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Fast Dual Trifeature-Based Detection of Small
Targets in Sea Clutter by Using Median Normalized
Doppler Amplitude Spectra
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Abstract—High-resolution sea-surface surveillance radars are
designed to find two classes of small targets, low-velocity and
floating small targets on the sea surface and low-altitude small
targets over the sea surface. Existing feature-based detectors using
amplitude and Doppler spectra features of returns can fast detect
the first class of small targets. But they often fail to find the second
class of small targets due to their small radar cross-sections and
low signal-to-clutter ratios (SCR). This article proposes a fast dual
trifeature-based detector to find the two classes of small targets. At
the low-velocity trifeature-based detector, the existing trifeature-
based detector is used to find the first class of small targets. At
the high-velocity trifeature-based detector, a new trifeature-based
detector is used to detect the second class of small targets by
utilizing three new features from the median normalized Doppler
amplitude spectrum (MNDAS). Owing to the ability of the MNDAS
to suppress sea clutter, the high-velocity trifeature-based detector
can effectively find the second class of small targets with low
SCRs. The detected results in the two trifeature-based detectors
are combined into the binary output of the detector in terms of
the “OR” operation. Finally, the proposed detector is verified and
compared with the existing detectors by the open and recognized
IPIX and CSIR radar databases and one unmanned aerial vehi-
cle radar dataset. Besides the detection performance for the two
classes of small targets, a merit of the proposed detector is of
low-complexity decision because no time-frequency features are
available in detection.

Index Terms—Fast dual trifeature-based detector, low-altitude
small targets, low-velocity and floating small targets, median
normalized Doppler amplitude spectra (MNDAS), sea clutter.

I. INTRODUCTION

T IS an important and difficult task for high-resolution
maritime surveillance radars to detect two classes of small
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targets, low-velocity and floating small targets on the sea
surface and low-altitude small targets over the sea surface. Small
targets include small boats, icebergs, periscopes of submarines,
low-altitude unmanned aerial vehicles (UAVs), and so on. The
difficulties in detecting them come from three aspects. First, sea
clutter time sequences with strong non-Gaussianity are difficult
to be modeled in an observation time of the order of subsecond
or seconds in simple formats [1], [2]. Second, small targets have
weaker radar returns than sea clutter because of their small radar
cross-sections (RCS). Third, complex interactions of the first
class of small targets and maneuvering flight of the second class
of small targets make it difficult to parametrically model their
radar returns in a long observation time [3].

Early, incoherent detection methods are usually used to detect
small targets in sea clutter, such as the cell-average constant
false alarm rate (CA-CFAR) detector, the greatest/smallest of
CFAR detector [4]. In coherent radar systems, the adaptive
detection methods are based on statistical models of sea clutter to
develop a series of optimal or near-optimal detectors, such as the
generalized likelihood ratio test (GLRT) [5], adaptive matched
filter, and adaptive normalized matched filter (ANMF) detectors
[6]. In addition to the commonly-used statistical distribution
models of sea clutter, sea clutter time series can be modeled
as a nonlinear dynamic system, and the characteristics of the
system can be used to detect targets, like chaos theory and
neural network [7]. However, when the observation time is up to
several tenths of one second or the order of seconds, sea clutter
time series have time-varying power, and target returns have
unknown nonlinear Doppler offsets and amplitude modulations.
Traditional adaptive detection methods fail to use because they
often depend on parametric models of sea clutter and target
returns. The feature-based detection, which does not depend on
clutter statistical models and simple parametric models of target
returns, is an effective approach for small target detection [8],
(91, [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23].

Feature-based small target detection in sea clutter has con-
stantly developed in succession along two approaches. One
approach devotes to extracting features to improve performance
(81, [91, [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], and the other devotes to designing de-
tectors to enhance performance and real-time implementation
[14], [15], [16], [18], [19], [20], [21], [23], [24], [25], [26],
[27],[28]. Both salient features and effective learning algorithms
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are indispensable. Different features are suitable for different
cases [14], [15], and their complementarity is the base of the
feature-based detectors with robust and good detection perfor-
mance [26], [27]. Various learning algorithms [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28] have been proposed to design decision functions, thresh-
olds, or regions, including the convexhull learning algorithm
[14], [15], [17],[22], [26], the graphs [18], [19], the concave hull
learning algorithm [21], the support vector machine (SVM) [16],
[20], [23], the principal component analysis (PCA) [24], the
decision tree [25], the K-nearest neighbor (KNN) algorithm [27],
and convolutional neural networks [28]. With the increasingly
improving feature-based detectors to fully meet the performance
demand of maritime surveillance radars, the fast decision to
support real-time implementation becomes more critical. Two
factors to limit the fast decision are feature extraction and
the calculation of the decision functions, such as the complex
calculations of the normalized time-frequency (TF) features [15]
and high-dimensional distances in the KNN-based detector [27].

This article first proves the SCR-dependency of features,
proposes a normalization method to realize the sea clutter
suppression, then develops three Doppler features with detec-
tion capabilities in low SCR, and finally proposes a fast dual
trifeature-based detection method to detect the two classes of
small targets in sea clutter. At the low-velocity trifeature-based
detector, the combination of the three features and convexhull
decision is used to detect the first class of small targets on the
sea surface. Due to the absence of clutter suppression in the
three features, the low-velocity trifeature-based detector cannot
find small targets with relatively high velocity and very small
RCS. At the high-velocity trifeature-based detector, the median
normalized Doppler amplitude spectrum (MNDAS) with low
computational complexity is proposed for adaptive sea clutter
suppression before feature extraction. From the MNDAS, three
new features, the peak height (PH), the local accumulation (LA),
and the vector entropy (VE), are extracted. The three new fea-
tures combined with the convexhull decision to effectively detect
the second class of small targets. Finally, the detection result is
the “OR” fusion of the binary results at the two trifeature-based
detectors. The proposed fast dual trifeature-based detector is
verified by the two recognized IPIX and CSIR radar databases
and one specific UAV dataset. The results show that it obtains
the effective tradeoff between detection performance and com-
putational costs.

The rest of this article is organized as follows. Section II
briefly introduces two open radar databases and one specific
dataset for small target detection in sea clutter. Section III
gives the SCR-dependency verification and analysis of existing
features and analyzes their limitations. Section IV, the MN-
DAS and three new salient features are proposed, and the dual
trifeature-based detector is constructed. Section V reports the
experimental results on the three databases and analyzes their
computational costs. Finally, Section VI concludes this article.

