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A New Elbow Estimation Method for Selecting the
Best Solution in Sparse Unmixing
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Abstract—The goal of hyperspectral image analysis is often to
determine which materials, out of a given set of possibilities, are
present in each pixel. As hyperspectral data are being gathered in
rapidly increasing amounts, automatic image analysis is becoming
progressively more important. Automatic identification of mate-
rials from a mixed pixel is possible with 1) Bayesian unmixing
algorithms and 2) multiobjective sparse unmixing algorithms when
a method such as elbow estimation is used to select the best solution
from the set of Pareto-optimal solutions. We develop a new elbow
estimation method called termination condition adaptive elbow
(TCAE) for selecting the best solution from the set of Pareto-
optimal solutions to a biobjective unmixing problem. Specifically,
the two objectives are assumed to be the sparsity level of the frac-
tional abundance vector and the reconstruction error. We conduct
experiments with real-world unmixing applications in mind, and
TCAE performs significantly better than a state-of-the-art elbow
estimation method when they are both used to select the best solu-
tion from the sequence of fractional abundance vectors generated
by iterative spectral mixture analysis (ISMA). Furthermore, the
combination of ISMA and TCAE is able to identify endmembers
from mixed pixels several times faster and with higher F1-score
than the two Bayesian unmixing algorithms used as a reference.
We conclude that the combination of ISMA and TCAE facilitates
automatic, reliable, and rapid identification of endmembers from
mixed pixels.

Index Terms—Hyperspectral imaging, remote sensing, sparse
unmixing, spectral mixture analysis.

I. INTRODUCTION

HYPERSPECTRAL cameras are used for close-range
imaging in addition to remote sensing from satellites

and manned aircraft. Specifically designed instruments may
also be mounted on unmanned aerial vehicles. As a result,
hyperspectral imaging sees wide use in many different fields,
including geology, precision agriculture, food quality control,
medical diagnosis, forensics, and military applications [1], [2],
[3]. Furthermore, the use of supercontinuum lasers for illumina-
tion has been studied in the recent decade, and in the future, they
may enable more widespread use of hyperspectral imaging in
underground mines and other applications that have challenging
illumination conditions [4].
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Numerous methods for hyperspectral image analysis have
been presented [5]. Classification algorithms assign a single la-
bel to every pixel. Thus, materials are left unidentified in the case
of mixed pixels. Furthermore, a classification algorithm may
yield a label that does not correspond to any of the endmembers
occupying a mixed pixel, as it is difficult to classify a mixed
pixel by comparing its spectral signature with the individual
endmember spectra [5].

Unmixing methods have the advantage that they can identify
multiple endmembers from a single pixel and estimate their
abundances [6], [7], [8], [9]. Abundance estimates tend to be the
most accurate when the endmembers participating in the given
pixel have been correctly identified [10]. As the endmember
spectra are assumed to be known in semisupervised unmixing,
identifying the endmembers from a pixel equates to determining
the smallest subset of endmembers with which all essential
features of the pixel spectrum y can be modeled.

Several different approaches have been developed for finding
the subset of endmembers that neither overfits nor underfits
the pixel spectrum y. Greedy and relaxation-based unmixing
algorithms select the best subset with the help of hyperparam-
eters whose values need to be determined by a human expert.
However, the optimal values of the hyperparameters are typi-
cally data dependent and difficult to find [11], [12], [13], [14].
Furthermore, the need for expert intervention reduces the speed
at which a large number of pixels can be analyzed.

Automatic identification of endmembers from a mixed pixel is
possible with multiobjective sparse unmixing algorithms when
a method such as elbow estimation is used to select the best
solution from the set of Pareto-optimal solutions [15], [16].
In addition, Bayesian unmixing algorithms can automatically
identify which materials occupy a mixed pixel [9].

Angle-based elbow estimation (ABEE) [14] has been used to
select the best solution from the set of Pareto-optimal solutions
in many studies, e.g., [17], [18], [19], [20]. However, ABEE
was criticized in [11] by stating that it sometimes selects wrong
solutions or fails to unambiguously identify the best solution.
Typical downsides of Bayesian unmixing algorithms include
computational heaviness and general complexity [21], [22].
As hyperspectral data are being gathered in rapidly increasing
amounts [23], automatic identification of materials from mixed
pixels warrants further research.

The main contribution of this article is a method that enables
automatic, reliable, and rapid identification of materials from
mixed pixels. Specifically, we have developed a new elbow
estimation method called termination condition adaptive elbow
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(TCAE), which has been combined with iterative spectral mix-
ture analysis (ISMA) [10] in this article. However, TCAE can
be used to select the best solution from the set of Pareto-optimal
solutions generated by any unmixing algorithm, whereby TCAE
is widely usable in sparse unmixing.

The rest of this article is organized as follows. Section II
describes the theoretical and methodological background of our
work, while Section III presents TCAE. Section IV describes
the chosen performance metrics, while Section V focuses on ex-
periments with synthetic data. Sections VI–VIII cover real-data
experiments. Section IX examines the performance of TCAE
with an ablation experiment and presents a runtime compari-
son between the algorithms. Section X discusses the novelty
and wider applicability of TCAE in addition to suggesting
future research directions. Finally, Section XI concludes this
article.

II. BACKGROUND

The linear mixing model may be written as

y = Φx+ n (1)

in which y ∈ Rm is the mixture spectrum, the dictionary Φ ∈
Rm×n contains the endmember spectra as columns, x ∈ Rn

is the fractional abundance vector, and n ∈ Rm represents
noise. Only nonnegative abundances are physically meaning-
ful, whereby the abundance nonnegativity constraint (ANC) is
typically imposed. In addition, it is sometimes required that the
components of x must sum to 1. The use of the abundance
sum-to-one constraint (ASC) has been criticized because it is
rarely satisfied in other than simulation data [7], [8].

Deviations from the linear mixing model arise if photons
scatter several times before being detected. Such multiple scat-
tering is especially common in the case of intimate mixtures, in
which the materials are mixed on spatial scales smaller than the
path length of photons in the mixture. Spectral preprocessing
methods [24] and nonlinear mixing models, such as bilinear
models, can be used to deal with the effects that arise from
multiple scattering. We will return to multiple scattering in
Section VI.

In many unmixing algorithms, each target material is repre-
sented by a single endmember spectrum. However, in reality,
the spectral signature of a particular material may vary within
a single scene [25]. One way to account for such endmember
variance is to represent each target material with a set of spectra
instead of one spectrum. For example, the MESMA algorithm
and its variations are based on this principle [13], [26]. We will
return to endmember variance in Section X-A.

A. Sparse Unmixing

In terms of the linear mixing model (1), the goal in sparse
unmixing is to find such sparse x that Φx ≈ y. Thus, sparse
unmixing has two fundamental questions. The first question is
how accurately the sparse approximation Φx must match the
mixture spectrum y. Subsequently, one must find the smallest
subset of endmembers that gives the desired accuracy.

In the equation form, the second step may be written as

min
x

||x||0 s.t. ||y −Φx|| ≤ δ (2)

in which || · ||0 yields the number of nonzero components in
the argument vector, || · || is the Euclidean norm, and δ ≥ 0
is the largest allowed reconstruction error. Although ANC and
ASC could be imposed in (2), we have omitted them here for
simplicity. Since (2) is a combinatorial problem for a given δ,
finding the exact solution to (2) is computationally unaffordable
even for moderately large dictionaries Φ [13]. To obtain useful
solutions in reasonable time, computationally lighter methods
have been developed for approximately solving (2).

While greedy and relaxation-based algorithms can be used to
approximately solve (2), they contain hyperparameters whose
values must be set before the estimated fractional abundance
vector is obtained. Chen and Zhang [27] have derived a formula
that yields the optimal value of the regularization parameter
in nonconvex relaxation of (2). Specifically, the formula yields
the optimal value of the regularization parameter as a function
of signal-to-noise ratio (SNR). However, we believe that the
applicability of the formula is limited mainly to simulations,
because SNR is usually not known in real-world measurements.
Thus, it remains problematic that the values of the hyperpa-
rameters in greedy and relaxation-based unmixing algorithms
must be set before the estimated fractional abundance vector is
obtained.

To avoid the problem posed by hyperparameters, sparse
unmixing methods based on multiobjective optimization have
been developed [11], [12], [14]. Considering the sparsity level
||x||0 and the squared reconstruction error ||y −Φx||2 as the
objectives, sparse unmixing may be formulated as a biobjective
optimization problem

min
x

(
||x||0, ||y −Φx||2

)
. (3)

Since the second objective tends to increase when the first
objective is decreased, the biobjective minimization problem
(3) does not have a unique solution. A solution x is called
Pareto-optimal if neither of the objectives ||x||0 and ||y −Φx||2
can be decreased without increasing the other. The solution
to the biobjective minimization problem (3) is the set of all
Pareto-optimal solutions x.

