training data are used to set up the method) or unsupervised
(fully data-driven techniques). We focus here on unsupervised
approaches [49], [50], [51], [52], [53], [54]. Most of these
methods have been developed for pairs of images. Consequently,
changes can be detected only when they represent some mod-
ification between the initial and final time instants. This disre-
gards potentially relevant changes, which occur in intermedi-
ary instants of time and are subsequently reversed. Moreover,
simultaneous analysis of many pairs of images can, even for
time series of medium length, pose serious statistical burdens
such as low power and high false positive ratios [55], [56], [57].

Change detection using SAR images is challenging due to
the high dimensionality of multitemporal datasets associated
with the speckle noise. In this context, a wavelet transform is
a convenient tool, given its robustness to noisy data and the
efficient algorithms available to compute it.

Wavelet-based methods have many advantages for a plethora
of statistical applications, thanks to wavelet capabilities in cap-
turing multiscale/resolution information [57]. Their computa-
tional efficiency and sparseness are especially relevant for large
images and other high-dimensional data [55]. On the other
hand, there are methods that have been successfully applied in
high-dimensional statistical models but are still novel ideas in
the wavelet and change detection literature.

We may summarize the literature on multitemporal SAR im-
age change detection as follows. There is no single method in the
literature that simultaneously deals with a time series of images
longer than two, is based on wavelet representation of SAR
images, presents a straightforward answer to the spatiotemporal
detection of changes in a single step, is unsupervised, and is
scalable, i.e., may be used for very large images and/or very
long time series.

Motivated by the aforementioned discussion, we propose the
wavelet energies correlation screening (WECS), a novel unsu-
pervised change detection method to analyze full time-series of
SAR images. WECS is based on ultra-high-dimensional feature
screening of wavelet coefficients [56]. We show that it is possible
to simultaneously use all instants of time and all image locations

with an unsupervised technique. WECS yields straightforward
results and provides accurate change detection with low false
positive and false negative rates.

The remainder of this article is organized as follows. Basic
concepts and definitions are presented in Section II. Section III
introduces the problem and the proposed method. We show
WECS’ performance on simulated multitemporal image data in
Section IV-B. In Section IV-C, we apply WECS to a time series
of 85 satellite images acquired over the border region of Brazil
and French Guiana. Finally, Section V concludes this article.

II. BACKGROUND

Wavelet methods have been widely employed in the signal
processing literature, especially for denoising and compression
tasks [57]. Wavelets provide multiresolution decompositions,
whereby a signal is represented by two types of values: ap-
proximation coefficients, which describe the average (coarse)
behavior of the signal, and detail coefficients, which correspond
to local (fine) characteristics. These coefficients are generally
computed via a discrete wavelet transform. When the signal is a
matrix, such a transform consists in applying low- and high-pass
convolution filters to its rows and columns [55].

We apply wavelet transform to reduce speckle noise. Each
image is represented by a matrix, and a low-pass filter is applied
J times to rows and columns of the corresponding matrix. The
value J is also called resolution level, a tuning parameter for
wavelet smoothing. We use a discrete stationary wavelet trans-
form, also known as nondecimated or redundant wavelets [58].
We do not apply here any specialized wavelet method to reduce
speckle. Notwithstanding this, the attained performance does
not show speckle’s deleterious effects. The wavelet-denoised
data are a time series of smoothed images.

Although the wavelet smoothing on images embraces an
initial step to analyze the data, our main goal is to find the spatial
changes over time. The smoothed images still contain many
coefficients that need to be evaluated simultaneously, which
characterizes a high-dimensional problem with multiple time
series corresponding to each location in space. Consequently,
retaining only the most essential locations driving overall mod-
ifications across time is desirable. Because our objective is
twofold, i.e., detecting the times when changes occur, as well as
the spatial locations where such changes take place, we employ
feature screening, a method originally proposed for variable
selection in high-dimensional regression models. The feature
screening technique is a particularly efficient method to identify
relevant variables, especially when the number of candidates is
large [59].

