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Abstract—Deep-learning-based on convolutional neural net-
works (CNN) has been widely applied in synthetic aperture radar
(SAR) target recognition and made significant progress. However,
due to the physical effects of the equipment used to collect images,
various degrees of speckle noise will be introduced into SAR im-
ages. Traditional CNN-based SAR target recognition methods are
premised on the same noise intensity in the training and testing
set, which is contrary to the target recognition in practice. To
alleviate this problem, we propose a novel speckle noise resistant
framework for SAR target recognition, called dual-consistency-
alignment-based self-supervised learning. First, original SAR im-
ages are randomly added to speckle noise with different thresholds
through multiplicative noise, after which contrastive pretraining
is performed on unlabeled data. During this period, we combine
instance pseudolabel consistency alignment and feature consistency
alignment to align multiple threshold speckle noise views with
original views under the same targets. Finally, the pretrained model
is migrated to the downstream SAR speckle noise target recognition
task. In this article, speckle noise modeling is conducted based on
moving and stationary target capture and recognition data testing
set, and experiment results reveal that this method can adapt to
different intensities of speckle noise, is robust to modeled SAR
image recognition, and maintains a high recognition rate even in
small-sample learning.

Index Terms—Dual consistency alignment (DCA), self-
supervised learning (SSL), speckle noise, synthetic aperture
radar (SAR).
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I. INTRODUCTION

SYNTHETIC aperture radar (SAR) image target recognition
technology is valuable in military and homeland security,

such as identification friend or foe, battlefield target surveil-
lance, maritime characteristic research, disaster assessment, etc.
Deep learning with convolutional neural networks (CNNs) as
representation have consolidated its status in image recognition
in recent years. Researchers have introduced series of remote
sensing image processing methods based on CNN and verified
the effectiveness of such algorithms [1], [2], [3]. CNN-based al-
gorithms for SAR images are mostly applied in target detection,
semantic segmentation, and classification [1], [4], [5], [6], [7],
[8]. Chen et al. [1] showed that baseline CNN structure can easily
reach more than 97% test accuracy in 10-class classification
task of moving and stationary target capture and recognition
(MSTAR) dataset. Apart from this, their convolutional networks
(A-ConvNets) reach a state-of-the-art average accuracy rate of
99%.

However, a particularly high sensitivity to speckle noise in
SAR images was located in deep learning. When the electro-
magnetic wave encounters reflection from a rough surface, the
SAR will be affected by echo interference during the imaging
process because of the phase difference, resulting in weaker echo
intensity, which generates speckle noise interfering SAR data.
The SAR image is filled with noise possibly covering the target
information, which might undermine the recognizability of the
target and hinder SAR target recognition. Traditionally, both
the spatial-domain-based and transform-domain-based methods
[9], [10] are mainly utilized to denoise SAR images, while
CNN-based SAR target recognition methods have also been used
to learn noise [11], [12], [13], [14]. Ding et al. [11] suggested
expanding the dataset by a random scattered noise modeling
to train the CNN so that the model is invariant to scattered
noise variations. On the basis of the data augmentation method
ahead, Kwak et al. [12] put forward a speckle noise invariant
regularization method in CNN. They regularized the despeckled
SAR images by Lee sigma filter to minimize the feature variation
dual to speckle noise, therefore optimizing robustness and pre-
ciseness. Cho et al. [13] brought up a multifeature-based CNN
(MFCNN) that can extract as well as aggregate both strong fea-
tures with high noise impact and smooth features with low noise
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Fig. 1. Framework of the proposed DCA–SSL for SAR target recognition with speckle noise resistance.

impact. While Qin et al. [14] built a multistage wavelet scatter
suppression network (Wavelet-SRNet) to effectively solve the
problem of SAR target recognition under different noise levels.

