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Abstract—The accurate and fast assessment of damaged build-
ings following a disaster is critical for planning rescue and recon-
struction efforts. The damage assessment by the traditional meth-
ods is time-consuming and with limited performance. In this article,
we propose an end-to-end deep-learning network named building
damage detection network-plus (BDD-Net+). The BDD-Net+ is
based on a combination of convolution layers and transformer
blocks. The proposed framework takes the advantage of the mul-
tiscale residual convolution blocks and self-attention layers. The
proposed framework consists of four main steps: data preparation,
model training, damage map generation and evaluation, and the
use of an explainable artificial intelligence (XAI) framework for
understanding and interpretation of the operation model. The
experimental results include two representative real-world bench-
mark datasets (i.e., the Haiti earthquake and the Bata explosion).
The obtained results illustrate that BDD-Net+ achieves excel-
lent efficacy in comparison with other state-of-the-art methods.
Furthermore, the visualization of the results by XAI shows that
BDD-Net+ provides more interpretable and explainable results
for damage detection than the other studied methods.

Index Terms—Damage detection, deep learning, earthquake,
explainable artificial intelligence (XAI), transformer.

I. INTRODUCTION

EARTHQUAKES are among the most important and
destructive natural disasters. An earthquake-induced col-

lapse of buildings causes many fatalities [1]. Therefore, rapid
and accurate mapping of damaged buildings after an earthquake
is crucial for rescue operations, as it improves the response times
of emergency response missions [2]. Satellite-based remote
sensing is the most important data source due to its character-
istics, such as spatial coverage and spatial resolution, low cost,
and availability (both for postevent acquisitions and pre-event
archives for change detection) [3]. Remote sensing technologies
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are, hence, the primary tool in a wide range of applications in
the monitoring of natural hazards, such as flood mapping [4],
burned area detection [5], landslide mapping [6], and hurricane
monitoring [7].

Building damage detection (BDD) is a vitally important topic
of research because of its societal importance concerning po-
tential casualties following a disaster. To this end, many BDD
frameworks based on remote sensing images and unmanned
aerial vehicle datasets have been proposed in the literature. These
methods can be categorized into four main groups, depending on
the input data source they utilize, including light detection and
ranging (Lidar) data, synthetic aperture radar (SAR) images,
3) very high resolution (VHR) optical imagery, and fusion of
multiple modalities.

Lidar data provide the height information of ground objects.
Lidar data are not impacted by cloud coverage or illumination
conditions. For example, Axel and van Aardt [8] proposed an
unsupervised building damage assessment based on the seg-
mentation of the point cloud Lidar dataset. The local surface
features are first extracted, then the damaged building is detected
based on the estimated rooftop inclination. Additionally, Aixia
et al. [9] utilized surface normal algorithms to evaluate the
level of building damage based on postearthquake Lidar data.
The angle between the surface normal and zenith is utilized to
map the damaged building parts. Furthermore, Janalipour and
Mohammadzadeh [10] designed a building damage assessment
framework based on the postearthquake Lidar dataset. They
utilized three texture feature extraction manners, including Har-
alick’s texture feature extraction, Gabor filter, and Laws’ mask.
Then, the building damage extents were generated using fuzzy
inference systems based on the extracted textural features.

SAR images, with phase and amplitude information, may
also be used for BDD. The damage mapping based on the SAR
data can be applied in two main parts: First, damage detection
based on amplitude or intensity. The main idea is that damaged
buildings have irregular shapes, which can be captured using
the intensity of the SAR imagery [11]. For instance, Chen
et al. [12] developed a statistical texture feature G0-para to
measure the homogeneity of buildings after a disaster. At first,
the statistical texture features of G0-para were estimated by the
G0 distribution of SAR images. Then, the ability of G0-para to
distinguish between different polarization modes was compared
based on the analysis by the receiver operating characteristic
curve. Finally, the G0-para and the existing texture features were
compared. Second, damage can also be mapped based on the
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phase information. To this end, the coherence map based on
pre/postearthquake is generated and the normalized difference
(ND) of the interferometric coherence map is created. Finally,
the damage map is obtained based on the thresholding of the
calculated ND map [13].