The task of choosing the best solution from the set of Pareto-
optimal solutions may sometimes be left for a human expert [12],
while automatic selection is usually based on elbow estima-
tion [15], [16]. The reason for using elbow estimation is that
the Pareto-optimal front of a biobjective minimization problem
usually features a region, where a small decrease in one objective
causes a large increase in the other objective [16].

B. Iterative Spectral Mixture Analysis

ISMA is a greedy sparse unmixing algorithm that uses back-
ward elimination to find the best subset of endmembers [10].
Algorithm 1 presents the details of ISMA in pseudocode. The
first input of ISMA is the mixture spectrumy ∈ Rm. The second
input is the dictionary Φ ∈ Rm×n, which has the n endmember
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Algorithm 1: Iterative Spectral Mixture Analysis.
Input 1: Mixture spectrum y ∈ Rm

Input 2: Dictionary Φ ∈ Rm×n having the endmember
spectra as columns.
Input 3: Threshold Δth ∈ (0, 1] and integer η ≥ 1.
Output: Estimated fractional abundance vector x

1: Part 1: Define set S = {1, 2, . . . , n}, in which n is the
number of columns in Φ.

2: Initialize the while loop iterator by setting i = 1.
3: while i ≤ n do
4: Set x(i) = argminx||y −Φx|| s.t. xj = 0 ∀j /∈ S.
5: Set ri = ||y −Φx(i)||.
6: Set j = argmink∈Sx

(i)
k . Here, x(i)

k is the kth
component of x(i).

7: Set S = S\{j}.
8: Increase the iterator by setting i = i+ 1.
9: end while

10: Set rn+1 = ||y||.
11: Set Δi = 1− ri/ri+1 for i ∈ {1, 2, . . . , n}.
12: Part 2: Let v be the largest integer for which Δi < Δth

for all i ∈ {v, . . . , v + η − 1}.
13: The critical iteration critIT = v + η.
14: Return x(critIT) as the output.

spectra as columns. The last inputs are the hyperparameters
Δth ∈ (0, 1] and η ∈ {1, 2, 3, . . .}, which determine the sparsity
level of the estimated fractional abundance vector x.

Steps 3–9 of ISMA constitute a while loop that carries out
the backward elimination. Specifically, Step 4 fits the mixture
spectrum y using the columns of Φ that are listed in the set S.
At the first iteration of the while loop, this amounts to using
the whole dictionary Φ, because S was initialized to contain all
integers from 1 to n in Step 1.

Step 5 stores the reconstruction error ri = ||y −Φx(i)|| for
later use in Step 11. Step 6 finds out which component of
the fractional abundance vector x(i) has the smallest value,
whereafter Step 7 removes the corresponding index from the
set S. Thus, the endmember that had the smallest abundance
will not be used for fitting in Step 4 at the subsequent iterations
of the while loop.

As a result, endmembers corresponding to negative abun-
dances get eliminated first. Note that this is a desired feature
in ISMA, because negative abundances are unphysical, i.e.,
they are not possible in reality. At some point, the elimination
results in a situation in which all abundances are nonnegative.
Then, the endmember corresponding to the smallest abundance
is likely used to fit noise or is otherwise the least important
for a good fit. Thus, the endmembers that have contributed the
most to the mixture spectrum y are likely to get eliminated
last.

We note that the solution x(i) in Step 4 must be unique,
because otherwise the endmember selected for elimination in
Step 6 will be arbitrary. Consequently, the dictionary Φ must be
undercomplete, i.e., it must have less columns than rows.

Fig. 1. Upper panel schematically illustrates how the reconstruction error ri
might increase at consequent iterations. The lower panel shows the correspond-
ing Δi values that are calculated in Step 11 of ISMA.

The Δi values calculated in Step 11 of ISMA describe how
the reconstruction error ri increases over consecutive iterations.
Specifically, Δi indicates how large the relative change in re-
construction error was between iterations i and i+ 1. For the
purposes of calculating Δn, we use the definition rn+1 = ||y||
made in Step 10. Small and large values of Δi correspond to
small and large relative changes, respectively.

The upper panel in Fig. 1 illustrates how the reconstruction
error ri might increase at consequent iterations. The lower panel
in Fig. 1 shows the corresponding Δi values calculated in Step
11 of ISMA. The total number of endmembers is n = 12, while
it is assumed that the mixture spectrum y is a linear combination
of five endmember spectra plus noise.

At the early iterations in Fig. 1, the Δi values are small,
because the endmembers that were eliminated from the set S
fitted only noise. The first prominent increase in the Δi values
occurs when one of the mixture components is eliminated from
S (Step 7 at iteration i = 8). The reason is that the remaining
endmembers can no longer model all major features of the
mixture spectrum y.

A human expert must specify a thresholdΔth that separates the
small Δi values from the larger values that arise when mixture
components are removed from the setS. Furthermore, the human
expert must specify a nonnegative integer η, which determines
how resistant the search for the critical iteration will be against
local minima.

Part 2 of ISMA determines the critical iteration with the help
of the hyperparametersΔth and η. Starting from the last iteration,
one finds the first η consecutive Δi values that are smaller than
Δth. Assuming that the ηth value was found from iteration v, the
critical iteration critIT is taken to be v + η.

The endmembers indexed in S at the beginning of iteration
critIT are considered to form the optimal endmember set.
ISMA returns the corresponding fractional abundance vector
x(critIT) as the output.
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Fig. 2. ABEE uses scaled values of the objectives ||x||0 and ||y −Φx||2 in the
calculation of the anglesα1,α2,α3, andα4. The definition ri = ||y −Φx(i)||
is used in the y-axis.

C. Angle-Based Elbow Estimation

As mentioned in Section I, ABEE [14] is widely used for
selecting the best solution from the set of Pareto-optimal solu-
tions to (3). The incomparable scales of the objectives ||x||0 and
||y −Φx||2 in (3) complicate the elbow estimation. To avoid
this problem, the values of both objectives are scaled with their
maximum values before estimating the location of the elbow.
That is, ABEE seeks the elbow from the points

Pi =

( ||x(i)||0
maxi ||x(i)||0 ,

||y −Φx(i)||2
maxi ||y −Φx(i)||2

)
(4)

in which x(i) with i ∈ {1, 2, . . . , n} are the Pareto-optimal
solutions of (3).

To find the elbow, the four angles α1, α2, α3, and α4 defined
in [14, Fig. 5] are calculated for each point Pi. The maximum
of these four angles is taken to represent the tradeoff of the
associated solution x(i). The solution x(i) having the largest
tradeoff is chosen as the best solution.

In ISMA, ABEE can be used instead of Steps 12 and 13
to determine the critical iteration critIT. To elaborate, let
us assume that {x(i) | i = 1, 2, . . . , n} is the set of solutions
determined by the while loop in ISMA. Furthermore, we define
x(n+1) = 0 as the solution corresponding to the reconstruction
error rn+1 = ||y|| defined in Step 10 of ISMA.

The points Pi with i ∈ {n− 3, n− 2, . . . , n+ 1} are
schematically illustrated in Fig. 2. In the x-axis, the maximum
sparsity levelmaxi(||x(i)||0) is equal to the number of fractional
abundance vectors generated by ISMA, namely, n. In the y-axis,
r2i = ||y −Φx(i)||2 in accordance with Step 5 of ISMA.

For points Pi with i ∈ {3, 4, . . . , n− 1}, all of the angles α1,
α2, α3, and α4 are calculated. For point P2, only angles α1 and
α2 are calculated, as the calculation of α3 and α4 is impossible.
Similarly, only angles α1 and α3 are calculated for point Pn,
because the calculation of α2 and α4 is impossible.

According to the principle of ABEE, the maximum of the
angles associated with a pointPi is taken to represent the tradeoff
of the associated solution x(i). The value of i corresponding to

the largest tradeoff is taken as the critical iteration critIT. As
a result, the solution x(critIT) returned by ISMA has the largest
tradeoff.

D. Spectral Angle Mapper (SAM) Classifier

The spectral angle between two vectors a ∈ Rm and b ∈ Rm

is

θ = arccos

( ∑m
i=1 aibi√∑m

i=1 a
2
i

∑m
i=1 b

2
i

)
. (5)

Let us now denote the angle between a pixel spectrum and the
ith endmember spectrum by θi. The SAM classifier considers
the pixel to consist of the ith endmember if θi < θ

(i)
th , in which

θ
(i)
th is a user-specified threshold.