II. DESCRIPTIONS OF OPEN AND SPECIFIC DATABASES

The two open IPIX and CSIR databases [29], [30] for small
target detection in sea clutter and one special UAV radar
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TABLE I
PARAMETERS OF THE IPIX DATABASE, CSIR DATABASE, AND UAV DATASET

IPIX
Database 1993 | 1998 CSIR UAV dataset
Carrier 9.39 GHz 9.0/6.5 GHz 10 GHz
frequency
PRF 1000 Hz 2500/5000 Hz 4000 Hz
Rangf: 30 m 3071579 15m 3m
resolution m
Sea state 2/3/4 - 4 2
Polarization HH/HV/VH/VV \AY A%
Orssgézit;ng Staring Staring/tracking Staring
Band X X/C X
AM300 DJI
An UAV with
anchored four rotors
spherical Floatin and a corner
block with g Motorized reflector of
Test target . small .
a diameter boats small boats eight
of 1 m and trihedrons
wrapped in fixed on the
wires back of the
UAV
Average -1.5dB~ _Ehggd? 9.2dB~17.1 -8.8dB ~
SCR 18.3 dB dB' dB -49dB
Radigl —0.8 /s ~ 0.9 m/s -5.8m/s~9.2 —15 m/s to
velocity m/s 15 m/s

dataset from an island high-resolution radar are available for
performance evaluation. Table I lists important information
about the two open databases and the UAV dataset. Twenty
datasets from the IPIX radar database include the ten datasets
(labeled 17, 26, 30, 31, 40, 54, 280, 310, 311, and 320)
collected in 1993 and the ten datasets (labeled 202225, 202525,
163113, 171437, 180558, 195704, 164055, 173317, 173950,
and 184537) collected in 1998. In these datasets, the test floating
small targets have small radial velocities and higher SCRs and
fall into the main clutter region of sea clutter in the Doppler
domain. The ten datasets from the CSIR radar database are
the TFA10_004, TFA10_005, TFA10_006, TFA10_007,
TFA10_008, TFA17_001, TFA17_002, TFA17_004,
TFA17_005, and TFA17_006. The test targets are moving
small boats, and their radar returns sometimes fall outside the
main clutter region of sea clutter in the Doppler domain [27],
[30].

The specific UAV dataset was collected by our team by an
experimental radar mounted on a mountain top at an island,
Qingdao, China. The height of the radar is about 450 m over the
sea level. Fig. 1(a) illustrates the test target in the experiment.
The average RCS is about 0.6 m2, and the RCS of the UAV
can be ignored compared with the corner reflector owing to the
material of the UAV. In the experiment, the UAV was flying
50-100 m above sea level. Fig. 1(b) is the trace of the UAV
flight path in the radar beam. Fig. 1(c) illustrates the power map
of the radar returns of radial distance from 4.3 to 5.5 km during
300 s, corresponding to the trace indicated in the red ellipse of
Fig. 1(b). The SCRs of the UAV returns are much less than 0 dB,
thus its trace is invisible in the power map. The data of the first
38 s labeled by “Training region” are sea clutter and are used
to train the feature-based detectors in the sequent experiments.
The data outside the region are used to verify detectors in both
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Fig. 1. Description of the special UAV dataset, (a) the test target, (b) the GPS
trace of the UAV flight in the radar beam, (c) the power map of the radar returns,
(d) the TFD of the radar returns along the UAV trace, (e) the Doppler offset of
the target returns along the UAV trace, and (f) SCRs of the target returns.

detection probability and false alarm rate. Fig. 1(d) plots the
TF distribution (TFD) of the radar returns along the UAV trace.
Due to too low SCRs, the Doppler offset trace of the UAV can be
hazily observed, where the yellow strip is from the sea clutter.
Obviously, sea clutter is much stronger than the target returns. To
further analyze the characteristics of the target returns, Fig. 1(e)
plots the Doppler offset traces, where sea clutter is removed
by a high-pass filter. The UAV’s maneuvering flight results in
the fluctuation of the radial velocity. Moreover, except around
the farthest point, the target returns fall outside the main clutter
domain of sea clutter in the Doppler domain. Fig. 1(f) plots the
SCRs of the target returns along the UAV trace. Hence, the UAV
dataset is suited to verify the performance of a detector on small
targets with relatively high radial velocity.

III. SCR-DEPENDENCY VERIFICATION AND LIMITATION
ANALYSIS OF FEATURES

When the observation time is long up to several tenths of a
second, small target detection in sea clutter boils down to the
following binary hypothesis [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [201, [21], [22], [23], [24], [25], [26],
[27], [28]:

z(n) =¢(n),n=1,2,...N,
HO :
zp(n) =¢p(n),p=1,2,..., P, n
" z(n) =s(n)+c(n),n=1,2,... N,
1 -
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where N is the length of the time series, P is the number of
the reference cells, Hy is the null hypothesis, H; is the alterna-
tive hypothesis, z(n) and z,(n) are complex radar returns time
sequences at the cell under test (CUT) and P reference cells
around the CUT, respectively. c(n) and ¢, (n) are sea clutter time
series at the CUT and reference cells, respectively. s(n) are target
returns, an unknown complex time series. For convenience in
expressions, the sequences are denoted by the bold fonts z and
z,. In all I features, the ith feature is the value of a nonlinear
function ®; of the vectors z and z,, at the CUT and reference
cells and is expressed in form by

fi:(I)i(Z,Zl,...7ZP),’i:1,2,...,[. (2)

Traditional adaptive detection concerns the statistics of the
random variables in (2). Feature-based detection highlights the
effectiveness and complementary of individual random variables
in detection ability.

In feature-based detection of small targets in sea clutter, there
have existed many salient features, including the normalized
Hurst exponent (NHE) [10], the all-dimensional Hurst exponent
(ADHE) [12], and the relative average amplitude (RAA) [14],
which are calculated directly from radar returns; the relative
Doppler peak height (RDPH) and the relative vector entropy
(RVE) [14] calculated from the Doppler amplitude spectra; and
the ridge integration (RI), the number of connected region (NR),
and the maximal size of connected region (MS) [15] calculated
from the TFD of radar returns.