The BDD is most commonly conducted by using optical VHR
remote sensing imagery. Unlike Lidar and SAR data, optical
VHR datasets are simple to interpret and process. For instance,
Wu et al. [14] proposed a damage mapping method based on
the U-Net algorithm and attention mechanism. They utilized
pre/postdisaster optical VHR remote sensing imagery for BDD.
Abdi and Jabari [15] developed a fusion structure to map
building damages based on combing off-nadir and orthophoto
VHR datasets. The fusion structure of this framework is based
on deep transfer learning. Qing et al. [16] designed a change
detection-based BDD framework based on CNN and superpixel.
This framework is applied in three steps:

1) building extraction based on extra feature enhancement
bands;

2) damage detection based on change detection method with
pre-event superpixel constraint strategy;

3) a quantitative assessment of the damage using a damage
index.

Zheng et al. [17] designed an object-based semantic change
detection framework for BDD. For end-to-end building damage
assessment, the deep object localization network and deep
damage classification network were also merged into one
semantic change detection network. Ge et al. [18] presented an
incremental learning framework for classifying collapsed build-
ings. For this purpose, they used end-to-end gradient boosting
networks with an assemble-decision strategy as an incremental
learning framework. Furthermore, using cycle-consistent
generative adversarial networks, the pre-event disaster dataset
is transformed into the same style as a postdisaster dataset.
Chen et al. [19] developed a transformer-based framework for
BDD using bitemporal datasets. The nonlocal deep features
are extracted from bitemporal images by transformer encode,
and then are integrated by fuse module. Finally, multilevel
features are aggregated for final prediction by a lightweight
dual-task decoder. Shen et al. [20] proposed a two-stage CNN
for BDD. They utilized the U-Net model employed to extract
buildings. Then, the weight of network is shared into next stage
for BDD. In the second stage, a dual-branch multiscale U-Net
is used as a backbone, feeding bitemporal datasets separately.
In order to explore the correlations between bitemporal images,
a cross-directional attention module was proposed.

Multiple modalities of acquisition may also be used jointly
to improve the results of BDD. For example, Li et al. [21]
investigated a damage detection framework based on the fusion
of bitemporal Lidar and optical VHR datasets. This method is
applied in two stages: First, three-dimensional (3-D) building
model reconstruction based on the pre-event dataset, and second,
estimation of the rooftop patch-oriented 3-D for determining
potential damage. Adriano et al. [22] proposed a framework for
rapid damage detection methods based on the fusion of mul-
tisource datasets. They used bitemporal Sentinel-1, Sentinel-2,

and ALOS-2 datasets for damage assessment. In addition, the
open street map (OSM) layer was utilized to determine the built-
up area. An ensemble classifier procedure is used to produce the
building damage map.

The above-mentioned methods provide acceptable results for
BDD but suffer from some limitations.

1) BDD methods focused on change detection using bitem-
poral datasets fail when predisaster data are not available.
Also, the extracted changes may be originated from exter-
nal factors (i.e., registration error, atmospheric conditions,
and noise).

2) Designing a generic data fusion framework for multimodal
approaches appears to be challenging.

3) Most methods are based on the conventional classification
algorithms, while advance deep-learning methods can sig-
nificantly improve BDD results.

Considering these challenges, we propose a new framework.
To this end, we propose an efficient framework for BDD based on
a single postevent remote sensing dataset that results in improved
accuracy and reduced error rates. The main contributions of this
article are as follows.

1) BDD is based on a modified Coat-Net algorithm for the
first time.

2) Proposed framework uses only the postevent optical VHR
dataset without any additional processing.

3) Combining the multiscale convolution layers and separa-
ble convolution layers with a transformer encoder.

4) Utilizing a gradient-weighted class activation mapping
(Grad-CAM) algorithm for the understanding and inter-
pretation of the operating model in the BDD [explainable
artificial intelligence (XAI)].

II. CASE STUDY AND SATELLITE IMAGES

The performances of BDD-Net+ are evaluated with two real
disaster datasets.

A. Haiti Earthquake

An earthquake with a magnitude of 7.0 hit the western part of
Haiti, approximately 25 km south of Port-au-Prince, on January
12, 2010, at 4:53 P.M. Fig. 1 shows the study area for Haiti
Earthquake and the ground truth for it.