With no loss of generality, we discuss the feature screening
process under the linear regression model paradigm. Consider
y =

∑p
i=1 βiWi + εεε, where y ∈ R

n is the response variable,
W1, . . . ,Wp ∈ R

n are p explanatory variables and εεε ∈ R
n is

a zero mean random error, and the parameters β1, . . . , βp ∈ R

are unknown. One is often interested in identifying which pa-
rameters are not zero, and consequently, determining which
covariates Wi are essential to the model. An issue is that the
dimension p is often much larger than the sample size n, but
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Fig. 1. Diagram of steps performed to apply WECS. I(j) and X(j) represent
the raw and wavelet-smoothed jth image, respectively. d is the vector of overall

changes. D(j) is the matrix formed by the local measures of changes, D(j)
kl

for
the jth time instant.

only a handful of the βi is different from zero. Feature screen-
ing consists in computing all sample correlations corr(y,Wi)
between response and explanatory variables, and then, selecting
those covariates whose correlations are among the highest in
absolute value. Under suitable conditions, this method selects
with very high probability a set of indices containing all i such
that βi �= 0. We show that a similar idea can be used to detect
change locations in multitemporal images.

III. WAVELET ENERGY CORRELATION SCREENING

Our analysis is performed on the wavelet coefficients com-
puted for the multitemporal images. We use these coefficients
to calculate change measures for each pixel individually and
for the whole image. We classify as change locations the pixels
whose measures are highly correlated with the values computed
for the whole picture. Fig. 1 depicts a high-level description of
the proposed method.

Let I(1), . . . , I(n) ∈ R
u×v be a time series of images (ma-

trices) defined on support S = {1, . . . , u} × {1, . . . , v} ⊂ N
2.

The matrix I(m) represents a region of u× v locations at an
instant m ∈ {1, . . . , n}. We have the following two goals:

1) finding instants m when relevant changes happen;
2) finding which regions (k, l) ∈ S are associated with the

observed changes over time.
We aim to attain both goals simultaneously. We apply the

bidimensional stationary discrete wavelet transform on each
matrix I(m), resulting in a matrix of approximation wavelet
coefficients, say X(m). We interpret X(m) as a denoised ver-
sion of I(m), defined on the same support S . The level of
denoising is controlled by the resolution level J , which must

satisfy J ∈ {1, 2, . . . , �log2(min{u, v})�}. The higher J is, the
smoother the image represented by X(m).

We can then consider further apportioning the total L2 energy
of the series {X(m)}nm=1 as

n∑
m=1

‖X(m)‖2F = n‖I‖2F + 2n〈X − I, I〉F

+

n∑
m=1

‖X(m) − I‖2F (1)

where I = 1
n

∑n
m=1 I(m) and X = 1

n

∑n
m=1 X(m) are the av-

erage image and smoothed image, respectively, and ‖·‖F
and 〈·, ·〉F represent the Frobenius norm and inner product,
respectively.

The last term on the right-hand side of (1) measures the
deviations between the denoised image X(m) and the average
image I at distinct instants. We use the deviations {‖X(m) −
I‖2F }nm=1 as proxies to relevant changes over time.

Let X(m)
kl and Ikl be the entry (k, l) of X(m) and I, respec-

tively. We define the squared mean deviations by

D
(m)
kl =

(
X(m)

kl − Ikl

)2

. (2)

The overall deviation at instant m is measured by

d(m) =
u∑

k=1

v∑
l=1

D
(m)
kl . (3)

The value d(m) is simply ‖X(m) − I‖2F , which quantifies the
overall change in the image. A large value of d(m) indicates that
a relevant change happens at instantm. Hence, we may associate
changes with the temporal dynamics on {d(m)}nm=1.