Thanks to its simplicity and computational lightness, the
SAM classifier is the most commonly used technique for min-
eral identification from hyperspectral images [28]. Its primary
disadvantage is that it requires the estimation of the threshold
values θ(i)th , which is subjective and challenging. Since this article
focuses on unmixing algorithms that do not require manual
tuning of hyperparameters, we used a simplified version of
the SAM classifier that considers a pixel to consist of the kth
endmember in which k = argminiθi.

E. Nonnegativity Constrained Least Squares (NCLS)

NCLS finds the fractional abundance vector x that minimizes
||y −Φx|| subject to ANC. That is, the estimated fractional
abundance vector given by NCLS is

x̂ = argmin
x

||y −Φx|| s.t. x ≥ 0 (6)

in which the greater than or equal to relation is understood
componentwise.

We used the MATLAB function lsqnonneg as our
NCLS implementation. According to MATLAB documentation,
lsqnonneg uses the NCLS algorithm described in [29].

F. Fully Constrained Least Squares (FCLS)

FCLS finds the fractional abundance vector x that minimizes
||y −Φx|| subject to ANC and ASC. That is, the estimated
fractional abundance vector given by FCLS is

x̂ = argmin
x

||y −Φx|| s.t. x ≥ 0 and 1Tx = 1 (7)

in which 1 is a column vector of 1s having as many components
as x.

We realized FCLS by using an embedded ASC in our NCLS
implementation. Thus, the FCLS algorithm we used is essen-
tially identical with the one that was introduced in [30] and
discussed in Section V-A of [31].

G. Sparse Bayesian Learning (SBL) Algorithm

An unmixing algorithm based on SBL was presented
in [32]. Henceforth, we will call the algorithm SBL in accor-
dance with [32]. SBL first uses the relevance vector machine
(RVM) [33] to select a subset of endmembers, whereafter it
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determines the abundances of the selected endmembers with
FCLS as RVM does not enforce ANC or ASC.

To discuss how SBL uses RVM to select a subset of endmem-
bers, we denote the fractional abundance vector given by RVM
by x = (x1, x2, . . . , xn)

T. In contrast to what is stated in [32],
the support of x was taken to be1

S = {i |xi > sthr} (8)

with sthr = 0.001. That is, the value of sthr was not zero as
implied in [32, p. 645].

After solving the support S, SBL determines the abundances
of the endmembers indexed in S with FCLS. That is, FCLS is
executed with a dictionary Φ̃ that contains only those columns of
the original dictionary Φ that are indexed in S. The abundances
of the endmembers that are not indexed in S are considered to
be zero.

However, we have observed instances in which FCLS yields
one or more vanishing (i.e., zero) abundances when it is executed
with the dictionary Φ̃. That is, SBL sometimes predicts a vanish-
ing abundance for an endmember indexed in S. Consequently,
it is somewhat ambiguous which endmembers SBL actually
considers as mixture components. Our choice was to consider
all endmembers indexed in S as mixture components. Thereby,
we were able to eliminate the effect of FCLS and examine how
well the RVM-based basis selection performed individually.

The results presented in [32] were calculated with the RVM
implementation developed by Tipping [34]. Following the ex-
ample of [32], we left all adjustable parameters in the Tipping’s
implementation to their default values.

H. BI-ICE

BI-ICE is a Bayesian unmixing algorithm [35], which is based
on the linear mixing model (1). The point estimate x for the
fractional abundance vector is calculated from [35, eq. (29)]. All
components ofx are necessarily positive, because the right-hand
side of (29) in [35] is positive for all μ∗ ∈ R and σ∗ > 0.

Considering the original purpose of BI-ICE, namely, abun-
dance estimation, it is not problematic that all the components
of x are nonzero. However, an additional rule is needed if
one wishes to use BI-ICE for identifying which endmember
spectra constitute a given mixture spectrum y. We constructed
the needed rule from the probability distributions that BI-ICE
determines for each component of x. Specifically, [35, eq. (30)]
implies that each component xi ∼ NR1

+
(xi|μ∗

i , σ
∗
ii) with μ∗

i and
σ∗
ii defined in [35, eq. (31) and (32)], respectively. The parameter

μ∗
i specifies where the probability density function attains its

maximum, whereas
√

σ∗
ii describes the width of the distribution.

Accordingly, we considered the ith endmember to be present
in the mixture if

μ∗
i > 3

√
σ∗
ii. (9)

Fundamentally, (9) means that the ith endmember is consid-
ered to be present in the mixture if the associated probability
distribution attains its maximum sufficiently far from zero in

1Additional details were received directly from the first author of [32].

Algorithm 2: Automatic Iterative Spectral Mixture Analy-
sis.

Input 1: Mixture spectrum y ∈ Rm

Input 2: Dictionary Φ ∈ Rm×n having the endmember
spectra as columns.

Input 3: String critName, which specifies the
termination condition that will be used to determine the
critical iteration.

Output: Estimated fractional abundance vector x
1: Execute Part 1 of ISMA.
2: Determine critical iteration critIT with the

termination condition specified in the string
critName.

3: Return x(critIT) as the output.

comparison to the width of the distribution. Specifically, we
chose the constant 3 in (9) in analogy to the three-sigma rule [36].

Themelis et al. [35] reported that establishing a formal conver-
gence criterion for BI-ICE had been cumbersome. We required
BI-ICE to execute at least five iterations, whereafter the conver-
gence criterion was that a new iteration did not change any of
the fractional abundances by more than 10−4. According to our
tests, the chosen value of 10−4 should be so small that choosing
a smaller value should not have any appreciable effect on the
unmixing results.

III. PROPOSED ALGORITHMS

In addition to TCAE, ABEE can be used to automatically
determine the critical iteration in ISMA (see Section II-C).
Therefore, we need formalism for dealing with algorithms that
automatically determine the critical iteration in ISMA.

Automatic ISMA (AISMA) described in Algorithm 2 for-
mally represents the combination of ISMA and some algorithm
that automatically determines the critical iteration. For example,
we will refer to the combination of ISMA and TCAE as AISMA
with TCAE. The first two inputs of AISMA are the mixture
spectrum y ∈ Rm and the dictionary Φ ∈ Rm×n. The third
input specifies which termination condition is used to determine
the critical iteration.

Step 1 of AISMA executes Part 1 of ISMA. Thereby, the frac-
tional abundance vectors x(1),x(2), . . . ,x(n), reconstruction er-
rors r1, r2, . . . , rn+1 and fractional changes Δ1, Δ2, . . . ,Δn

become defined. Thereafter, Step 2 determines the critical iter-
ation critIT by calling the termination condition specified in
the third input.

A. Termination Condition Adaptive Elbow

TCAE is the main contribution of our research, and it is
described in Algorithm 3. TCAE is called in Step 2 of AISMA
to determine the critical iteration critIT. To illustrate how
TCAE automatically determines the critical iteration critIT,
we use dictionaryΦ2. The properties of dictionaryΦ2 have been
described in Table I.
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TABLE I
DICTIONARIES USED IN THE SIMULATIONS

Fig. 3. Red curve is the mixture spectrum y that we use to illustrate the
functionality of AISMA and TCAE. Also shown are the three components of y
and the noise term.

The mixture spectrum y we use in this illustration is a linear
combination of three endmember spectra plus correlated noise.
Specifically, the mixture components are antigorite, chlorite, and
carnallite-hs with fractional abundances of 55%, 30%, and 15%,
respectively. The mixture spectrum y and its components plus
the noise term are shown in Fig. 3.

TCAE takes the fractional abundance vectors x(1),x(2),
. . . ,x(n) and fractional changes Δ1, Δ2, . . . ,Δn determined
by ISMA as inputs. The values of Δ1, Δ2, . . . ,Δ12 are shown
in Fig. 4. We recall that ISMA calculated each of the Δi values
by leaving out the mineral that corresponded to the smallest
abundance. The name of the excluded mineral is shown at the
upper horizontal axis.

The black dots in Fig. 4 indicate the iterations in which excess
minerals are included in the unmixing solution. The red triangles
indicate the iterations in which all the remaining minerals are
represented in the mixture spectrumy. Note that ISMA removed
all other minerals before starting to exclude endmembers which
were in the mixture.

The fractional abundance vectors x(1),x(2), . . . ,x(6) deter-
mined by ISMA contain negative components. Therefore, one
must set δi = 0 for i = 1, 2, . . . , 6 in Step 1 of TCAE. Subse-
quently, the Δ̃i values are calculated in Step 2 of TCAE. The δi
and Δ̃i values are shown in the upper and lower panels of Fig. 5,
respectively.

The first iteration of the while loop in TCAE is illustrated in
Fig. 6. The upper panel shows the line L(z) defined in Step 5
for the values of i = 1 and j = 12 set in Steps 12 and 10,
respectively. The area shaded in blue is AL, which is defined

Fig. 4. Iterationwise results from the application of ISMA on the mixture
spectrum y depicted in Fig. 3.