Below, we analyze and prove the SCR-dependency of the
fractal-based features, amplitude/intensity features, and two
Doppler features. These features are all at low computational
costs and can meet the demand of real-time target detection.
The fractal-based features indicate the Hurst exponents of radar
returns’ amplitude, complex, and phase sequences at different
time scales [12]. Taking the complex sequence as an example,
the Hurst exponent H . of sea clutter plus target returns is
estimated by the power law

rove(m) = B {|s(n -+ m) + c(n+m) - s(n) — ()|}

deccl)(r]r

speckle 3
AL (3
where 042 and o2 are variances of the target returns and sea
clutter, At is the pulse repetition interval (PRI) and Ts‘i,%cc‘l’(rfe is the
decorrelated time of sea clutter. Then

2H, .

~ (02 +0?2)|m| ,0<m <

Fate(m) = 14(m) + re(m) & o2|m[***
+a2lm*e(1 > H, > H. > 0) (4)

where H; and H, are the Hurst exponents of target returns and
sea clutter, respectively. In terms of (3) and (4), when SCR =
02/0? < 1 (low SCR cases)

| |2(H s—H.)

Heypo— Ho. ~ SCR x )

2log|m|
It means that the Hurst exponent difference of target returns
plus sea clutter and sea clutter is directly proportional to the SCR
when the scale range and the Hurst difference of target returns
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and sea clutter are given. Therefore, the detection ability of the
fractal-based features highly depends upon SCR, and the fractal-
based features are ineffective in the case of low SCRs, for small
differences at the Hurst exponents are difficult to distinguish
target returns plus sea clutter from sea clutter.

The amplitude/intensity features are from the test statistics in
the noncoherent integration at the linear detection and squared
law detection [31]. Taking the squared law detection as an
example, the average intensity of target returns plus sea clutter
is given by

E((erc)H(erc)) =E (s"s) + E (c"c)
=02 +0>=02(1+SCR) (6)

where s and ¢ are the vectors of target and clutter time series,
respectively. It means that the average intensity difference of
target returns plus sea clutter is directly proportional to the SCR.
Therefore, when the SCR is low, the average amplitude/intensity
of the radar returns is difficult to distinguish the two-class
returns. The detection ability of the average amplitude has a
complicated relationship with SCR and similar results. Thus, the
detection ability of the amplitude/intensity feature is sensitive
to the SCR and will vanish in the cases of low SCR.

The RVE is a global feature of the Doppler amplitude/power
spectrum (DAS/DPS) of the radar returns. It reflects the sparsity
extent of the power distribution of the radar returns in the
Doppler domain [14]. The VE of the power spectrum of target

returns plus sea clutter is calculated by
< sfs +clc )
1 p)
[S(k) + C(F)|
@)

VE(s +¢) = Zk IS() + C@

sfs+cHe
where S(k) and C(k) are the DFTs of the target returns s(n) and sea

clutter c(n), respectively. When SCR is very low, s's + cfc ~

c’lc, the difference between the two-class returns is approxi-
mated by

VE(c)
=2 < e (|c§(k§2)_
(5w car)
-y Lt i' . (S(k)c ?k?'gmﬁ)

k) + C(k)]* = |C(k)] e +s's
+Z ( clc+sfs n<|S(k)+C(k)

i S(k)ﬁ)
(1 TP

2 H H
c’'c+ss
+ In
2o <0H6+SHS (|S<k>|2+|c<k>|2

— VE(S +c)

|S(k) + C(k)[*

cHe 4 sfls

3)

)
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Fig.2. DAS of two typical sequences of returns with targets, (a) floating target
with high SCR from the IPIX radar database and (b) the high-velocity target with
very low SCR from the UAV dataset.
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In terms of (8), the difference between the two-class returns
in the power spectra’ VE is directly proportional to the SCR and
relevant to the power distributions of the target returns plus sea
clutter on the Doppler domain. When the amplitude spectra are
used, the situation is complex, and the result is similar. Thus,
the RVE feature is difficult to distinguish between the two-class
returns in the cases of low SCR.

It is known that the average Doppler spectra of sea clutter
can be modeled by the bell-shaped functions, and the Doppler
offsets and bandwidth depends on sea states, radar parameters,
and the viewing geometry [1] (Chapter 2). The Doppler feature
RDPH in [14] was extracted based on the fact that the Doppler
amplitude spectra (DAS) of target returns have sharp peaks while
the DAS of sea clutter have blunt peaks. In terms of the process
to extract the RDPH in [14], the precondition of the RDPH to
reflect the characteristics of target returns is that the maximal
peak of the DAS of target return plus sea clutter is from target
returns instead of sea clutter. However, when the SCR is very
low, the Doppler peak of target returns is sometimes lower than
that of sea clutter. Fig. 2 illustrates this phenomenon. Fig. 2 plots
two DAS of target returns plus sea cutter in measured radar data.
In the high SCR case as shown in Fig. 2(a), the Doppler peak of
the target returns rides on the DAS of sea clutter and is higher
than the maximum value of the DAS of sea clutter. Thus, the DPH
reflects the sharpness of the Doppler peak of target returns. In
the low SCR case as shown in Fig. 2(b), the Doppler peak locates
outside the main clutter region of sea clutter and is lower than
the maximum value of the DAS of sea clutter. In this case, the
DPH reflects the sharpness of the Doppler peak of sea clutter
instead of target returns. Therefore, the local Doppler feature
RDPH sometimes fails to distinguish the two-class returns in
the case of very low SCR.

We quantitatively examine the SCR-dependency of the de-
tection abilities of individual features using measured radar
datasets. Here, the 20 datasets at the four polarizations from the
IPIX radar database are available. The average SCRs of the radar
returns of the target under test are plotted in Fig. 3(a). To measure
the detection ability of each feature on individual datasets, a
detector using the feature as the test statistic is constructed

sts sts

clc+sts

cle
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Fig.3. Relation between detection performance of features and average SCR:

(a) Average SCRs of the radar returns of the target under test, (b) correlation
coefficients of the seven features between the average SCR and the detection
probability.

as follows:

>

§&i =0 (2,21, .. -

.zp) _ T(Pr). €))
The decision threshold T at the false alarm rate P (0.001 in
experiments) is obtained by the Monte-Carlo tests on sea clutter
data of each dataset. The detection probability of the test target
on the test set S; is computed by
#{gzzéi(za Zi,...