In this study area, we separated the training and test areas
(see Fig. 1). The training sample data contain 645 polygons with
302 and 343 polygons as nondamaged and damaged buildings,
respectively. Moreover, the size of sample data in the test area
is 1440 polygons with 943 polygons and nondamaged build-
ings, while the remaining 497 polygons are associated with the
damaged class.

B. Bata Explosion

An explosion occurred at the Nkuantoma gendarmerie armory
and military barracks in Bata, Equatorial Guinea’s economic
center, on the afternoon of March 7, 2021. Fig. 2 shows the
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Fig. 1. Location of study for Haiti Earthquake.

Fig. 2. Location of the second study area in Bata, Equatorial Guinea.

location of the study area for Bata Explosion. This dataset
contains 706 building polygons among which 338 and 368
polygons belong to nondamaged and damaged, respectively.

TABLE I
DATASET DESCRIPTIONS FOR BOTH STUDY AREAS

Furthermore, the model is trained by 282 building polygons,
while it is evaluated by 424 polygons.

C. Datasets

Both datasets were captured by optical VHR sensors (i.e.,
Worldview series sensors). The complete description of these
datasets is presented in Table I. The red (R), green (G), and
blue (B) spectral bands are used for the first dataset, while the
near-infrared is also included in the second dataset.

D. Data Inventory

It is worth noting that the used datasets are benchmark datasets
and have been employed in lots of research [15], [17], [23]. The
ground truth of the Haiti-Earthquake dataset is available on the
article presented in [18] and the website.1 In addition, the ground

1[Online]. Available: https://dataverse.harvard.edu

https://dataverse.harvard.edu
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Fig. 3. General overview of the proposed BDD-Net+.

truth of the Bata-Explosion dataset is available on an open public
website.2

E. Accuracy Assessment

To evaluate the performance of BDD-Net+, we employed the
most popular quality assessment metrics, including the overall
accuracy (OA), Kappa coefficient (KC), F1-score, Recall, Pre-
cision, and Intersection Over Union (IOU). Furthermore, we
analyzed the results of damage detection based on the visual
inspection by comparing them with the ground truth map.

III. METHODOLOGY

A four-step framework is proposed for building damage map-
ping using a single postevent VHR dataset:

1) preprocessing;
2) training of BDD-Net+;
3) prediction by the predictive BDD-Net+ model;
4) model interpretation.
Fig. 3 presents the general overview of the proposed frame-

work for BDD.

A. Preprocessing

The preprocessing step consists of extracting the footprint of
candidates building from the optical VHR dataset and build-
ing the corresponding vector map. There are many ways for
building footprint extraction (e.g., utilizing pretrained building
segmentation models or an OSM. In this study, the footprint
polygons of the buildings were manually delineated. To this end,
the footprint polygons are overlaid on the raster VHR images
and the buildings are extracted by masking the raster dataset.

2[Online]. Available: https://www.unitar.org

B. BDD-Net+

Convolution layers have translation equivariance. This is an
advantage that helps to have a strong inductive bias and critically
improves the model generalization for unseen datasets when a
limited dataset is available for training. A convolution step for
input (x) at position (i) can be written as follows:

yi =
∑

j∈ℒ(i)
w � xi (1)

where yi is the output of the convolution, and ℒ(i) refers to the
local receptive field.

The transformers were originally developed for a sequential
dataset. It is proven that the transformer-based models [i.e.,
vision transformer (ViT)] have higher model capacity than
CNN models [24]. The transformer-based deep-learning model
employs a self-attention layer that has a global receptive field.
One of the most important differences between convolution and
self-attention layers is the size of the receptive field [25]. The
self-attention layers have a global receptive field that provides
more contextual information. Furthermore, the self-attention
layers have an input-adaptive weighting mechanism. Thus, the
transformer-based models have a high model capacity for large
datasets. It is worth noting that there is a tradeoff between the
size of the receptive field and the computational complexity.
The self-attention mechanism is defined as follows [24]:

yi =
∑
j∈ℊ

ex
T
i xj∑

k∈ℊ e
xT
i xk

xj (2)

whereℊ denotes the global spatial space, and
∑

k∈ℊ e
xT
i xk refers

to the dynamic attention weights.
The BDD-Net+ is inspired by the Coat-Net algorithm that

combines convolution and transformer layers. The main idea of

https://www.unitar.org
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Fig. 4. Proposed BDD-Net+ framework.