The spatio-temporal character of our proposal may be un-
derstood as follows. Changes in space are associated with the
temporal dynamics of the matrices D

(m)
kl , defined in (2). Each

D
(m)
kl measures the change at location (k, l) and instant m. Let

Dkl = (D
(1)
kl , . . . , D

(n)
kl )be the sequence ofn squared deviations

at location (k, l) and let d = (d(1), . . . ,d(n)). Whenever Dkl

behaves similarly to d, we have an indication that location (k, l)
contributes to the overall change. We quantify this association
with the absolute value of the Pearson correlation between the
two sequences

Rkl = |corr (Dkl,d) |. (4)

Feature screening by Pearson correlation in high-dimensional
regression models is an efficient selection criterion [59]. In
our case, these correlations automatically identify the locations
where important changes are observed in the multitemporal
images. Hence, if Rkl has a large value, the location (k, l) can
be seen as a change point. Such an association measure is based
on the linear relation between the squared mean deviations
computed for individual locations and the whole image. We
denote the matrix of absolute correlations as R = {Rkl}.

Define M� ⊆ S as the indicator mapping of relevant indices
for changes over the image series with respect to I. The entries
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of M� indicate where changes in {I(m)}nm=1 with respect to I
are affected by local changes in the images.

If we apply the index dichotomy defined by M� to (3), we
have

d(m) =
∑

(k,l)∈S
βklD

(m)
kl + ε(m) (5)

where βkl are non-null regression coefficients for (k, l) ∈ M�,
and ε(m) are stochastic error terms. The error terms allow for
both the apportionment of spurious correlation for indices not
in M� as well as for the energies not represented by the wavelet
smoothing.

It is a well-known property of discrete wavelet transforms
that it statistically decorrelates the original data [55], [57].
For instance, this motivates the use of WECS instead of a
nonwavelet version of energy correlation, since wavelets will
result in sparser representations for M�. Moreover, the sure
screening theoretical results for independent data motivates our
conjecture that the regression setup given by (5) should have a
good performance. A rigorous proof for dependent data such as
ours is beyond the scope of this manuscript, but the numerical
results provide us with solid evidence.

Finally, an empirical mapping of change locations may be
stated as

Mτ = {(k, l) ∈ S : |Rkl| > τ} (6)

where τ > 0 is some convenient threshold value. For suitable
values of τ , the empirical set Mτ has high probability of
detecting the correct change locations in M� [56], [59].

IV. EXPERIMENTS

A. Experimental Design

We present two studies to evaluate the proposed method’s
performance in detecting changes in simulated and real data. We
compare WECS with other methods. The first method is a simple
thresholding of aggregate absolute difference images, which we
call TAAD. The second method follows the diagram in Fig. 1,
but we use directly the images I(m) to compute the matrices of
squared differences D(m), skipping the wavelet-smoothing step.
Since this method also involves energy correlation screening,
we call it ECS. The other methods are change vector analy-
sis (CVA) [17], the PCA K-Means (PCAKM) [20], iteratively
reweighted MAD (IRMAD) [25], the invariant slow feature
analysis (ISFA) [40], and change detection with a fusion of
multiple wavelet kernels (FMW) [60]. Besides FMW, other
wavelet approaches were implemented [61], [62] but did not
provide good results, hence they are not shown here.

The application of difference images has a long tradition in
the literature of change detection in remote sensing [49]. This
motivates us to compute the difference between each pair of
consecutive images in the time series. To apply TAAD, we
first compute Akl =

∑n
m=2 |I(m)

kl − I(m−1)
kl | for each location

(k, l). Then, we form a matrix A whose entries are values Akl

are divided by maxk,l |Akl|, which results in a number in the
interval [0,1]. A large value in A is an indication that a change

happened at the corresponding location. The final step of TAAD
applies thresholding on all elements of A.

The method ECS is analogous to WECS, in the sense that
the image’s energy is also apportioned. While WECS does it
for the wavelet-transformed images, ECS uses I(m) instead of
the wavelet coefficients X(m). Hence, the squared differences
in (3) are computed as (I(m)

kl − Ikl)
2. The resulting Pearson

correlation matrix from ECS shall be denoted as R̃.
The other approaches (CVA, PCAKM, IRMAD, ISFA, FMW)

are bitemporal methods. They can only be applied for two
previously selected instants of the adopted image time series.
In our analysis, we apply these methods only to the first and last
images of the series.