>
,Zp) < T(Pp),z S St}

#{S¢}

where #{A} is the number of elements in the finite set A.
For some features, the alternative hypothesis holds as the “>"
in (9) and (10) is satisfied, and the situation is converse for
the RVE and NR. For each dataset, the detection ability of a
feature at the average SCR(k) in decibels is measured by the
detection probability P (k). In this way, the SCR-dependency
of the detection ability of the feature can be assessed by the
correlation coefficient of the average SCR and the detection
probability, i.e.,

Py (10)

O, (SCR(k) — SCR) (Pu(k) — Py)
\/Z (SCR(K) — SCR)’ 3, (Pa(k) — Pa)*
(1D
L 1 80 1 80
SCR = 80;1503 = %;Pd(k)

Fig. 3(b) plots the correlation coefficients of the seven fea-
tures. It can be seen that all the correlation coefficients are
positive, meaning that the detection ability of all seven features
improves with the increase of the average SCR. However, the
ADHE, RAA, and RVE have correlation coefficients over 0.75,
and their detection abilities are sensitive to SCR, thus are difficult
to find target returns of very low SCR. The NR and MS features
have small correlation coefficients under 0.45, and thus their
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detection abilities are insensitive to SCR, owing to the clutter
suppression in feature extraction. The RDPH and RI features,
respectively, have moderate correlation coefficients of 0.51 and
0.66. Through the analysis of Fig. 2, the RDPH’s detection
ability is highly related to the local SCR rather than the average
SCR. In conclusion, the ADHE, RAA, RDPH, and RVE features
do not have enough ability to detect small targets with very low
SCRs and high radial velocities. It is necessary to construct new
features of low computational complexities instead of the TF
features of high computational complexities.

IV. FAST DUAL TRIFEATURE-BASED DETECTION METHOD

The traditional dual-channel adaptive detection scheme is
widely used in practical radar systems [31] (Chapter 3, Section
III-F), where the zero-velocity channel is used to find stationary
and low-velocity targets by noncoherent integration, and the
moving target detection channel via a Doppler filter bank is
used to find moving targets by coherent integration and clutter
suppression. The proposed method is a generalization of the dual
scheme in feature-based detection where sea clutter and target
returns are difficult to be parametrically modeled.

A. New Features From Median Normalized Doppler Spectra

In [35], the normalized DPS (NDPS) was proposed. The
NDPS of the CUT is constructed by the DPS of the CUT
time series subtracting the mean function and divided by the
standard deviation function of the reference cell time series to
adapt spatial-temporally varying characteristics of sea clutter.
Similarly, in [15], the normalized time-frequency distribution
(NTFD) was proposed. The NTFD of the CUT is constructed by
the TFD of the CUT time series subtracting the mean function
and divided by the standard deviation function of the reference
cell time series. From the two detectors in [15] and [35], it is
known that the normalization process can suppress sea clutter
well. However, the mean normalization in [15] and [35] is not
robust to outliers in reference cells. Here, the mean normaliza-
tion is replaced by the median normalization to improve the
robustness to outliers because the median, as an order statistic,
is robust for a small number of outliers [36].

When small targets float on the sea surface and have inter-
actions with sea waves, their radial velocities vary within a
narrow range in a short time. The energy of returns with targets
concentrates on a small number of Doppler bins. Whereas the
energy of sea clutter spreads over a wide range of Doppler
frequency, e.g., 100 to 150 Hz in terms of the IPIX database
[14], [29]. For studying the differences between returns with
targets and sea clutter in the Doppler domain, the DAS in the
CUT and reference cells are computed as follows:

1
— -2 T,
2 n) exp(—=2x fqnT}.)|, “or, S < fa< 5T
N 1
—f Z n) exp(=2mfanTy) |\ < fa < o

12)
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Fig. 4. Comparisons of two cases: (a) DAS of sea clutter, (b) MNDAS of sea
clutter, (c) DAS of returns with targets, and (d) MNDAS of returns with targets.

where f,; is Doppler frequency, T is pulse repetition period of
the radar. When the received radar returns contain targets, the
DAS has a sharp peak; otherwise, the DAS has an obtuse peak
[14]. However, in the case of low SCR, the Doppler peak of sea
clutter is higher than that of returns with targets, and the target
detection capability of the DAS will be degraded, such as the
example in Fig. 2(b). To solve this problem and make detectors
insensitive to SCR, we develop a normalization method based
on the median and deviation median of the DAS for subsequent
detection.

First, since the statistics of sea clutter are time- and space-
varying, according to (1), the median and deviation median of
the sea clutter DAS can be estimated from the sea clutter of P
reference cells by the following (13) and (14), respectively,

Zc(fd) = median{Z,(fa),p =1,2,..., P}, (13)
6e(fa) = median{|Z,(fa) — Z.(fa)l,p = 1,2,..., P} (14)

where the median{-} is the median operation. When outliers
exist and are included in samples, the median is more stable
than the mean [36]. Second, the MNDAS in the CUT can be
expressed as follows:

max{Z(f4) — Zc(fa),0}
&c(fd) '

According to the normalization method from (15), Fig. 4
shows the normalization of sea clutter and returns with targets,
where (a) and (c), respectively, plot the DAS of sea clutter and
returns with targets, (b) and (d), respectively, plot the MNDAS
of sea clutter and returns with targets. It can be found that the
MNDAS of sea clutter lose the peak and decrease the clutter
level in contrast with the DAS of sea clutter. The normaliza-
tion method can effectively suppress sea clutter in the Doppler
domain. Unlike the MNDAS of sea clutter, the MNDAS of
returns with targets remain and enhance the sharp peak about
the target while simultaneously suppressing sea clutter around
the zero frequency. This merit from the MNDAS will benefit the
proposed detector.

Y(fa) =

15)
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B. Extractions of Three New Features Based on MNDAS

The existing features in the previous trifeature-based detector
[14] are mainly used to detect low-velocity and floating small
targets on the sea surface, like floating spherical blocks and
floating small boats of the IPIX databases [29]. The previous
trifeature-based detector based on the DAS does not have sea
clutter suppression, and its detection capability heavily depends
on SCR. Unlike the DAS, the proposed MNDAS suppress sea
clutter and are more suitable for detecting targets under low
SCR.

By observing Fig. 4(b) and (d), the MNDAS power of returns
with targets concentrates on several Doppler bins and has a
sharp peak, whereas the MNDAS power of sea clutter is widely
distributed in the Doppler bins. Returns with targets have larger
peak values than sea clutter. So, the first extracted feature is the
PH of the MNDAS and can be expressed as follows:

1
QTT}. (16)

When the received radar returns are pure sea clutter, the
feature PH takes small values; otherwise, the feature PH takes
large values.