BDD-Net+ is to improve the performance of BDD by taking the
advantage of both convolution and self-attention layers. Thus,
BDD-Net+ aims at taking the advantage of the convolution
block for better generalization and the self-attention layer for
increasing the model capacity [24]. Simple solutions to com-
bine the self-attention and convolution layers include summing
a global static convolution kernel with an adaptive attention
matrix, which is shown as follows:

yi =
∑
j∈ℊ

e(x
T
i xj+wi−j)∑

k∈ℊ e
(xT

i xk+wi−k)
xj . (3)

It should be noted that this form actually corresponds to a
special case of a self-attention mechanism, called relative self-
attention, which only focuses on relative position or distance.

The direct combination of attention and convolution lay-
ers increases the computational complexity significantly. It is,
hence, proposed by Dai et al. [24] to reduce the spatial size
of the feature map and to use global relative attention. The
overview of the proposed BDD-Net+ is presented in Fig. 4.
This architecture has been made up of two convolution blocks,
three 2-D-relative attention blocks, and three feedforward-
network (FFN) modules, with a global average pooling, a fully
connected layer, and a Softmax layer in the classification head.
The proposed framework has two main differences from the
original Coat-Net that are included utilizing asymmetric con-
volutional structure with kernel sizes and utilizing depthwise
separable convolution for increasing effeteness of network and
reducing models’ parameters.

1) Convolution Block: The convolution block is the first part
of the proposed framework, aiming at deep feature extraction.
The convolution layers extract meaningful high-level features
from the input dataset [26]. Here, we use three types of convolu-
tion layers that are included: a standard convolution layer with
kernel size (3×3), an asymmetric convolutional structure with
kernel sizes (3×1 and 1×3), and a depthwise separable con-
volution. The depthwise separable convolution layer includes
a depthwise convolution layer with a kernel size of 3×3 and
pointwise kernel convolution (kernel size 1×1), respectively.
Fig. 5 shows the corresponding structure.

2) Residual Multihead Self-Attention Module: The self-
attention layer is a key component of the transformer that is
widely used in many applications in signal, image, or language
processing. It employs a self-attention module with 2-D relative
position encoding [27]. The structure of the residual multihead

Fig. 5. Structure of the convolution block.

Fig. 6. Structure of the residual multihead self-attention module.

attention module with relative positional encoding is shown
in Fig. 6. The layer normalization first processes the input
feature map. Then, a pooling layer is used to reduce the spatial
dimension of the feature map. Next, the feature map is fed to
the relative self-attention module. Finally, a convolution layer
is used for further exploration before adding the feature map to
the output of the attention module. For the feature map with the
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Fig. 7. Structure of the residual FFN block.

size of (H×W), the relative positional encoding has a learnable
parameter (P) with the size of (2H−1)×(2W−1).

3) Residual FFN Module: The structure of the FFN module
is similar to the multilayer perceptron head in the ViT algorithm.
This block is composed of the following layers:

1) layer normalization;
2) convolution (1×1);
3) Gaussian error linear unit (GELU) activation function;
4) convolution (1×1);
5) GELU activation function;
6) sum with the input.
Fig. 7 features this residual FFN structure.

C. Model Training

The model parameters are obtained iteratively by employing
an optimizer. Through backpropagation, the model parameters
are tuned at every step to minimize errors when assessing the
output of the model with the true value. To this end, the model
is trained by training sample data, then evaluated by calculating
the loss function on the validation dataset. Finally, the perfor-
mance of the model is evaluated using the testing dataset. The
performance of the model is compared with other state-of-the-art
transformer-based models, including Swin stands for shifted
window (Swin-Transformer) [28], pooling-based Vision Trans-
former (PiT) [29], compact convolutional transformer (CCT)
[30], and the original Coat-Net [24]. The Swin Transformer
creates hierarchical feature maps through the merging of image
patches in deeper layers. The PiT model is a state-of-the-art
transformer-based framework that considers the spatial dimen-
sion conversion on the transformer-based architecture. The CCT
uses a convolutional tokenizer to produce richer tokens and
preserve local information [30].