The above methods mostly require extra image segmentation
or filtering preprocessing steps. And the multilevel Wavelet-
SRNet operates under the same speckle noise thresholds of
the training and testing sets. In practice, however, the speckle
noise threshold of the testing set is uncontrollable dual to the
interference of the physical parameters of radar imaging and
the ground background, while the noise distribution of training
and testing samples does not always congruent. Therefore, it
is of necessity to come up with a network that does not re-
quire additional preprocessing or filtering, and is capable of
discriminating different levels of speckle noise images with
once training. To satisfy the above needs, we proposed dual-
consistency-alignment-based self-supervised learning to track
the invariant features between random threshold speckle noise
views. Fig. 1 shows the framework of the proposed DCA-SSL
for SAR target recognition with speckle noise resistance. After
a batch of instances was extracted with encoder f(θ), we first
used pseudolabel consistent alignment loss and then applied the
feature consistent alignment loss to align the feature vectors of
views from original SAR instance; finally, we froze the pretrain
weights and transferred them to the downstream network for
robust SAR target recognition. In the fine-tuning phase, the
testing set were added with speckle noise, while the training
set is without any noise to simulate an actual target recognition
scenario. This is because the actual target imaging generates
random degree of speckle noise, which is out of control.

This article presents the main innovations as follows.
1) A novel SAR target recognition framework named DCA—

SSL was proposed to resist speckle noise practically test-
ing scenarios. “DCA,” which includes pseudolabel con-
sistency alignment in label space and feature consistency

alignment (FA) in feature space, was proposed to perform
prompt alignment between original SAR images and their
speckle noise images under multilevel thresholds, so as
to learn the semantic information relationship between
original images and multilevel noise views.

2) Speckle noise was fused in a multiple data augmentation
strategy. We applied this strategy for the first time in self-
supervised contrastive learning to impel an SAR instance
and its multithreshold speckle noise view to be assigned
as positive samples.

3) To fit the actual SAR target recognition anti-speckle noise
testing, we proposed a more demanding experimental
strategy by adding speckle noise to the testing set while
nothing to training set. We found that traditional speckle
noise resistant methods failed under this testing setting,
while our method still performed well in target recognition
even with only one training.

II. RELATED WORK

A. SAR ATR Based on Deep Learning

CNN-based SAR automatic target recognition (ATR) appli-
cation is a key research topic. SAR image target recognition
faces many challenges, such as complex background interfering
magnetic field, lack of color information, random speckle noise
interference, as well as inadequate SAR image dataset. Fortu-
nately, researchers have made significant efforts in deep-learning
algorithm architecture to successfully solve these problems.
Chen et al. [1] proposed a fully A-ConvNet to alleviate the over-
fitting problem caused by small training datasets of SAR images.
Pei et al. [15] proposed architecture based on CNN that was
designed for the problem of limited SAR input data, and CNN
with multi-input parallel network topology generates multiview
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SAR as input to achieve SAR ATR. In order to balance the ef-
fectiveness and robustness of the ATR system, the literature [16]
proposed a layered fusion method of global and local features of
SAR ATR. The efficient extraction and classification of targets
are performed by subtly motivating a classification method based
on sparse representation by using random projection features as
global features. In contrast to the traditional recognition method
of directly feeding SAR data into a classifier, Guo et al. [17]
combined adversarial learning and proposed a dual GAN model,
which achieved improved performance for small-scale labeled
SAR data and robust recognition. Inkawhich et al. [18] focused
on the situation of holding 100% synthetic training data, while
only measured data were used for testing. Wang et al. [19] de-
signed an effective CNN with channelwise attention mechanism
for SAR target recognition in order to reduce the computation
and memory consumption of SAR ATR; meanwhile, the network
structure was compressed by network pruning and knowledge
distillation to improve lightweight network performance. Lin
et al. [20] proposed an integrated convolutional highway unit
network for processing limited labeled training data in SAR
target recognition. In addition, Tai et al. [21] and Zhang et al.
[22] explored transfer learning methods to effectively address
the overfitting problem of deep CNN training caused by sparse
SAR data. A progress has also been made recently in robust SAR
ATR based on adversarial learning, and Li et al. [23] conducted
some experiments demonstrating that CNNs can cope well with
adversarial samples of SAR images.