The position of the PH in the MNDAS is computed as follows:

1
T } . an

In addition, entropy can describe the confusion degree of
systems or data [14]. Similarly, the MNDAS entropy can be used
to determine whether the target exists. So, the third extracted
feature, the VE of the MNDAS, is used to distinguish between
sea clutter and returns with targets, and can be expressed as
follows:

PH(z) = max {Y(fd), —% <fa<

max 1
[ (z) = argffllcix{y(fd), o7, < fa<

VE(x) = = 3 Y (fa)log Y (fa),

7
Sy Vi
Y(fa) = s v

(18)

The energy of sea clutter spreads over a wide range of Doppler
frequency, and the MNDAS of sea clutter are more chaotic, so
the sea clutter has the larger VE than the returns with targets.

Then, the third extracted feature, the LA, can be expressed as
follows:

LA(z) = > Y(fa),
fa€A
A = [f7(z) = 01, f7'(2) + 02]

19)

where A represents the maximal nonzero interval in which the
fa™*(z) is located. If received radar returns contain targets, the
values of the feature LA are large; otherwise, the values are
small.

To suppress sea clutter and make the detection performance
of the detector insensitive to SCR, the MNDAS are suggested,
and the three new features, PH, VE, and LA, are extracted from
the MNDAS. Similar to the experiments in Fig. 3, the correlation
coefficients between average SCRs and detection probabilities
of the PH, VE, and LA are 0.521, 0.450, and 0.577, respectively.
The detection capability of the feature RDPH is dependent on
local SCR rather than average SCR. So, except the RDPH, the
other nine features (three new Doppler features and six existing
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Fig. 5. Histogram comparisons of the three features between sea clutter and
returns with targets on the three datasets from the IPIX database, where the
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features) can be divided into two categories, the ADHE, RAA,
and RVE with correlation coefficients larger than 0.75 versus the
RI, MS, NR, PH, VE, LA with correlation coefficients smaller
than 0.67. It can be found that the sea clutter suppression does
reduce performance dependence on SCR. In addition, based on
the IPIX database [29], Fig. 5 compares of the three new features
values between sea clutter and returns with targets, respectively.
The overlapping extents of feature samples of sea clutter and
returns with targets in histograms are different for the three
datasets. The abilities of the three features to distinguish sea
clutter and target returns are very different for different datasets
and exhibit strong complementary. Therefore, their joint usage
can improve detection performance and robustness.

C. Proposed Fast Feature-Based Detector

We extract the three new features from sea clutter, the PH,
VE, and LA, to construct the training set Sy in the 3-D feature
space. The rth feature sample of sea clutter is denoted as z,, =
(21,7 22,7 23,r] in Sp, r = 12,...,R. The set Sy with R feature
samples is expressed as follows:

Al 21,1, 72,15, 23,1
Zo 21,25 22,2, 23,2

Su=1|.]|= (20)
ZR Z1,Rs %2,R» #3,R

From the clutter-only training set Sy in 3-D feature space,
the decision region 2y with a given false alarm rate Py can be
determined by the convexhull learning algorithm [14]. Fig. 6
demonstrates the convexhull learning process. Fig. 6(a) shows
the two-class samples in the 3-D feature space. Fig. 6(b) plots
the original convexhull of Sy. Fig. 6(c) shows the optimal
convexhull (decision region) with the desired false alarm rate,
which is obtained by iteratively removing outliers from Sy; and
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the removed samples (false alarm points) are labeled by red
stars. In the detection stage, it only needs to determine whether
the test feature vector falls into the optimal convexhull. In this
way, a new trifeature-based detector is built using the three
new Doppler features from the MNDAS. More details on the
convexhull learning algorithm refer to [14].

Owing to the clutter suppression ability of the MNDAS, the
new trifeature-based detector can effectively detect small targets
with very low SCRs and high velocity. When small targets
have low velocity and high SCR, the detection capability of
the new trifeature-based detector is not as good as the previous
trifeature-based detector [14] because the previous trifeature-
based detector describes the differences between two-class re-
turns from both the time and Doppler domains. In contrast,
the new trifeature-based detector only describes the differences
from the Doppler domain. Thus, a dual trifeature-based detector
strategy uses the low- and high-velocity trifeature-based detec-
tors to detect the two classes of small targets, respectively. The
previous trifeature-based detector [ 14] is used at the low-velocity
tri-feature-based detector to find the first class of small targets,
and the new trifeature-based detector is used at the high-velocity
trifeature-based detector to detect the second class of small
targets. The whole flowchart of the dual trifeature-based detector
is shown in Fig. 7, where the training process uses the blue
blocks, and the detection process uses the pink blocks.

In the training process, the same received sea clutter data are
used as inputs for the low- and high-velocity trifeature-based
detectors. Different feature extractors of the two trifeature-based
detectors are used to extract individual features. As a result,
Sy at the high-velocity trifeature-based detector and Sy, at the
low-velocity trifeature-based detector are obtained. The binary
detection results of the two trifeature-based detectors are fused
in the simple “or” rule. Or rather, the cell under test is declared to
target presence if there is one trifeature-based detector to declare
so. Due to simple “or” fusion, it is easy to control the false alarm
rate of the final detection result. Let the desired false alarm rate
be Py. Then, the false alarm rate at each trifeature-based detector
is set up at 0.5Py, which assures that the final false alarm rate is
not more than Py.

Even for low-velocity small targets, the fusion of the two
trifeature-based detectors can improve detection performance,
owing to the complementary of the two detectors. The two
detectors are affected by the average SCR and Doppler sepa-
ration of sea clutter and target returns. Fig. 8 shows the Doppler
bandwidths and Doppler offsets of sea clutter and Doppler
separations between sea clutter and target returns [37] on the
eighty IPIX radar datasets, which illustrates the diversity of
the Doppler offset and bandwidth of sea clutter. To analyze the
influences of the ASCR and Doppler separation on each detector,
Table II lists the correlation coefficients between the detection
probabilities of each detector with the ASCR and Doppler
separation. It can be seen that the major factor affecting the
trifeature-based detector using the DAS is ASCR while the major
factor affecting the trifeature-based detector using the MNDAS
is Doppler separation. Thus, the two trifeature-based detectors
are complementary in detection ability, which is the reason for
the dual trifeature-based detection method to be developed and
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TABLE II
CORRELATION COEFFICIENTS BETWEEN DETECTION PROBABILITY AND ASCR

AND DOPPLER SEPARATION ON THE EIGHT IPIX DATASETS FOR EACH
TRIFEATURE-BASED DETECTOR

Detectors ASCR Dopp1‘e r
separation
Low-velocity trifeature-based detector 0.7273 0.5867
High-velocity trifeature-based detector 0.5634 0.7343

for it to attain better detection results in the IPIX datasets than
the trifeature-based detector using the DAS.