D. BDD-Net+ Model Explainability

Deep-learning-based models usually provide highly promis-
ing results. However, since the internal functioning of these
models is unclear, these models have often been viewed as “black
box” methods [31]. Grad-CAM is one of the most common

visual explanation methods for deep-learning models. It is used
to show the predictions of the models more visually. To begin
with, the gradient of the score yc (before softmax) for each class
is calculated concerning the feature maps (fk) of a particular
layer as follows [31]:

gc
(
fk
)
=

∂yc

∂fk
(4)

where k is the channel index. Next, these gradients are global
average pooled to estimate the importance of weight (ak) fk for
the class c in each channel [31]

ack =
1

wf × hf

wf∑
i=1

hf∑
j=1

∂yc

∂fk
i,j

(5)

where wf and hf are the width and height of feature maps,
respectively. The final Grad-CAM heat map (Hc

Grad−Cam) is a
weighted sum of the feature maps, followed by a rectified linear
unit (ReLU) activation function

Hc
Grad−Cam = ReLU

(∑
k

ack · fk

)
. (6)

IV. EXPERIMENTAL RESULTS

The supervised deep-learning models investigated in this
study have different hyperparameters that require to be set. A
trial-and-error procedure is followed to set these hyperparam-
eters. The values of hyperparameters are patch size: 50×50,
batch-size: 300, number of iterations: 1500, weight initializer:
Glorot initialization [32], optimizer: Adam3 optimizer, loss
function: Tversky loss function [33], and learning rate 10−3.

A. Visual Analysis

The results of BDD for the Haiti Earthquake are shown in
Fig. 8. Based on the BDD results, we observed perfect classi-
fications for all three transformer-based deep-learning methods
for the nondamaged class. Generally, all methods have provided
promising results in the BDD while differing in more detail. In
contrast to the other four frameworks, the BDD-Net+’s damage
detection result is consistent and satisfying, as shown in Fig. 8(e).

Fig. 8(b) shows the result of the PiT algorithm, which has
many damaged buildings classified wrongly into the nondam-
aged class. Furthermore, the original Coat-Net led to many
miss-detected buildings [see Fig. 8(d)]. BDD-Net+ leads to the
best performances in terms of both correct detection of damaged
buildings and the false alarm rate [see Fig. 8(e)]. In addition, the
zoom areas of the results of BDD are shown in Fig. 9. As seen,
the proposed model has considerable consistency in the different
regions compared with other models.

Fig. 10 illustrates the result of BDD for Bata Explosion. It can
be seen that all models provided promising results in the BDD.
However, the PiT framework provided lower false detection than
the other four methods, but it has many miss detection pixels
[see Fig. 10(b)]. Some buildings that are not detected by the

3Adaptive Moment Estimation (Adam)
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Fig. 8. Result of BDD for the Haiti-Earthquake dataset. (a) Swin-Transformer. (b) PiT. (c) CCT. (d) Coat-Net. (e) BDD-Net+. (f) Ground truth.

TABLE II
COMPARISON OF THE NUMERICAL RESULT OF BDD FOR THE HAITI EARTHQUAKE

original Coat-Net model [see Fig. 10(d) are accurately detected
by BDD-Net+ [see Fig. 10(e)]. Furthermore, the zoom areas of
the result of BDD by different models are shown in Fig. 11.

B. Numerical Analysis

The quantitative analysis of the Haiti Earthquake is reported in
Table II. Again, BDD-Net+ outperforms the original Coat-Net.
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Fig. 9. Comparison of the results of BDD algorithms or Haiti Earthquake.

Based on the numerical results, the BDD-Net+ considerably
improved the result of BDD in most metrics. For instance, the OA
was reported as 87%, 92%, 84%, 92%, and 94% when the Swin-
Transformer, PiT, CCT, Coat-Net, and BDD-Net+were applied,
respectively. This shows that BDD-Net+ improved the result
more, which is about 7% points more than Swin-Transformer,
2% points more than PiT, 10% points more than CCT, and
2% points more than the Coat-Net algorithm. Furthermore, the
efficiency of the BDD-Net+ is more evident in other indices. It

is worth noting that Coat-Net has provided a performance better
than BDD-Net+ while having missed the effectiveness by other
metrics.

The quantitative analysis for Bata Explosion is shown in
Table III. In accordance with these results, all five models
achieved an accuracy of 80% or higher.

BDD-Net+ clearly outperforms Swin-Transformer, PiT,
CCT, and the original Coat-Net with a 6%, 2%, 5%, and 4%
points increase in OA and F1-score, respectively. However, PiT
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Fig. 9. (Continued.)