Fig. 5. Upper and lower panels show the δi and Δ̃i values calculated in Steps
1 and 2 of TCAE.

Fig. 6. Upper panel shows the straight line L(z) at the beginning of the first
iteration of the while loop in TCAE. The areas shaded in blue and gray are AL

and AΔ̃, respectively. The lower panel shows the straight line L(z) after Step
14. The location of the elbow determined in Step 18 is shown as a five-pointed
star.
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Algorithm 3: Termination Condition Adaptive Elbow.

Input 1: Fractional abundance vectors x(1),x(2), . . . ,x(n)

Input 2: Fractional changes Δ1,Δ2, . . . ,Δn
Output: Critical iteration critIT

1: First define δi = Δi for all i ∈ {1, 2, . . . , n}, and then set δi = 0 for all i for which x(i) contains at least one negative component.
Thereby, δi vanishes whenever the associated abundance vector x(i) contains unphysical values.

2: Define Δ̃i = maxj∈{1,2,...,i} δj for i ∈ {1, 2, 3 · · · , n}. This may be perceived as smoothing that eliminates local minima.
3: Extend the definition of Δ̃i to nonpositive integers i by setting Δ̃i = 0 for i ∈ {0,−1,−2, · · · }.
4: Hereafter it is assumed that the integer valued variables i and j follow the constraint i < j ≤ n.
5: Let us consider a straight line connecting the points (i, Δ̃i) and (j, Δ̃j). The said line L(z) = Δ̃i + k(z − i) with the slope

k = (Δ̃j − Δ̃i)/(j − i).
6: Let us consider the area of the rectangular triangle having L(z) as the hypotenuse. The area of the said triangle

AL = (L(j)− L(i))(j − i)/2.
7: Let us consider linear interpolation of the points {(i, Δ̃i), (i+ 1, Δ̃i+1), . . . , (j, Δ̃j)}. The area under the said curve is

AΔ̃ =
∑j−1

m=i(Δ̃m + Δ̃m+1)/2.
8: Define constant R = 3. It is used in Steps 13 and 15. For a discussion, see the last three paragraphs of Section III-A.
9: Set initial value critIT = 1. Thus, all endmembers belong to the initial unmixing solution. The while loop starting from Step

11 will refine this initial solution.
10: Set initial value j = n. Effectively, this fixes the right end of the line L(z) to the point (n, Δ̃n).
11: while critIT < j do
12: Set i = 1. Effectively, this fixes the left end of the line L(z) to the point (1, Δ̃1).
13: if AL/AΔ̃ < R then
14: Decrease i until AL/AΔ̃ is as close to R as possible. Note that decreasing the value of i may be understood as moving the left

end of the line L(z) to left. Thus, decreasing i increases the area of the rectangular triangle having L(z) as hypotenuse.
15: else if AL/AΔ̃ > R then
16: Increase i until AL/AΔ̃ is as close to R as possible. Note that increasing the value of i may be understood as moving the left

end of the line L(z) to right. Thus, increasing i decreases the area of the rectangular triangle having L(z) as hypotenuse.
17: end if
18: The values of i and j are now fixed and the line L(z) extends from (i, Δ̃i) to (j, Δ̃j). The line L(z) is used to find the elbow

from the values Δ̃i, . . . , Δ̃j . Thereby, one obtains elbow = argmaxi≤m≤j(L(m)− Δ̃m).
19: if critIT < elbow+ 1 then
20: Set critIT = elbow+ 1. The iteration following the elbow is taken as the critical iteration. Due to Step 19, the value of

critIT is updated only if the new value is larger than the old one.
21: end if
22: Set j = j − 1. The right end of the line L(z) is moved one step to the left.
23: end while
24: Return critIT as the output.

in Step 6 as the area of a rectangular triangle having the line
L(z) as the hypotenuse. In comparison, the area shaded in gray
is AΔ̃, which is defined in Step 7 as the area under the linear
interpolation of the points Δ̃m with i ≤ m ≤ j.

With the initial values of i = 1 and j = 12, the ratio
AL/AΔ̃ ≈ 2.06 < R, in which R = 3 as defined in Step 8.
Therefore, Step 14 adjusts AL/AΔ̃ to 2.99 by moving the left
end of the line L(z) to i = −4. The lower panel of Fig. 6 shows
L(z) after Step 14. The five-pointed star indicates the location
of the elbow determined in Step 18 [15], [37], [38], [39].

Steps 19 and 20 perform the update critIT = elbow+
1 = 9, because the initial value critIT = 1 < elbow+ 1 =
9. Thus, the unmixing solution determined at the first iteration
of the while loop includes one excess mineral, namely elbaite.

The variable j is decreased to 12− 1 = 11 in Step 22. The
second iteration of the while loop ensues and again the ninth
iteration is determined as the critical iteration. Subsequently, j
is decreased to 11− 1 = 10 in Step 22, and the third iteration
of the while loop commences.

The situation at the third iteration of the while loop is illus-
trated in Fig. 7. The upper panel shows the lineL(z) for the initial

values of i = 1 and j = 10. Since the ratioAL/AΔ̃ ≈ 6.68 > R,
Step 16 adjustsAL/AΔ̃ to 2.97 by moving the left end of the line
L(z) to 6. The lower panel of Fig. 7 shows L(z) after Step 16.
The five-pointed star indicates the valueelbow = 9 determined
in Step 18. Since critIT = 9 < elbow+ 1 = 10, Steps 19
and 20 perform the update critIT = elbow+ 1 = 10.

Thereafter, Step 22 decreases j to 9 and the while loop
terminates because the condition critIT < j is no longer true.
As a result, Step 24 returns the tenth iteration as the critical
iteration. Thus, AISMA managed to identify all the endmember
spectra used to construct the mixture spectrumy, while no excess
endmembers were included in the unmixing solution.

To summarize, TCAE determines the critical iteration with
the assistance of elbow point estimation. Elbow detection is
an inherently heuristic process, which may be understood as
finding the point in which a curve changes from steep to flat [37],
[38], [39]. However, the last two Δ̃i values depicted in Fig. 6
do not contribute to the steep part, because they are equal to
the third last Δ̃i value. Consequently, we believe that a human
would intuitively disregard the last two Δ̃i values when visually
searching for the elbow. That is, a human would likely start
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Fig. 7. Upper panel shows the straight line L(z) at the beginning of the third
iteration of the while loop in TCAE. The areas shaded in blue and gray are AL

and AΔ̃, respectively. The lower panel shows the straight line L(z) after Step
16. The location of the elbow determined in Step 18 is shown as a five-pointed
star.

searching for the elbow in the way depicted in the upper panel
of Fig. 7.

Elbow detection algorithms usually work the best if the steep
and flat parts of the curve have roughly equal lengths [38], [39].
Relatedly, we believe that a human intuitively disregards some
of the earlier iterations if the tail of small Δ̃i appears to be
excessively long. Similarly, we believe that a human mentally
extends the tail of small Δ̃i values to the left if a longer tail
of small Δ̃i values is needed to make the elbow apparent. In
particular, the extension of the tail may be necessary if the
dictionary contains only a handful of endmembers and they all
have contributed to the given mixture spectrum.

The constant R defined in Step 8 controls the length of the
tail formed by the small Δ̃i values. Specifically, large and small
values of R favor Steps 14 and 16, respectively. Thus, large and
small values of R lead to long and short tails, respectively. We
chose to fix R = 3, because we believe that the resulting tails
of small Δ̃i values are approximately as long as a human would
consider when intuitively searching for the elbow.

IV. PERFORMANCE METRICS

We consider the quality of unmixing from two complemen-
tary perspectives: 1) quantitative abundance estimation and
2) endmember identification. To discuss these approaches in

greater detail, we assume that x =
(
x1, x2, . . . , xn

)T

and x̂ =
(
x̂1, x̂2, . . . , x̂n

)T
are the ground truth frac-

tional abundance vector and its estimate, respectively.
In quantitative abundance estimation, the estimate x̂ is con-

sidered to be better the closer it is to x in some continuous
sense. We measure the goodness of x̂ in quantitative abundance
estimation with the relative L2 error

RL2E =
||x̂− x||2
||x||2 . (10)

Note that RL2E is the reciprocal of the square root of the signal-
to-reconstruction error used in [7] and [8]. We use RL2E instead

of the root-mean-square error (RMSE) because we believe that
a large relative error usually renders an abundance estimate
useless even if the absolute error is small.