V. EXPERIMENTAL RESULTS AND ANALYSIS

To verify that different detectors or features are suitable for
different types of returns with targets, the experiments are based
on the four types of small targets, including the floating spherical
block on the IPIX database in 1993, the floating small boats on
the IPIX database in 1998, the motorized small boats on the
CSIR database, and the UAV. On the ten IPIX radar datasets in
1993 [29], each dataset consists of complex returns time series
of length 2!7 (about 131 s) at 14 adjacent range cells. On the ten
IPIX radar datasets in 1998, each dataset consists of complex
returns of length 60000 (one minute) at about 28 adjacent range
cells. Ten CSIR radar datasets [30] have different data sizes.
Taking the dataset “TFA17-005” as an example, it consists of

(a) Feature vectors of sea clutter and returns with targets in the feature space, (b) the original convexhull of clutter, (c) the optimal convexhull of clutter.

complex returns time series of length 128160 (about 25 s) at
96 adjacent range cells. The UAV dataset consists of complex
returns time series of length 1 200 000 (about 300 s) at 300
adjacent range cells.

A. Experiments on the IPIX and CSIR Radar Databases

This part mainly reports the experimental results on the IPIX
and CSIR databases [29], [30]. Table III lists the average de-
tection probabilities of the detectors on the IPIX database [29],
where the false alarm rate is 0.001. For convenience in com-
parisons, the detectors are arranged by their average detection
probabilities from low to high.

The detectors in Table III are divided into two groups
according to the average detection probabilities. The first group
includes the seven detectors with orange color in Table III that
behave worse than the proposed detector, and the second group
includes three detectors that behave better than the proposed
detector. The performance of a feature-based detector is closely
relevant to the underlying features and decision manners.
Table IV lists the features and decision manners used in each
detector. It is known that both the computation of features and
the efficiency of decision determine the detection efficiency.
The computational complexities of the NHE, ADHE, and RAA
are O(N), where N is the number of integrated pulses in the one
decision [10], [12], [14]. The computational complexities of
the RDPH and RVE are O(NlogaN) by using the Fast Fourier
transform (FFT) [14]. The features, RI, MS, and NR, require
high computational complexities, and extracting the smoothed
pseudo-Wigner—Ville distributions whose computational com-
plexity is O(NKlogsK), where K is the time window length [15].
Differently, the computational complexities of the proposed
three Doppler features do not exceed O(NlogaN), which is the
reason for the proposed detector realizes the fast detection.

To quantitatively compare the detection efficiency, the CPU
times of the nine detectors for the one decision on a personal
computer are listed in Table V. The proposed detector attains
the second shortest computational time, and it requires the
double time of the trifeature-based detector and much shorter
time than the other detectors. Moreover, it attains comparable
performance with the TF-trifeature-based detector. A detector
needs to consider both computational efficiency and detection
performance. A synthetic index is introduced to assess a set of
detectors. Let (t;, P;),i = 1,2,..., I be the CPU time for the
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one decision and the average detection probability of the ith
detector. Then, its synthetic index for comparison is given by

max {1}

tz’

max {1— P}
1+

Bi)

= 10g10 1—

P;

(2D
where the logarithm in the first term is used to compress the
too wide dynamic range. In terms of (21), a larger synthetic
index means a better detector in the synthetic ability. Using
the CPU times and the average detection probabilities of the
nine detectors on the twenty datasets in the IPIX database when
the false alarm rate is 10~ and the integrated time is 0.512 s
in Table III, the synthetic indexes of the nine detectors are
calculated and listed in Table V. It can be seen that the proposed
detector attains the largest synthetic index, owing to the fact that
it obtains significant improvement in detection performance at
the cost of small increase at CPU time for the one decision.

It is known that the detection performance is affected by
target characteristics, including RCS and movement states. On
the IPIX database, the test targets are floating small targets,
which are often difficult to be distinguished from sea clutter in
the Doppler domain. Differently, in the CSIR database, the test
targets are moving small boats [30]. For moving small boats,
their radar returns are easily distinguished from sea clutter in
the Doppler domain, thus Doppler features are more effective

Doppler bandwidths, Doppler offsets, and separations on the 80 IPIX radar datasets.

in detecting moving targets. To verify the performance of the
proposed detector to the moving small targets, we use the ten
datasets on the CSIR database to test the feature-based detectors.
The average detection probabilities of the ten detectors are listed
in Table VI. Among the ten detectors, the proposed detector is the
third best in performance, and superior to the TF-trifeature-based
detector.