Fig. 10. Result of BDD for Bata Explosion. (a) Swin-Transformer. (b) PiT. (c) CCT. (d) Coat-Net. (e) BDD-Net+. (f) Ground truth.
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Fig. 11. Comparison of the results BDD by different models by Zoom regions in Bata Explosion.
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Fig. 11. (Continued.)

TABLE III
COMPARISON OF THE NUMERICAL RESULT OF BDD FOR BATA EXPLOSION

has achieved a Recall a bit more than BDD-Net+ (about 7%
points) but it has a weaker performance in terms of Precision
(about 8% points) and KC. In general, BDD-Net+ obtained the
best results for Bata explosion, which again were slightly higher
than PiT but significantly better than the original Coat-Net and
CCT.

C. Model Visualization

The model explainability is the latest step of the proposed
method. To this end, we visualize the latest layer before the
global average pooling layer by the Grad-CAM algorithm.
We consider the performance of the model in two classes
(nondamaged and damaged) in a Grad-CAM-based manner.

The results of model visualization for nondamaged buildings
are shown in Fig. 12. The nondamaged regions have red color in
the results of visualization. As can be seen in the visualization
of the model, the red areas indicate the points where the BDD-
Net+ has focused to predict the outcome. Since the nondamaged
building appears with a smooth texture, the model has considered
all building surfaces for classification.

Fig. 13 demonstrates the result of the Grad-CAM algorithm
for damaged buildings. Based on the results, the rough surface
roofs have high intensity (red color in Fig. 13, third column),
which shows that the focus of BDD-Net+ is on rough surface
areas. As a result, the damaged areas have highly rough sur-
faces and the model focuses mainly on the collapsed areas for
identification of the damaged buildings.

D. Ablation Analysis

Ablation studies provide insight into the relative contribution
of different architectural components to the performance of a
deep-learning framework. To achieve this, the BDD-Net+ is
analyzed using three scenarios:

Fig. 12. Comparison of Grad-CAM results for the nondamaged class.

1) BDD-Net+without asymmetric convolution structure and
depth separable convolution (S#1);

2) BDD-Net+ without all convolution blocks (S#2);
3) BDD-Net+ without transformer layers (S#3).
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TABLE IV
BDD-NET+ ABLATION ANALYSIS FOR BATA EXPLOSION

Fig. 13. Comparison of Grad-CAM results for the damaged class.

Table IV presents the ablation study in three scenarios. The
numerical results show that the second scenario has the highest
influence on the performance of the BDD-Net+. Furthermore,
the transformer layers improved the accuracy of the model.

V. DISCUSSION

To effectively respond to earthquake emergencies, it is critical
to accurately identify the areas affected by an earthquake after it
has occurred. To this end, this research proposed a deep-learning
framework by the combination of the multiscale residual convo-
lution blocks and self-attention layers. The efficacy of the pro-
posed framework is evaluated by two real-world VHR datasets
with different hazards (i.e., earthquake and explosion). The
results of BDD were compared with the other two state-of-the-art
deep-learning-based methods. Concerning the BDD results, the
three deep-learning-based methods have provided promising
results in both datasets.

The normalized confusion matrix of the BDD for the Haiti-
Earthquake dataset is shown in Fig. 14. As can be seen, the
performance of all models in Haiti Earthquake is better than Bata
Explosion (see Fig. 15). The BDD-Net+ has provided promising
results in terms of both nondamaged and damaged classes. It
is worth noting that there is a tradeoff between nondamaged
or damaged classes. An ideal situation would be to be able to
detect both nondamaged and damaged buildings in the most
accurate manner possible. However, some methods only focused
on one nondamaged or damaged class (i.e., Coat-Net and PiT)
as they provided high accuracy on one class while noticeably
missing the performance in another class. This issue can be seen
in Fig. 14(b)–(d) for the Haiti-Earthquake dataset.

The normalized confusion matrix of the Bata-Explosion
dataset is shown in Fig. 15. Based on these results, the Coat-Net
and BDD-Net+ have similar results for the nondamaged class,
while those are different for the case of damaged classes. A bit
of improvement has been obtained with the PiT in nondamage
detection compared with BDD-Net+, while significant deficien-
cies have been observed in the detection of damaged buildings.
In general, both the PiT model and the BDD-Net+ model
perform similarly when it comes to detecting the nondamage
class. However, when it comes to detecting the damaged class,
the BDD-Net+ model outperforms the PiT model.