In endmember identification, the goal is to determine which
endmembers are present in a given pixel. That is, the goal is to
decipher the support of x, namely

support(x) = {i |xi > 0} (11)

from the mixture spectrum y [40]. By bearing in mind the linear
mixing model (1), one may view endmember identification as
basis selection from the dictionary Φ [41].

We use recall, precision, and F1-score to measure how well
the support of x̂ matches the support of x. Together, recall and
precision give more information than any single metric such
as the distance between the supports of x̂ and x. At the same
time, F1-score acts as an overall measure of the goodness of x̂
in endmember identification.

The number of true positives

TP = ||x ◦ x̂||0 (12)

in which ◦ means componentwise product. The number of false
positives

FP = ||x̂||0 − TP. (13)

The number of false negatives

FN = ||x||0 − TP. (14)

By using (12)–(14), we can define recall and precision as fol-
lows:

Recall

REC =
TP

TP + FN
(15)

Precision

PRE =
TP

TP + FP
. (16)

The harmonic mean of recall and precision, namely, F1-score

F1 =
2

1/REC + 1/PRE
. (17)

V. SIMULATIONS

We examined the performance of the unmixing algorithms
with simulations similar to [7]. To cover different types of
unmixing scenarios, we used four different dictionaries. The
endmember spectra included in the dictionaries are mineral
spectra from the ECOSTRESS library [42], [43] and the USGS
spectral library [44].

The properties of the dictionaries are summarized in Table I.
Table I shows that the number of wavelength bands in each
dictionary is m = 200. The bands equidistantly span the wave-
length range from λ = 0.8μm to λ = 2.5μm. The third column
shows the number of endmembers in the dictionary, whereas the
fourth column shows the mutual coherence [7] of the dictionary.
We chose to use dictionaries that entail up to 40 endmembers,
because the number of endmembers in a real-life unmixing
scenario is often small, say less than 20 [7].
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Fig. 8. Spectra of quartz and sulfur are featureless.

TABLE II
SIMULATIONS USED FOR PERFORMANCE COMPARISONS

The smallest dictionary Φ1 contains three mineral spectra,
namely, the spectra of alunite, muscovite, and zoisite. The
dictionary Φ2 contains the 12 mineral spectra used in [32].

Dictionary Φ3 contains 22 common rock-forming minerals,
which were used in the article that introduced ISMA [10].
However, we did not include the practically featureless spec-
tra of quartz and sulfur in Φ3. The reason is that these fea-
tureless minerals cannot be detected by hyperspectral imag-
ing [45]. To illustrate the flatness of quartz and sulfur spectra,
Fig. 8 shows them along with two mineral spectra included
in Φ3.

The largest dictionary Φ4 contains 40 mineral spectra. We re-
quired all spectra in Φ4 to have appreciable absorption features,
whereby minerals such as quartz and sulfur were not included
in Φ4.

We used the 12 simulations detailed in Table II to study the
performance of the unmixing algorithms. The second column of
Table II shows the dictionary used in the simulation, while the
third column shows the sparsity level of the generated fractional
abundance vectors x. We limited the maximum number of mix-
ture components to five, because real-world unmixing scenarios
typically entail up to five endmembers per pixel [21], [46].

In each simulation, 1 000 000 fractional abundance vectors x
were generated. For each x, the number of nonzero components
was randomly drawn from the range indicated in the third
column of Table II. Thereafter, the indices of the nonzero com-
ponents were chosen randomly. Finally, the selected components
were assigned values drawn from the flat Dirichlet distribution.
Hence, each x satisfies ANC and ASC.

In our view, the use of the flat Dirichlet distribution may be
considered analogous to the use of a flat (uninformative) prior
in Bayesian analysis. Since we are not aware of any reasons to
prefer some specific form of the Dirichlet distribution, we opted
to use the flat distribution.

Corresponding to each x, a mixture spectrum

y = Φx+ n (18)

was generated. Here, Φ and n are the dictionary and the noise
vector, respectively. We used correlated noise in the simulations
because it is a better model of real-world noise than independent
and identically distributed (i.i.d.) Gaussian noise [7]. The corre-
lated noise was generated according to [7]: low-pass filtering
i.i.d. Gaussian noise with a normalized cutoff frequency of
5π/m, in which m is the number of spectral bands. Since (18)
does not entail baseline shifts or other scattering effects, we did
not use any spectral preprocessing [47] in the simulations of
Table II.

We define the SNR as the power of the signal divided by the
power of the noise. That is

SNR =
||Φx||2
||n||2 . (19)

To adjust the SNR of a mixture spectrumy, we setn = αñ, with
α ≥ 0 being a parameter and vector ñ containing the unscaled
noise. The desired SNR was then obtained by setting

α =
||Φx||

||ñ|| · √SNR
. (20)

As presented in the fourth column of Table II, we used the
SNR values of 20 dB, 35 dB, and 50 dB in our simulations (cf.
Section IV-E in [7]).

We note that simulations 1–3 do not belong to the category
of sparse unmixing as the other simulations. The reason is that
the maximum sparsity level ||x||0 = 3 is equal to the number
of endmembers in the dictionary Φ1. Nevertheless, some hyper-
spectral images involve only few endmembers, which may all be
present in a single pixel. For example, the dataset of [48] contains
images in which most or all pixels contain all the three or four
possible endmembers. Therefore, we consider simulations 1–3
relevant even though they do not represent sparse unmixing.

A. Simulation Results

The performance metrics describing the quality of endmem-
ber identification are shown in Table III. AISMA with TCAE
tended to have the largest F1-score, and the marginal by which
AISMA with TCAE has the largest F1-score tends to increase
according to SNR.

The critical difference diagram of Fig. 9 shows the average
ranks of the unmixing algorithms based on the F1-scores shown
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TABLE III
AVERAGE ENDMEMBER IDENTIFICATION METRICS IN THE SIMULATIONS

TABLE IV
AVERAGE RELATIVE L2 ERROR IN THE SIMULATIONS

Fig. 9. Critical difference diagram based on the F1-scores shown in Table III.

in Table III. We excluded NCLS from the diagram because FCLS
has a larger F1-score in most simulations. The horizontal bars
in Fig. 9 indicate cliques in which the performance differences
of the algorithms are not significant according to the one-sided
Wilcoxon signed-rank test with Holm correction on significance
level 0.05. AISMA with TCAE performed the best in endmem-
ber identification by a significant margin.

In all subsequent critical difference diagrams, the horizontal
bars have the same meaning as in Fig. 9. That is, a horizontal
bar indicates a clique in which the performance differences of
the algorithms are not significant according to the one-sided
Wilcoxon signed-rank test with Holm correction on significance
level 0.05.

The average RL2E of the estimated fractional abundance
vectors is shown in Table IV. Specifically, the shown values are

Fig. 10. Critical difference diagram calculated from the RL2E values shown
in Table IV.

averages over the 1 000 000 RL2Es obtained in each simulation.
The column “full dictionary” reports the FCLS and NCLS results
obtained with the whole dictionary. In contrast, the results in
the column “ground truth” were obtained by running FCLS
and NCLS with the ground truth endmembers. In the columns
titled “SBL,” “AISMA w/ ABEE,” and “AISMA w/ TCAE,” the
endmembers selected by the respective algorithms were used for
FCLS and NCLS unmixing.

The ASC included in FCLS is not satisfied in all real-world
unmixing scenarios [7], [8]. Nevertheless, SBL natively uses
FCLS for abundance estimation, whereas AISMA uses NCLS.
Thus, SBL and AISMA could have different relative L2 errors
even if they would have selected the same endmember subsets.
Therefore, we ran both FCLS and NCLS with the endmember
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Fig. 11. Schematic illustration of the Scene III setup. Figure adapted from [48].

subsets selected by SBL and AISMA. To further facilitate fair
comparison, we always ran BI-ICE with and without an embed-
ded ASC.

The critical difference diagram of Fig. 10 was calculated from
the RL2Es shown in Table IV. Specifically, each column contains
two RL2Es per simulation, and we always took into account the
smaller one.

Unmixing with ground truth endmembers yielded the best
abundance estimates by a significant margin, while AISMA
with ABEE performed the worst by a significant margin.
Furthermore, full dictionary ranked better than BI-ICE, SBL,
and AISMA with TCAE. Thus, the endmember subsets selected
by the three aforementioned sparse unmixing algorithms did not
lead to better abundance estimates than the full dictionary.

VI. EXPERIMENTS WITH CLOSE-RANGE HYPERSPECTRAL

IMAGES

The unmixing dataset introduced by Zhao et al. [48] has been
specifically designed for unmixing experiments. It consists of
close-range hyperspectral images measured in a laboratory and
abundance ground truth is available for all pixels.