Besides, the detection abilities at high sea states and low SCR
cases are concerned in many applications. The ten CSIR datasets
in Table VI are of the Douglas sea states not more than four. To
examine the performance of detectors on high sea states, the
CSIR datasets (TFC15-007 and TFC15-011) at five sea states
are used, and their test targets are wave-rider rigid inflatable
boats of the length of 5.7 m. The specific details of the datasets
are listed in Table VII. The detection probabilities of the five
detectors are listed in Table VIII, where the observation time
for the one decision is 0.1 s and the false alarm rate is 0.001.
At high sea states, strong sea clutter and abrupt RCS fluctuation
of test targets often incur degradation in detection performance.
The extent of degradation is dependent on detectors. It can be
seen that the three out of the five detectors have quite different
detection probabilities on the two datasets, and their detection
abilities are not stable. The C-GLRT-LTD has comparable detec-
tion probabilities on the two datasets but is slightly poorer than
the proposed detector. The proposed detector attains stable and
best detection performance, owing to the dual trifeature-based
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TABLE III
AVERAGE DETECTION PROBABILITIES OF THE ELEVEN DETECTORS ON THE IPIX DATABASE
Data for test Detectors Obse.rvatlon HH HV VH \'A% Average
time Py
0.512's 0.526 | 0.690 | 0.744 | 0.530 0.623
SVM-based detector [16]
1.024 s 0.517 | 0.732 | 0.757 | 0.505 0.628
0.512's 0.524 | 0.741 | 0.768 | 0.510 0.636
ADHE-based detector [12]
1.024 s 0.614 | 0.822 | 0.831 | 0.590 0.714
0.512's 0.577 | 0.736 | 0.776 | 0.569 0.665
Trifeature-based detector [14]
1.024 s 0.622 | 0.797 | 0.813 | 0.598 0.708
0.512's 0.633 | 0.786 | 0.801 | 0.626 0.712
Phase-feature-based detector [17]
1.024 s 0.754 | 0.865 | 0.860 | 0.732 0.803
0.512's 0.658 | 0.839 | 0.848 | 0.668 0.754
The twenty PCA-based detector [24]
datasets of the 1.024 s 0.748 | 0.874 | 0.876 | 0.735 0.808
IPIX radar 0512 0.705 | 0.817 | 0.821 | 0.677 | 0.755
database C-GLRT-LTD [37]
1.024 s 0.770 | 0.857 | 0.856 | 0.739 0.806
0.512's 0.712 | 0.836 | 0.848 | 0.696 0.773
Proposed detector
1.024 s 0.781 | 0.889 | 0.887 | 0.769 0.832
0.512s 0.747 | 0.826 | 0.842 | 0.706 0.780
TF-trifeature-based detector [15]
1.024 s 0.821 | 0.882 | 0.877 | 0.789 0.842
Feature compression-based detector 0.512's 0.807 | 0.880 | 0.888 0.788 0.841
[26] 1.024 s 0.841 | 0920 | 0.914 | 0.839 | 0.879
0.512's 0.819 | 0.902 | 0.907 | 0.806 0.858
KNN-based detector [27]
1.024 s 0.884 | 0.936 | 0.931 | 0.868 0.905
#17(HH, HV) Graph-based detector [18] - - - - 0.643
#54(HH, HV, 0.512s
VH,VV) Proposed detector - - - - 0.839

The bold entities highlight the detection probabilities of the proposed method.

TABLE IV
FEATURE SPACE CONSTRUCTION AND DECISION MANNER OF THE DETECTORS

Detectors Feature space construction Decision manner

SVM-based detector [16] NHE-RDPH-TIE SVM decision
ADHE-based detector [12] ADHE

PCA-based detector [24] RAA-RDPH-RVE-RI-MS-NR .

— Threshold decision
Graph-based detector [18] Graph connectivity
C-GLRT-LTD [37] C-GLRT-LTD
KNN-based detector [27] NHE-RAA-RDPH-RVE-RI-MS-NR-GLRTLTD A“"maldyez‘i‘s?otgr“h"ld

RAA-RDPH-RVE
NCZP-MPDF-DT

Trifeature-based detector [14]
Phase-feature-based detector [17]

TF-trifeature-based detector [15] RI-MS-NR Convexhull decision
Feature compression-based detector [26] NHE-RAA-RDPH-RVE-RI-MS-NR
PH-LA-VE

Proposed detector

ADHE-RDPH-RVE

detector strategy and clutter suppression in the extraction of
the Doppler features. Fig. 9 demonstrates the detection results
of the five detectors on the dataset of TFC15-011. Fig. 9(a)
shows the power map where the target trace is labeled by the
red rectangle. At high sea states, the test target is sometimes
shadowed by sea waves. An invisible target trace in the power

map means low SCR, and the Doppler features without clutter
suppression and amplitude/power features in the trifeature-based
detector fail to find the target, which is probably the reason for its
very low detection probability. Fig. 9(b)—(f) show the detection
results of the five detectors, where the sporadic points in the
subplots are false alarm points. Each detection result has 18 false
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TABLE V
CPU TIMES OF THE ONE DECISION AND SYNTHETIC INDEXES OF THE NINE
DETECTORS
CPU time of Synthetic Index
Detectors .. )
one decision J40)
Trifeature-based detector [14] 0.1066 ms 3.8203
Proposed detector 0.2166 ms 5.1269
Phase-feature-based detector [17] 12.3766 ms 1.7666
SVM-based detector [16] 23.8400 ms 1.0825
TF-trifeature-based detector [15] 89.0666 ms 1.0259
Feature-compression-based
detector [26] 92.1236 ms 1.3936
PCA-based detector [24] 113.7301 ms 0.7997
C-GLRT-LTD [37] 146.0080 ms 0.6907
KNN-based detector [27] 264.4203 ms 0.7992
TABLE VI
AVERAGE DETECTION PROBABILITIES OF THE TEN DETECTORS ON THE CSIR
DATABASE
False .
Detectors alarm Obse_rvatlon Average
time P,
rate
1073 0.1s 0.305
_based detector [12
ADHE-based detector [12] 0= 02s 0.167
Phase-feature-based detector 1073 0.1s 0.605
[17] 10~ 02s 0.479
X 1073 0.1s 0.693
SVM-based detector [16] 0= 02s 0.608
. 1073 0.1s 0.755
Trifeature-based detector [14] 0= 025 0.687
. 1073 0.1s 0.758
C-GLRT-LTD [37] 0= 02 0566
o . 1073 0.1s 0.878
PCA-based detector [24] 0= 02s 0.765
TF-trifeature-based detector 10-3 0.1s 0.897
[15] 10~* 0.2s 0.855
103 0.1s 0.920
Proposed detector 10— 02s 0.870
Feature-compression-based 1073 0.1s 0.924
detector [26] 10~ 0.2s 0.899
10-3 0.1s 0.961
KNN-based detector [27] 0= 025 0.938
TABLE VII

PARAMETERS OF THE TWO CSIR DATASETS AT HIGH SEA STATE

File Name TFC15-007 TFC15-011
Carrier frequency 9GHz (X-band) 9GHz (X-band)
Polarization \A% \AY
Range resolution 15m 15m
PRF 5000 Hz 5000 Hz
Significant wave height 223 m 3.16 m
Sea state 5 5
Target range cells 19h-21h 18020
TABLE VIII
DETECTION PROBABILITIES OF FIVE FEATURE-BASED DETECTORS
Dataset TFC15-007 | TFC15-011
Trifeature-based detector [14] 0.511 0.154
TF-trifeature-based detector [15] 0.354 0.683
C-GLRT-LTD [37] 0.579 0.559
PCA-based detector [24] 0.163 0.564
Proposed detector 0.603 0.663
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Fig. 9. Detection results of the five detectors on the dataset of TFC15-011,

(a) power map, (b) trifeature-based detector, (c) TF-trifeature-based detector,
(d) C-GLRT-LTD, (e) PCA-based detector, (f) proposed detector.

alarm points which appear at different locations for individual
detectors. Therefore, the proposed detector attains stable and
good detection performance at high sea states.