It is worth noting that the number of sample datasets in the
Haiti-Earthquake dataset is more than in the Bata-Explosion
sample dataset. This issue may influence the BDD results and
lead to greater results for Haiti Earthquake than the Bata-
Explosion dataset.

The generalization ability is one of the most important deep-
learning-based methods. In this regard, the Haiti-Earthquake
dataset has a separate test area. We also evaluated the perfor-
mance of the model in a different area. The presented result in
Table II, Table III, Figs. 8, and 10 demonstrates that BDD-Net+
has a high generalization in comparison with other methods.

The sample data size is another criterion of supervised learn-
ing methods that BDD-Net+ has trained about 640 and 282
samples for Haiti-Earthquake and Bata-Explosion datasets. The
result of BDD by BDD-Net+ based on this amount of sample
dataset is valuable. The semantic segmentation model (i.e.,
U-Net models) requires a high amount of sample datasets. The
collection of a high amount of sample datasets for such an
application is challenging.

The XAI can explain to that model how to predict the result
based on the input dataset. This advantage helps us find out
behind false positive and false negative polygons what has
happened. Fig. 16 demonstrates some false negative building
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Fig. 14. Normalized confusion matrix comparison for Haiti Earthquake. (a) Swin-Transformer. (b) PiT. (c) CCT. (d) Coat-Net. (e) BDD-Net+.

Fig. 15. Normalized confusion matrix comparison for Bata explosion. (a) Swin-Transformer. (b) PiT. (c) CCT. (d) Coat-Net. (e) BDD-Net+.

polygons. The model was predicted as a nondamaged class,
while those being damaged buildings. As seen, the BDD-Net+
focused on smooth texture areas (red areas) because these build-
ings have highly smooth areas in comparison with the damaged

region. Concerning, the result of XAI, it is better to model trained
with such samples.

Similarly, we explored the false positive samples to under-
stand what the main reason for miss detection was. Fig. 17
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Fig. 16. Comparison of Grad-CAM results for false negative samples.

TABLE V
COMPARISON OF THE NUMBER OF PARAMETERS OF DEEP-LEARNING MODEL

illustrates some false positive samples. Based on this, some roof
structure has caused the BDD-Net+ to focus on these regions for
prediction. Thus, the roof structure has a key role in the model
prediction.

This study only utilized the postearthquake dataset for build-
ing damage assessment. However, their many methods focused
on bitemporal pre/postevent datasets that suffer high computa-
tional costs (due to processing bitemporal images). The com-
putational cost of the proposed framework is lower than other
similar methods for BDD because of using only postevent
datasets. In addition, the building vector map is available for
the whole world. Thus, we used the building vector map to
prevent processing nonbuilding pixels that reduce the mapping
processing times significantly.

The commotional of the cost of deep-learning methods is a
more important factor. To this end, we evaluated the number of
parameters of all methods. Table V presents that the number of
parameters of deep-learning models that BDD-Net+ has lower
than parameters comparison with other models. This subject
causes the proposed framework to be quickly trained.

Fig. 17. Comparison of Grad-CAM results for false positive samples.

VI. CONCLUSION

We proposed a novel framework for BDD using a single
postevent VHR dataset. To this end, a novel effective BDD has
been proposed, which combines the transformer and convolution
layers. The performances of BDD are positively evaluated on
two real-world datasets. The results of BDD show that the
proposed BDD-Net+ has very high performance in the detection
of damaged buildings. Furthermore, BDD-Net+ provides robust
results even with an unbalanced dataset. Moreover, we used the
Grad-CAM algorithm for model explainability. The result of
the model visualization shows that BDD-Net+ focuses on the
collapsed areas of the damaged building. In addition, the model
focused on all smooth parts of the building for classifying the
nondamaged buildings. In a conclusion, BDD-Net+ is highly
effective and generates informative deep features for BDD pur-
poses. Furthermore, the Grad-CAM algorithm can be considered
an informative tool for exploring the performance of the model.
It helps to find out the weakness of the model and enhance the
performance of the model according to it.
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