In Section IV-B, we analyze simulated multitemporal images,
for which we know where and when changes happen. We use the
simulated data to identify the most appropriate wavelet family
and resolution level J . We analyze the following wavelets: Haar
(haar), Daubechies of orders 2 and 4 (db2, db4), Coiflets of order
4 (coif4), and Symlets of orders 2 and 4 (sym2, sym4) [63],
[64]. For methods that provide a range of values in [0,1], like
WECS, ECS, and TAAD, we can compute receiver operating
characteristic (ROC) curves. For the bitemporal methods, we
only have change and nonchange regions (0’s or 1’s). Thus, only
change maps are provided for the results of such methods.

Section IV-C presents a real-world application of SAR image
series. Change detection accuracy is measured with the follow-
ing criteria: F1-Score [65], True/False Positive/Negative (TP,
TN, FP, and FN) rates, the kappa coefficient, and the variance of
kappa [66]. Additionally, computational run times are presented
and discussed.

We used a computer with an Intel Intel i-7 processor (8 core,
3.5GHz), and 16GB of RAM running the Ubuntu Linux ver-
sion 20.04 operating system. The code of the proposed method
is freely available at https://github.com/rodneyfv/wecs.

B. Simulated Data Analysis

We consider here a sequence of four different images, each
one having two bands consisting of the same figure. The fig-
ures have different types of ellipses in a blank space. This
sequence is repeated 20 times to form a series of 80 mul-
titemporal images. Each noiseless image is represented by
two matrices, one for each band. These matrices have bi-
nary entries, with ones denoting where the ellipses occur and
zeroes elsewhere. The ellipses are the changes in the im-
ages. To form an observed image I(m), we add indepen-
dent noise following a Gamma distribution to each entry in
the noiseless matrices. For band 1, change and nonchange
regions receive noise following Gamma(119.95, 0.25) and
Gamma(38, 0.8), respectively, where Gamma(a, b) is a Gamma
distribution with shape and scale parameters a and b, respec-
tively. For band 2, we add noise following Gamma(99.2, 0.35)
and Gamma(43.63, 0.81) to change and nonchange regions,
respectively. These values were estimated from the dataset pre-
sented in Section IV-C. We also applied a mean filter with a 3× 3
window running on the matrices of each band, to simulate spatial
dependence.

https://github.com/rodneyfv/wecs
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Fig. 2. Amplitude of the first four simulated multitemporal images. Changes
appear as white ellipses. (a) I(1). (b) I(2). (c) I(3). (d) I(4).

WECS is applied to the amplitudes of the pixel values of the
simulated images, that is, the Euclidean norm of pixel values in
different bands. Examples of the amplitudes of the first four
instants are shown in Fig. 2. The first image I(1) contains
three elongated ellipses. The second image I(2) has shorter but
wider ellipses. The other instants I(3) and I(4) display smaller
changes, practically unnoticeable due to noise. Fig. 3(a) shows
all true change locations, where white regions (i.e., “ones”)
indicate where change happens at least once in the series.

Applying WECS to these images, we obtain a matrix R of
correlations computed through (4). Fig. 3(b) presents the R
computed for the simulated images. Similarly, Fig. 3(c) and (d)
depicts the matrices A and R̃ provided by TAAD and ECS, re-
spectively. We visually infer from Fig. 3 that WECS outperforms
both ECS and TAAD.

Fig. 4(a) presents the ROC curves for WECS with different
wavelet bases. All instances adopt the resolution J = 3. We
conclude that db2 and sym2 deliver the best tradeoff between
true and false positive ratios, i.e., high true positive ratios even
when the false positive ratios are low. Thus, we shall use the db2
wavelet basis in the remaining experiments and analyses.

Fig. 4(b) depicts the ROC curves for resolution levels J ∈
{1, . . . , 5}. These curves provide evidence that J equal to 3
or 4 leads to the best performances when the images are very
noisy. J = 3 has a slight advantage since it demands fewer
decomposition levels.

The ROC curves in Fig. 5(a) present the performances of
WECS, TAAD, and ECS. WECS clearly has superior perfor-
mance. ECS’s low performance shows that it is not advisable to
simply swap the wavelet transform by a “deviation image” into
the proposed correlation screening pipeline. This result for ECS

Fig. 3. (a) Change/nonchange regions in simulated data and (b)–(d) results
provided by WECS, TAAD, and ECS before a thresholding process. (a) Total
changes. (b) WECS (db2, J = 3) – R. (c) TAAD – A. (d) ECS – R̃.