The images in the Zhao’s dataset have been divided into four
groups named Scene I, Scene II, Scene II RGB, and Scene
III. Scene I samples are printed checkerboards, whereby the
linear mixing model should work well. In contrast, the Scene
II samples are homogeneous mixtures of colored quartz sands.
Since Scene II samples may be regarded intimate mixtures,
multiple scattering is expected to reduce the validity of the
linear mixing model in Scene II. Scene II RGB samples are
nonhomogeneous but otherwise similar to Scene II samples.

As illustrated in Fig. 11, Scene III images were taken from
Scene I checkerboards while a plastic board was standing next
to the checkerboard. Because of the Scene III setup, double
scattering is prominent. That is, most incident photons scatter
both from the checkerboard and the plastic board before being
detected.

In all three scenes, there are mixtures that contain all end-
members from the scene. To retain focus on sparse unmixing,
we opted to use a single dictionary Φ that contains the endmem-
ber spectra from all the three scenes. Specifically, we formed
each endmember spectrum by averaging over a hyperspectral
image that was taken from a sample consisting of the respective

Fig. 12. Illustration of the three different SNR levels with the help of Scene 1
mixture 1. For clarity, the low- and medium-SNR curves have been offset in the
vertical direction by −0.6 and −0.3, respectively.

endmember only. The eight endmember spectra included in Φ
have been plotted in [48, Figs. 3, 5, and 8].

We used low-, medium-, and high-SNR mixture spectra in
our experiments. The low-SNR spectra correspond to individual
pixels, whereas the high-SNR spectra are averages over all the
pixels in the image. The medium-SNR spectra were generated
by applying a 3 × 3× 1 box filter on the raw mixture images.
Thus, the filter width was three pixels in both spatial dimensions,
whereas no averaging was done along the wavelength axis.
Fig. 12 illustrates the differences between the three SNR levels
by using the Scene I mixture 1 as an example. The low-SNR
spectrum corresponds to pixel (30, 30) in the raw image, whereas
the medium-SNR spectrum has been taken from the pixel (30,
30) after the 3 × 3× 1 box filter was applied on the image. The
high-SNR spectrum is the average over all the pixels. Visually,
the high-SNR spectrum is the smoothest, whereas the low-SNR
spectrum appears to contain the largest amount of noise.

In the unmixing experiments with Scene I and Scene III spec-
tra, we did not use any spectral preprocessing. The reason is that
the preprocessing methods we tried, namely, linear detrending
and logarithm transformation, did not appreciably improve the
results. In Scene II and Scene II RGB experiments, we used the
generalized logarithm transformation

A = − log10

(
R+

√
R2 + c

2

)
(21)

with c = 10−6 to convert the measured reflectance spectra to
absorbance spectra [24]. For more information about the gener-
alized logarithm transformation (21) used in Scene II and Scene
II RGB experiments, see Appendix A.

A. Unmixing Results

The endmember identification metrics for Zhao’s dataset [48]
are shown in Table V. The values shown on each row are
averages over all mixture spectra belonging to the indicated
scene and SNR level. The first three algorithms are not sparse
unmixing algorithms, and therefore, we focused on the last three
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TABLE V
AVERAGE ENDMEMBER IDENTIFICATION METRICS FOR THE ZHAO’S DATASET [48]

TABLE VI
AVERAGE RELATIVE L2 ERROR FOR THE ZHAO’S DATASET [48]

Fig. 13. Critical difference diagram calculated from the F1-scores shown in
Table V.

algorithms when boldfacing the largest value of each metric from
every row.

A critical difference diagram calculated from the F1-scores is
shown in Fig. 13. AISMA with TCAE had the best F1-scores by
a significant margin.

The RL2Es for Zhao’s dataset [48] are shown in Table VI. The
values shown on each row are averages over all mixture spectra
belonging to the indicated scene and SNR level. To compare the
unmixing algorithms with each other, we bolded the smallest

Fig. 14. Critical difference diagram calculated from the RL2E values shown
in Table VI.

value from each row without considering the “ground truth”
column.

A critical difference diagram calculated from the RL2Es of
Table VI is shown in Fig. 14. Specifically, each column in
Table VI contains two RL2Es per SNR level, and we always
took into account the smaller one. Unmixing with ground truth
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Fig. 15. First row shows the ground truth composition of the pixels, whereas
the last five rows show the predictions of the algorithms. From left to right, the
columns correspond to bitumen, green fabric, red fabric, red metal, and blue
fabric. The upper right corner has been masked in each subplot, because the
corresponding ground area contained objects whose spectra were not provided
within the HySU dataset.

endmembers yielded the best abundance estimates by a sig-
nificant margin. Furthermore, AISMA with TCAE performed
significantly better than AISMA with ABEE. However, the
endmember subsets selected by BI-ICE, SBL, and AISMA with
TCAE did not lead to significantly better abundance estimates
than the full dictionary.

The hyperspectral image of Scene II RGB sample 4 (viz.
spatial pattern D) is represented as a false color image in the
left panel of Fig. 16 in Appendix B. The estimated and ground
truth abundance maps for the Scene II RGB sample 4 are shown
in Fig. 18 in Appendix C.

VII. EXPERIMENT WITH A REMOTE-SENSING IMAGE

Remote sensing is the traditional application area of hy-
perspectral imaging. Therefore, we carried out an experiment
with an airborne hyperspectral image, which was specifically
acquired for the purposes of testing unmixing algorithms [49].
Specifically, the image is from a grass-covered football field,
where targets of different size were deployed. Each target was
made of either bitumen, green fabric, red fabric, red metal, or
blue fabric.

Corresponding to each material, there were five targets having
the sizes of 3 m × 3 m, 2 m × 2 m, 1 m × 1 m, 0.5 m × 0.5 m,
and 0.25 m × 0.25 m. In comparison, the reported pixel size
was 0.7 m × 0.7 m. Thereby, the 0.5 m × 0.5 m and 0.25 m ×
0.25 m targets could not give rise to any pure pixels, but appeared
entirely as subpixel objects. The arrangement of the targets has
been graphically illustrated in [49, Fig. 1].

Since there are five target materials lying on grass, the total
number of the endmembers is six. The HySU dataset [49]
provides two versions of these endmember spectra, namely,
spectra extracted from the hyperspectral image and spectra
measured with a field spectrometer. The dictionary Φ we used
for unmixing comprises the endmember spectra extracted from
the hyperspectral image. The endmember spectra included in Φ
are shown as solid lines in [49, Fig. 5].

In our experiment, we used only a part of the original hyper-
spectral image. The part that we used contains all the targets
and is approximately the same as the one shown in [49, Fig.
4b]. The right panel of Fig. 16 in Appendix B is a false color
representation of the hyperspectral image that we used.

The first row of Fig. 15 shows the endmembers that are present
in each pixel. From left to right, the columns correspond to
bitumen, green fabric, red fabric, red metal, and blue fabric. As
in [49, Fig. 4b], the upper right corner has been masked because
it contains endmembers whose spectra were not provided within
the HySU dataset.

The second row of Fig. 15 shows the results of SAM classifier.
The third, fourth, fifth, and sixth rows show the unmixing results
obtained with SBL, BI-ICE, AISMA with ABEE, and AISMA
with TCAE, respectively.

The SAM classifier and AISMA with ABEE perform well in
avoiding false positives but have trouble detecting the smallest
and the second smallest targets. In contrast, SBL and BI-ICE
yield many false positives for all the five target materials, result-
ing in the third and fourth row being qualitatively rather different
from the first row. The compositional maps estimated by AISMA
with TCAE are in relatively good agreement with the ground
truth for green fabric, red fabric, red metal, and blue fabric. For
bitumen, the match with the ground truth is poorer, but even then
the majority of estimated bitumen pixels are located close to the
ground truth of bitumen pixels. Overall, AISMA with TCAE
managed to detect even some of the smallest targets, while the
number of false positives remained relatively low.

VIII. EXPERIMENTS WITH JASPER RIDGE AND URBAN

DATASETS

The remote sensing images provided in the Jasper Ridge and
Urban datasets have been used in many unmixing studies. The
remote sensing image included in the Jasper Ridge dataset has
been extracted from a larger image [50]. The Jasper Ridge and
Urban datasets can be downloaded, e.g., from [51].

The Jasper Ridge dataset contains two versions of the hy-
perspectral image with the difference being in the number of
wavelength bands. The first version has 224 wavelength bands
extending from 380 to 2500 nm, while the number of wavelength
bands in the second version is 198 following the removal of the
bands that are affected by atmospheric absorption.