B. Experimental Result on the UAV Dataset

In practical applications, maritime high-resolution radars
need to detect both high-velocity low-altitude small targets and
low-velocity/floating sea-surface small targets. To prove the
ability of the proposed detector in this situation, we simulate
a low-velocity small target and a high-velocity small target to
add to the UAV dataset. In this way, the UAV dataset contains
three different targets, a UAV and two simulated targets with
adjustable SCR and radial velocity. The low-velocity simulated
target has a variable SCR from —20to 10 dB and a variable radial
velocity from -2 to 2 m/s. It locates on the left-bottom corner
of the power map in Fig. 10, and its trace in the power map can
be observed from the zoomed subfigure. The SCR and radial
velocity curves with time are plotted in the two subfigures on
the left-hand side of the power map. The high-velocity simulated
target has a variable SCR from —20to 10 dB and a variable radial
velocity from —10 to —7 m/s. It locates on the left-top corner of
the power map in Fig. 10, and its trace in the power map can
be observed from the zoomed subfigure. The SCR and radial
velocity curves with time are plotted in the two subfigures on
the right-hand side of the power map. The UAV under test in the
dataset is a high-velocity small target of low SCR, its trace fails
to be observed on the power map. The low-velocity simulated
target appears at the Oth s and disappears at the 150th s. It moves
toward the radar at 5.5 km first and then moves away from the
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Power map of the UAV dataset with the UAV under test and two simulated low- and high-velocity targets and the SCR and radial velocity changes of

43¢ 4.3 A
\ {
/
\\ /
\ /
— . \ ;
£ £ ' ,
&4.9/ 24.9 \ /
£ Pdl = 0.0331 = Pdl = 09213 \ /
4 Pd2 = 0.2680 4 Pd2 = 0.6128 \
Pd3 = 0.4492 Pd3 = 0.9597 \
Pf=0.001 Pf=0.001 \
55" . . . - - 55
50 100 150 200 250 300 50 100 150 200 250 300
Time (s) Time (s)
(a) (b)
43 T 7 437 437 Y
\ / \ /
\ / /
£ ‘ 3 g
249} \ 249} 249} \
£ Pdl =0.9376 \ € Pdl =0.0303 € Pd1 =0.9100 \
< Pd2 = 0.6568 .4 Pd2 = 0.2561 & Pd2 = 0.4894 \
Pd3 = 0.9682 Pd3 = 0.4237 Pd3 =0.9597 \
Pf=10.001 Pf = 0.0005 Pf = 0.0005 \
55 55 55" . . . " "
50 100 150 200 250 300 50 100 150 200 250 300 : 50 100 150 200 250 300
Time (s) Time (s) Time (s)

()

Fig. 11.

(d)

(e)

Detection result comparison of the three detectors on the UAV dataset: (a) The previous trifeature-based detector [ 14], (b) the TF-trifeature-based detector

[15], (c) the proposed dual trifeature-based detector, (d) the low-velocity trifeature-based detector, and (e) the high-velocity trifeature-based detector.

radar at 5.4 km. The high-velocity simulated target appears at
the Oth s and disappears at the 60th s.

The radar returns in the first 38 s, which is labeled as “Training
region” in a rectangle box in Fig. 1(c), are used to train the
convexhull decision regions of detectors at a given false alarm
rate. The radar returns after the 38th s are used to detect and
compute the detection probabilities. The false alarm rates of all
three detectors are set up at 0.001, and the observation time
of the one decision is 0.128 s. The detection results of the
trifeature-based detector, the TF-trifeature-based detector, and
the proposed detector are illustrated in Fig. 11, where “Pd1”
is the detection probability of the UAV under test, “Pd2” is
that of the low-velocity simulated target, “Pd3” is that of the
high-velocity simulated target, and “Pf” is the false alarm rate
in each subfigure. The detection results of the three detectors are
all broken in the top of the “V”-shaped trace of the UAV, which
is due to the radial velocity close to zero when the UAV turned
back on the farthest point.

Because the RAA is invalid when SCR is very low and the
RDPH is invalid when the Doppler peak of sea clutter is higher
than that of target returns, the trifeature-based detector almost

fails to find the test UAV trace and part of the traces of the
two simulated targets when their SCRs are low. When the two
simulated targets are about to move out of the radar beam, their
SCRs are high, and thus their traces can be detected. Thus, due
to the inherent drawback of the features, the trifeature-based
detector can work well only when SCR is enough regardless
of target radial velocity. The extraction of the three TF features
uses the clutter suppression in the time-Doppler domain by the
normalized TFD [15], and thus it can effectively find both the
UAV under test and the two simulated targets. However, the high
computational complexities of the three TF features are conflic-
tive with the fast detection sometimes. In the proposed detector,
the dual trifeature-based detector fusion result, the results at
the low-velocity trifeature-based detector and the high-velocity
trifeature-based detector are demonstrated in Fig. 11(c)—(e).
The low-velocity trifeature-based detector can effectively find
the target trace as the SCR is high, and the high-velocity
trifeature-based detector can effectively find high-velocity tar-
gets even though their SCRs are low, which is owing to
the clutter suppression in the Doppler domain before the
three new Doppler features are extracted in the high-velocity
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trifeature-based detector. Eventually, the fusion of the two
trifeature-based detectors can obtain significantly improved
results.

VI. CONCLUSION

This article proposed a feature-based detector to realize the
fast detection of low-velocity/floating small targets and low-
altitude high-velocity small targets in the sea clutter back-
ground. In existing detectors, effective detection of the two
classes of targets is often conflictive with fast detection. The
proposed dual trifeature-based detector scheme fuses the re-
sult of the low-velocity trifeature-based detector and the high-
velocity trifeature-based detector. The low-velocity trifeature-
based detector uses an improved version of the trifeature-based
detector to fast find low-velocity/floating small targets with
higher SCRs. The high-velocity trifeature-based detector uses
a new trifeature-based detector to fast find high-velocity small
targets with very low SCR. The three Doppler features are
extracted from the proposed MNDAS that contains adaptive
clutter suppression, and thus they have the ability to find
high-velocity small targets with very low SCR whose Doppler
offsets fall outside the main clutter region of sea clutter. The
effectiveness of the proposed dual trifeature-based detector is
verified by the radar databases for small target detection in sea
clutter.
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