Fig. 4. ROC curves related to the experiment with simulated dataset. (a) WECS
with J = 3. (b) WECS with db2 basis.

reinforces the importance of wavelet smoothing in the context of
the proposed method. Since the noise level is high, we can also
see that TAAD has a very poor performance. For the bitemporal
methods, we only have change maps and are not able to compute
ROC curves. Fig. 5(b)–(f) displays the output of the bitemporal
methods applied on the first and last images of the simulated
series. Compared to WECS’ results in Fig. 3(a), the outputs of
the bitemporal methods are worse, highlighting the importance
of analyzing the whole time series of images.

We also present a simulation to evaluate how WECS performs
in detecting small changes [23]. Analogously to the previ-
ous simulation study, we consider a sequence of four images.
This time, only one image containing small ellipses is used to
represent changes. The first noiseless image is illustrated in
Fig. 6(a). The other three noiseless images in the series are
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Fig. 5. ROC curves for WECS, TAAD, and ECS. Other plots are change maps
of bitemporal methods applied to the first and last simulated images. (a) ROC
curve. (b) FMW. (c) CVA. (d) PCAKM. (e) MAD. (f) ISFA.

made of matrices filled with zeroes. This sequence is repeated
20 times to form a sequence of 80 images. The observed images
are generated by adding independent Gamma noise in the same
way as the previous simulation. Fig. 6(b) shows the amplitude of
the first noisy image corresponding to an instant with changes,
which are practically unnoticeable to the naked eye. Fig. 6(c)
shows the matrix R of correlations computed with WECS and
Fig. 6(d) shows the ROC curves for WECS, TAAD, and ECS.

Once again, we notice that WECS provides the best results.
Moreover, we note that WECS performs equally well in the small
area’s problem as it does in the general case, with no need for
any modifications in the algorithm. We should emphasize here
that the choice of J = 3 is more convenient than J = 4 to detect
changes in noisy images. If the noise level were not so high, a
lower J could provide better results.

C. Actual Remote Sensing Application

In this section, we compare the performance of WECS,
TAAD, ECS, CVA, PCAKM, IRMAD, and ISFA in a real-world

Fig. 6. Experiment of small change detection. (a) Changes locations. (b) Noisy
image with changes. (c) WECS – R. (d) ROC curve.

Fig. 7. Study area location.

application. Since FMW did not perform so well in the simu-
lations, as we can see in Fig. 5(b), we decided not to apply
this method. We employ for WECS the db2 wavelet basis and
resolution level J = 2. We tried other values of J , but J = 2
provides better results.

Our data consist of 85 multitemporal images of a forest region
at the border of Brazil and the French Guiana, as shown in
Fig. 7. The images’ time instants vary from December 26th,
2015 to December 3rd, 2017. They were obtained from the
Sentinel-1 SAR GRD dataset, maintained by the European Space
Agency [67].

Each image contains the amplitude signal backscatters rela-
tive to VV and VH polarizations, a spatial resolution of 10m,



FONSECA et al.: WAVELET SPATIO-TEMPORAL CHANGE DETECTION ON MULTITEMPORAL SAR IMAGES 4019

Fig. 8. (a) and (b) First and last images in the adopted multitemporal image
series, in VV-HV-VV RGB color composition, and (c) reference samples.
(a) December 26th 2015. (b) December 3rd 2017. (c) Reference change and
nonchange samples.

and support of 1538× 1556 pixels wide in ground range pro-
jection. Fig. 8(a) and 8(b) depicts the first and last images of the
time series, where it is possible to compare and identify some
landscape changes.

After careful visual inspection of the backscatter profile of
each image in the series, it is possible to identify the regions
where land-cover changes or does not change. This allows us
to collect reference samples regarding the “change” and “non-
change” conditions. Such samples are needed to compute the
accuracy measures mentioned in Section IV-A. These reference
samples are presented in Fig. 8(c).