We used the Jasper Ridge image that has 198 wavelength
bands, and a false color representation of the used image is shown
in the left panel of Fig. 17 in Appendix B. The spatial plane of the
hyperspectral image is divided into 100× 100 pixels with each
pixel corresponding to a 20 m × 20 m region in the scene [50].
The abundance map provided in the Jasper Ridge dataset has
four endmembers, namely, tree, water, dirt, and road.
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The Urban dataset contains two versions of the hyperspectral
image with the difference being in the number of wavelength
bands. The first version has 210 wavelength bands extending
from 400 to 2500 nm, while the number of wavelength bands
in the second version is 162 following the removal of the bands
that are affected by atmospheric absorption.

We used the Urban image that has 162 wavelength bands, and
a false color representation of the used image is shown in the
right panel of Fig. 17 in Appendix B. The spatial plane of the
hyperspectral image is divided into 307× 307 pixels with each
pixel corresponding to a 2 m × 2 m region in the scene [50].
Three different reference maps indicating the pixelwise frac-
tional abundances are provided in the Urban dataset. We used
the reference map that has six endmembers, namely, asphalt
road, grass, tree, roof, metal, and dirt [50], [52].

The abundance maps for the Jasper Ridge and Urban images
are shown, respectively, in Figs. 19 and 20 in Appendix C.
Specifically, the reference maps provided in the datasets are
shown on the first rows of Figs. 19 and 20, while the abundance
maps obtained with the unmixing algorithms are shown on the
subsequent rows. The abundance maps obtained with the SAM
classifier and AISMA with ABEE are not as smooth as the ref-
erence maps. The abundance maps given by the other unmixing
algorithms are in good agreement with the reference maps.

However, it should be noted that the reference maps included
in the Jasper Ridge and Urban datasets are not ground truth maps,
as they have been calculated with certain algorithms instead
of being determined through in situ measurements [49], [53],
[54]. At the same time, we share the view of many scholars
that comparison of estimated maps with ground truth maps is
the most objective way to assess the performance of unmixing
algorithms (see, for instance, [48], [49], [55], [56], and [57]).

To further examine the plausibility of reference maps that
have been calculated with algorithms, we consider the first row
of Fig. 19. We note that the water area has pixels in which the
fractional abundance of the road endmember does not vanish
but ranges from tiny positive values to about 0.2. However, these
pixels are scattered in such a way that we consider it unlikely that
they would correspond to a road that is partly or thinly covered
by water. Further contextual information can be gathered from
the larger Jasper Ridge image [50] and physical maps of the
Jasper Ridge area [58], and our view is that they do not suggest
the presence of a road in the water area of the Jasper Ridge
image. As a result, we feel that the reference maps provided in
the Jasper Ridge dataset suffer from plausibility issues, which
would not be present in ground truth maps determined through
in situ measurements.

Owing to the lack of ground truth in Jasper Ridge and Urban
datasets, we consider the related experiments less conclusive
than the ones carried out in Sections VI and VII. Overall, we
believe that the results obtained with the Jasper Ridge and Urban
datasets qualitatively indicate the applicability of AISMA with
TCAE to the unmixing of remote sensing images.

IX. ABLATION AND TIMING EXPERIMENTS

In Section IX-A, we examine the role of TCAE in the per-
formance of AISMA by performing an ablation experiment.

Algorithm 4: Termination Condition Oracle.
Input 1: Ground truth fractional abundance vector x
Input 2: Fractional abundance vectors x(1),x(2), . . . ,x(n)

Output: Critical iteration critIT
1: Set TPi = ||x ◦ x(i)||0. The number of true positives in

x(i).
2: Set FPi = ||x(i)||0 − TPi. The number of false positives

in x(i).
3: Define FPmin = mini FPi.
4: Set critIT = argmaxiTPi s.t. FPi = FPmin.
5: Return critIT as the output.

Specifically, we will repeat the simulations of Table II with
TCAE replaced by a termination condition that determines the
critical iteration with the assistance of the ground truth fractional
abundance vector. Thus, we get to compare the performance of
AISMA with TCAE against an upper limit that AISMA cannot
exceed with any conceivable termination condition.

In Section IX-B, we state the computational complexity of
AISMA with TCAE and conduct a runtime comparison between
the algorithms.

A. Role of TCAE in the Performance of AISMA

To examine to the role of TCAE in the performance of
AISMA, we define a new termination condition called termina-
tion condition oracle (TCO). TCO determines the critical itera-
tion with the assistance of the ground truth fractional abundance
vector x, and it is described in Algorithm 4.

In addition to the ground truth fractional abundance
vector x, TCO receives the fractional abundance vectors
x(1),x(2), . . . ,x(n) generated by ISMA as inputs. With the
assistance of the ground truth fractional abundance vector x,
TCO calculates the number of true positives and false pos-
itives for each of the estimated fractional abundance vectors
x(1),x(2), . . . ,x(n).

Step 4 of TCO chooses the critical iteration critIT to
maximize the number of true positives, which are subject to
the constraint of the minimization of false positives. In practice,
the number of false positives will be zero if the endmember
remaining at the last iteration is a true positive (viz. belongs
to the mixture). Otherwise, the number of false positives will
be one. We stress that the performance of AISMA with TCO
sets an upper limit to the performance that AISMA can attain
with any conceivable termination condition, because TCO uses
the ground truth fractional abundance vector to determine the
critical iteration.

We repeated the simulations from Table II with TCAE re-
placed by TCO, and the endmember identification results are
shown in Table VII. In the low-SNR simulations with smaller
dictionaries, TCAE led to considerably smaller recall than TCO.
Otherwise, we feel that the results obtained with TCAE are close
to the best possible performance obtained with TCO.

In the medium- and high-SNR simulations, the difference
between the F1-scores obtained with TCAE and TCO does
not appreciably depend on the number of endmembers in the
dictionary. In the low-SNR simulations, the gap between the
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TABLE VII
PERFORMANCE OF AISMA WITH TCAE AND TCO

TABLE VIII
RUNTIMES OF THE ALGORITHMS

F1-scores obtained with TCAE and TCO decreases with in-
creasing dictionary size. Thus, the fixed value R = 3 set in
Step 8 of TCAE does not limit the generalizability of TCAE
to dictionaries having different numbers of endmembers.

B. Computational Complexity and Runtime Analysis

The main computational complexity in AISMA with TCAE
results from the least-squares fit, which is performed in Step 4 of
ISMA. Specifically, the asymptotic computational complexity
of AISMA with TCAE is O(n3m), with n and m being the
number of columns and rows, respectively, in the dictionary Φ
(see Appendix D).

We examined the runtimes of the unmixing algorithms by
running simulations in a MATLAB environment with a laptop
having a 1.9-GHz CPU and 8 GB of memory. To illustrate
how the number of endmembers affects runtime, we used the
dictionaries Φ2, Φ3, and Φ4 in the simulations. Each runtime
reported in Table VIII is the average time it takes to unmix 10 000
mixture spectra. For further details on the timing experiment, see
Appendix E.

AISMA with TCAE was about two and three times slower
than FCLS in the simulations with Φ2 and Φ4, respectively. In
comparison to SBL, AISMA with TCAE was about four and
11 times faster in the simulations with Φ2 and Φ4, respectively.
BI-ICE was roughly two times slower than SBL in all the three
simulations.

We conclude that SBL and BI-ICE have a larger computa-
tional complexity than AISMA with TCAE with respect to the

number of endmembers in the dictionary. Since the number of
endmembers in a real-world unmixing scenario is typically less
than 20, the results with the dictionary Φ3 suggest that AISMA
with TCAE could be up to seven times faster than SBL and up to
16 times faster than BI-ICE in real-life unmixing applications.

X. DISCUSSION

The main contribution of our research, namely TCAE, is
an extension to ISMA that automatically selects the best
solution from the sequence of fractional abundance vectors
generated by ISMA. Although we developed TCAE as an
extension to ISMA, TCAE can be used with any unmixing
algorithm that yields a sequence of estimated fractional abun-
dance vectors with an increasing sparsity level. To elaborate,
let us assume that x(1),x(2), . . . ,x(n) is a sequence of esti-
mated fractional abundance vectors with an increasing sparsity
level ||x(i)||0 = i. By changing the labeling, one can form a
sequence x(1),x(2), . . . ,x(n), in which ||x(i)||0 = n− i+ 1.
Subsequently, the Δi values can be calculated by using the
formulas from Steps 5, 10, and 11 of ISMA.

For example, this means that TCAE can be used to select
the best fractional abundance vector from the set of fractional
abundance vectors generated by a matching pursuit algorithm.
Similar logic also dictates that TCAE can be used to select the
best solution from the set of Pareto-optimal solutions to the
biobjective minimization problem (3). Thus, TCAE can be used
in multiobjective sparse unmixing to select the best solution from
the set of Pareto-optimal solutions.