We should recall that WECS is applied to matrices corre-
sponding to the observed images. Hence, the dual-polarized im-
ages are combined into a single-band representation considering

the so-called “span” image I(m)
kl =

√
(VV(m)

kl )2 + (VH(m)
kl )2,

with VV and VH representing the available
polarizations.

Fig. 9 presents the overall deviations d(m) form = 1, . . . , 85,
computed as described in (3). The deviations d(m) vary around
the value 9.5. When d(m) is much larger than 9.5 (like m = 30),
we may have an instant where relevant changes occur. When
d(m) is much lower than 9.5 (like m = 1 and m = 59), the cor-
responding image is similar to the average image, i.e.,m is not an
instant where many changes happen. For instance, the wavelet
representation at each mentioned instant (i.e., X(1), X(30), and
X(59)) and the mean image I are exhibited in Fig. 10. While X(1)

shares similarities with I, evident changes increase in X(30).

Fig. 9. Plot of d(m) for m = 1, . . . , 85. Distinct deviations occur at m = 1
(intermediate), 30 (high), and 59 (low).

Fig. 10. Images X(m) for m = 1, 30, 59 and mean image I. (a) m = 1.
(b) m = 30. (c) m = 59. (d) I.

Reversely, X(59) offers a low contribution for identifying change
regions.

Fig. 11 depicts R, where high values stand for regions with
changes in their land cover over time as detected by WECS. The
methods ECS, TAAD, CVA, PCAKM, IRMAD, and ISFA also
output matrices of change measures for all locations. Thresh-
olding the matrices’ values is a convenient way of determining
a binary map Mτ of “change” and “nonchange” areas. Two
choices of cut-off value τ are employed. Otsu (OT) [68] and
Kittler–Illingworth (KI) [69] thresholding techniques have been
successfully employed for change detection purposes [17], [25],
[40], [53]. Both OT and KI thresholding are applied to WECS,
ECS, and TAAD, while CVA and ISFA are thresholded via
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Fig. 11. WECS “tendency of change” matrix R, computed as described in (4).

TABLE I
ACCURACY VALUES SUMMARY AND COMPUTATIONAL RUN TIMES

OT. PCAKM and IRMAD are computed with different ap-
proaches [20], [25].

The accuracy of the computed binary maps Mτ is measured
in terms of the F1-Score and kappa coefficient based on the
reference ground-truth samples [see Fig. 8(c)]. Table I presents
the accuracy measures computed for all the analyzed methods.

Notice that WECS with the OT algorithm presents the best
performance of detecting change locations without increas-
ing/inflating the number of false positives (FP). This can be
seen from the higher F1-Score level. Moreover, according to
the kappa coefficient, WECS also delivers a more balanced
correct classification regarding the change and nonchange areas.
Furthermore, based on the kappa values and respective vari-
ances, the difference between any pair of results is significant
at 1%.

WECS-KI performance is surpassed by WECS-OT. Notwith-
standing the importance of the thresholding algorithm, we
should emphasize that both WECS-based methods provide more
accurate results than all other methods considered.

Fig. 12 depicts the most accurate change/nonchange maps
according to the measures in Table I. It is possible to verify
that while TAAD-KI and PCAKM assign the water body as a
“change region,” they do not detect other change locations, like
the northwest and southeast portions in the second and fourth

Fig. 12. Resulting change maps from the analyzed methods. (a) WECS-KI.
(b) WECS-OT. (c) ECS-OT. (d) TAAD-OT. (e) CVA. (f) PCAKM. (g) IRMAD.
(h) ISFA.

quadrants. Regarding CVA, IRMAD, and ISFA, their results
have a noise-corrupt character, with many false positive points.

As previously observed, WECS equipped with the KI algo-
rithm provides a homogeneous mapping over the nonchange
areas [west portion—second and third quadrants of Fig. 12(a)],
accurate detection over the change regions, and low inclu-
sion (FP) and exclusion (FN) error rates. In adopting the OT
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Fig. 13. Solid bars correspond to percentages of true positives and true
negatives, whereas blurred bars correspond to false positives and false negatives.
The red and green bars represent the percentage of change and nonchange regions
detected, respectively.

algorithm, the inclusion error increases, resulting in a less-
regularized change/nonchange map.