TCAE selects the best solution from the set of Pareto-optimal
solutions with the help of elbow estimation. Thus, TCAE be-
longs to the same family of methods as ABEE, the weighted
sum of objective values method, and the distance to the extreme
line method [15]. An important novelty in our work is that
we seek the elbow from the points (||x(i)||0, Δ̃i) instead of
the points (||x(i)||0, ||y −Φx(i)||2), in which i ∈ {1, 2, . . . , n}
and n is the number of solutions. In comparison to the distance
to the extreme line method, TCAE has the advantage that it can
adaptively choose the end points of the line segment that is used
to determine the location of the elbow.

A. Future Directions

Abundance estimates tend to be the most accurate when the
endmembers participating in the given pixel have been correctly
identified [10]. Although the critical difference diagrams 9 and
13 show that AISMA with TCAE had the best F1-scores by
a significant margin, the critical difference diagrams 10 and
14 indicate that the abundance estimates yielded by AISMA
with TCAE were not significantly better than the ones obtained
with SBL, BI-ICE, and full dictionary. Thus, the results suggest
that F1-score is not the best possible performance metric for
endmember identification if the goal of endmember selection is
to improve the abundance estimates. A possible future direction
would be to study the correlation between various endmember
identification metrics and the relative L2 error.
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Since AISMA with TCAE is based on ISMA, it does not have
any specific mechanism for mitigating problems that arise from
endmember variance. Accordingly, we carried out simulations
and real-data experiments with such data that do not exhibit
endmember variance in any appreciable degree.

Although we did not consider endmember variance, it is
common in real-world data. Therefore, extending the combina-
tion of ISMA and TCAE to handle endmember variance would
increase its applicability to real-world problems. We surmise
that grouping the spectra representing the same mineral as in
SMESMM [13] would lead to better results than simply adding
variations of the same mineral to the dictionary Φ. With the
grouping, the iterative elimination of the endmember spectra
could be carried out one group at a time instead of a single
endmember spectrum at a time.

XI. CONCLUSION

In this article, we studied the problem of automatic identifica-
tion of materials from mixed pixels. We developed a new elbow
estimation method TCAE that enables a rapid and reliable iden-
tification, providing better performance than a state-of-the-art
elbow detection method and two Bayesian unmixing algorithms.
Specifically, Figs. 9, 10, 13, and 14 show that 1) AISMA per-
formed endmember identification and quantitative abundance
estimation significantly better with TCAE than ABEE, and 2)
AISMA with TCAE outperformed SBL and BI-ICE in endmem-
ber identification.

Since AISMA does not have any hyperparameters, we used
a simple version of SAM classifier that does not have user-
specified thresholds. Specifically, the used version of SAM clas-
sifier considers a pixel to consist of the endmember for which the
spectral angle between the pixel spectrum and the endmember
spectrum is the smallest. Figs. 9 and 13 show that AISMA
with TCAE outperformed the SAM classifier in endmember
identification.

Timing experiments indicated that AISMA with TCAE could
be up to seven times faster than SBL and up to 16 times faster
than BI-ICE in real-life unmixing applications. Thus, AISMA
with TCAE is better suited for applications that require real-time
or near real-time performance. Overall, our conclusion is that
AISMA with TCAE facilitates automatic, reliable, and rapid
identification of endmembers from mixed pixels.

APPENDIX A
SPECTRAL PREPROCESSING IN SCENE II AND SCENE II RGB

EXPERIMENTS

The reason for using the generalized logarithm transformation
(21) instead of A = − log10 R in Scene II and Scene II RGB
experiments is that in some rare instances, noise may cause a
negative reflectance value R. We believe that the chosen value
c = 10−6 in (21) may be considered small, because it is several
orders of magnitude smaller than typical reflectance values such
as the ones exhibited by the high-SNR curve in Fig. 12. The

advantage of choosing a small value for c is that the general-
ized logarithm transformation is then practically equivalent to
A = − log10 R, but avoids the problem posed by slightly nega-
tive reflectance values arising from noise.

[48, Table VI] shows the RMSEs of various unmixing algo-
rithms for Scene II mixtures. The shown values were calculated
with reflectance spectra, while the used dictionary contained
only the Scene II endmember spectra. The mean RMSEs of
FCLS, K-Hype, and Hapke were 0.1630, 0.1221, and 0.0940,
respectively. In comparison, we have calculated that the mean
RMSE of FCLS with absorbance spectra is 0.0872.

We conclude that conversion from reflectance to absorbance
substantially improves the applicability of the linear mixing
model (1) for Scene II spectra. Since Scene II RGB samples
are similar to Scene II samples, we assume that the generalized
logarithm transformation (21) improves the validity of the linear
mixing model (1) also for Scene II RGB spectra. Therefore, we
feel that our choice to preprocess spectra with (21) in Scene II
and Scene II RGB experiments is justified.

APPENDIX B
FALSE COLOR IMAGES

Fig. 16. Left panel shows the hyperspectral image of Scene II RGB sample
4 (spatial pattern D) as a false color image. The right panel is a false color
representation of the remote sensing image used in Section VII.

Fig. 17. Left and right panel show the false color representations of the Jasper
Ridge and Urban hyperspectral images, respectively.
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APPENDIX C
ABUNDANCE MAPS

Fig. 18. Abundance maps for the Scene II RGB sample 4 (spatial pattern D). The first three columns correspond to the endmembers constituting the sample, while
the last five columns correspond to the other endmembers included in the dictionary. The first row contains the ground truth abundance maps, while the following
rows show the estimated abundance maps. Comparison of the FCLS and NCLS results shows that ASC has a substantial effect on the estimated abundance maps.
The SBL maps were calculated by running FCLS with the endmembers selected by the RVM-based endmember selection. Similarly, embedded ASC was used in
BI-ICE, while the AISMA maps were calculated by executing FCLS with the endmembers selected by AISMA.
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Fig. 19. Abundance maps for the Jasper Ridge image. The first row shows the reference maps included in the Jasper Ridge dataset, while the following rows
show the estimated abundance maps. The reference maps satisfy ASC, and we scaled the fractional abundance vectors in the estimated maps so that each estimated
abundance map also satisfies ASC.
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Fig. 20. Abundance maps for the Urban image. Reference maps based on four, five, and six endmembers are provided in the Urban dataset, and we opted to use
the ones based on six endmembers. The first row shows the reference maps, while the following rows show the estimated abundance maps. The reference maps
satisfy ASC, and we scaled the fractional abundance vectors in the estimated maps so that each estimated abundance map also satisfies ASC.
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APPENDIX D
COMPUTATIONAL COMPLEXITY OF AISMA WITH TCAE

The main computational complexity in AISMA with TCAE
results from the least-squares fit, which is performed in Step 4
of ISMA. The least-squares fit is based on matrix multiplication
and matrix inversion. The multiplication of an s× t matrix by
a t× u matrix has the complexity of O(stu) [59], whereas
inversion of an n× n matrix with Gauss–Jordan elimination
has the complexity of O(n3) [60]. Relatedly, we recall that the
mixture spectrum y ∈ Rm and the dictionary Φ ∈ Rm×n.

The least-squares fit argminx||y −Φx|| begins with the ma-
trix multiplications ΦTy and ΦTΦ, which have the complex-
ities of O(mn) and O(n2m), respectively. Subsequently, the
inversion of ΦTΦ ∈ Rn×n has the complexity of O(n3). Since
ΦTy ∈ Rn×1 has already been calculated, the final matrix multi-
plication (ΦTΦ)−1ΦTy has the complexity of O(n2). Thereby,
the complexity of the least-squares fit is O(n3 + n2m).

Step 4 of ISMA is repeatedn times, i.e., as many times as there
are endmembers in the dictionary Φ. Thus, the overall computa-
tional complexity resulting from Step 4 is n ·O(n3 + n2m) =
O(n4 + n3m). Since the dictionaryΦmust be undercomplete in
ISMA (i.e., n < m), the asymptotic computational complexity
of AISMA with TCAE is O(n3m).

APPENDIX E
RUNTIME EXPERIMENT

By using (18), we constructed ten sets of mixture spectra
for each of the dictionaries Φ2, Φ3, and Φ4. Each set contained
10 000 mixture spectra and each mixture spectrum was corrupted
with correlated noise. The SNR of each mixture spectrum was
randomly chosen from the interval 20 to 50 dB (cf. Table II). The
number of components in each mixture was randomly drawn
from {1, 2, . . . , 5}.

Each unmixing algorithm was timed as it processed the ten
sets. For further averaging, the process of constructing the
ten sets and timing the algorithms was repeated ten times.
Each runtime reported in Table VIII is the mean of the so-
obtained 100 durations. Thus, each runtime reported in Ta-
ble VIII is the average time it takes to unmix 10 000 mixture
spectra.
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