The proportions of True/False Positive/Negative assigned to
the analyzed methods are summarized in Fig. 13 and corroborate
the aforementioned discussion.

The computational run times are given in Table I. Recall that
CVA, PCAKM, IRMAD, and ISFA are applied only on the first
and last images of the time series, whereas WECS, TAAD, and
ECS use all 85 images. A fair comparison would require the
times for CVA, PCAKM, IRMAD, and ISFA to be multiplied
by 85× 42 = 3570. WECS’s run time is not excessive in the
context of remote sensing image processing. Moreover, WECS
systematically provides more accurate results.

D. Discussion

Change detection in multitemporal satellite images can be
characterized as a high-dimensional problem because a large
number of pixels must be analyzed simultaneously. Therefore,
methods for such analysis should be not only accurate but also
simple enough to be applicable when the data are large. Pearson
correlation and wavelet transforms are well-known methods in
science and engineering. Still, their combination has not been
explored for application in change detection on time series of
satellite images. WECS is an approach that benefits from the
straightforwardness of these measures, and it is shown to provide
accurate results in empirical studies. Desirable properties in
high-dimensional data analysis such as scalability, interpretabil-
ity, robustness, and flexibility may be all associated to WECS.

The change measures computed via WECS are correlations
between pixel-level and whole image values. Therefore, WECS
is not tailored for bitemporal images. A high correlation in
WECS means that the pixel-level dynamic behavior strongly
resembles the overall dynamic behavior of the time series. For
instance, suppose a series of images in which changes do exist
over time. These changes may be meaningful or simple random
fluctuations due to speckle. Either way, a high correlation in
WECS is interpreted as the pixel behaving over time as the

overall dynamic behavior. Before applying WECS, the overall
change measure must be analyzed to assess whether and how
the whole image changes with time. Such a dynamic behavior
is observed, for example, in Fig. 9 for the forest data.

WECS is based on the idea of feature correlation screen-
ing [59]. Given the theoretical results available for this screening
technique in regression models and the empirical results in
Section IV, it is reasonable to postulate that WECS would have
good theoretical results on the proposed application as well.
However, the challenges would be to account for both the spatial
and temporal dependence and their interconnections. Finally, the
application of WECS’ idea for satellite images other than SAR
should take different aspects into consideration, like the type
of noise, the number of channels, the sampling frequency of
the images, etc. These aforementioned aspects demand further
research.

The comparisons with other change detection methods using
remote sensing data demonstrate the proposal’s superiority in
terms of F1-Score and kappa coefficient (see Table I). The
resulting change maps (see Fig. 12) support the quantitative
results, where it is possible to verify a more consistent distinction
between change and nonchange areas, for example, by fairly not
identifying the river crossing the study area [see Figs. 7 and 8(c)]
as a “change” region.

V. CONCLUSION

We present WECS, a novel way of detecting changes in
multitemporal satellite images. WECS uses the information
of the whole time series of images and is based on wavelet
representation of SAR images. It presents a straightforward
answer to the spatio-temporal detection of changes in a single
step, and is unsupervised and is scalable, i.e., may be used
for very large images and/or very long time series. It uses
correlation screening for ultrahigh dimensional data to identify
which locations (pixels) are the most related to an overall change
measure of the image time series. Thereupon, WECS is expected
to provide a set of change points in space, such that this set
contains all real changes with high probability.

The performance of WECS is evaluated in studies involving
simulated and real data. In both experiments, WECS is compared
to other standard approaches. Its performance is shown to be
superior to other methods in both real and simulated data. Its
use may be extended to small areas of change, with no need for
algorithm modifications.

This article warrants future research in different directions,
such as: adapting the idea of WECS to different types of im-
ages (multispectral, polarimetric SAR, etc.); extending energy
correlation screening for distinct smoothing techniques; deduc-
ing theoretical change detection rates for appropriate statistical
models.
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