B. Self-Supervised Learning and Robustness

SSL [24], [25], [26], [27], [28], [29], [30], [31] learns compact
semantic data representations by defining and solving pretextual
tasks. In these tasks, naturally presented supervised signals
were used for training. In recent years, many pretext tasks
have been proposed in the field of computer vision, including
colorization [32], jigsaw puzzles [33], image restoration [34],
context prediction [35], rotation prediction [36], and contrastive
learning [37], [38], [39], [40], [42], [43], [44], [45], [46]. Con-
trastive learning has shown great potential and has become a
strong standard for generic feature learning in the field of SSL.
Contrastive learning was first studied in sample CNNs [37]
and nonparametric instance discrimination (NPID) [38]. The
sample CNN [37] learns to distinguish instances using a CNN
classifier, where each class represents a single instance and its
expansion. While NPID [38] proposed to consider each image as
a category in unsupervised representation learning with softmax
for classification, i.e., introducing a nonparametric classifier at
the individual level. SimCLR [39] and MoCo [40] both adopted
the contrastive loss function InfoNCE [41] in need of negative
samples. A more progressive step was taken by BYOL [42],
which abandoned negative samples in contrastive learning, but
adopted momentum encoder to achieve better results. Lately,
Chen et al. [43] presented a follow-up work SimSiam and
reported a surprising outcome that simple conjoined networks
are capable of learning meaningful representations without
a momentum encoder. Clustering-based contrastive learning
methods have also been proved effective for unsupervised visual

representations. For example, SWAV [44], which discards two-
by-two view comparisons and uses a method of clustering data
while strengthening the consistency between different enhance-
ments of the same view, hence improving the efficiency of
memory consumption.

Recently, several works have proved the robustness of SSL to
downstream tasks. Chuang et al. [47] reconstructed InfoNCE
with Fahrenheit distance as a metric criterion in an attempt
to improve the robustness of contrastive learning under noisy
views, and provided a rigorous theoretical validation of the
proposed contrastive loss function. Goyal et al. [48] provided
an overview of recent large-scale studies that visual models
perform more robustly and fairly when unprocessed images
are pretrained without supervision. Zhong et al. [49] designed
systematic testing experiments, which involved downstream task
data corruption and pretraining data corruption, with types of
data corruption including gamma distortion, global shuffling,
local shuffling, synthesized data, and class imbalance. After
studying the robustness of contrastive and supervised learning,
we discovered interesting robustness behaviors of contrastive
learning to different corruption settings.

Traditional deep-learning-based SAR ATR work is based on
supervised learning, and the data in the training and testing sets
are established to maintain the same data augmentation settings.
In practice, traditional supervised learning typically involves
data augmentation on batches of data sourced from multiple cate-
gories. To achieve multithreshold data augmentation, each train-
ing set must undergo preprocessing and saving with its respective
threshold value, along with corresponding label information.
This method of expanding data distribution entails extensive pro-
cessing before conducting deep-learning training. By contrast,
instance discrimination, as a self-supervised approach, treats
both noisy and original views as positive samples, indirectly
providing the neural network with experiential knowledge on
distinguishing “similar” and “not similar” SAR targets. Through
a single training, a variety of noisy views can be learned a
priori, simplifying the procedures for manual preprocessing and
data storage. Moreover, SSL reduces the requirement for a large
amount of annotated data, thereby alleviating the burden of data
annotation. Given the advantages of SSL in model robustness
and the fact that the study of speckle noise in SAR images has
not been considered in the field of SSL, this article explores the
practical application problem of SAR ATR using self-supervised
contrastive learning.

III. METHODOLOGY

Aiming to maximize the similarity between the features of
speckle noise SAR images and the original images, we proposed
joint pseudolabel consistency alignment and feature consistency
alignment optimization, named DCA. It took place in the self-
supervised pretraining phase, where we only let the model focus
on the information of the feature maps under noise interference
so that pretraining was performed on unlabeled data. Hendrycks
et al. [24] demonstrated that self-supervised contrastive learning
contributes to improve model robustness. We relied on the
framework of contrastive learning for feature alignment, and
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our problem set was based on the comparison of image feature
similarity under the original SAR image and its multiple speckle
noise interference. However, mainstream contrastive learning
is performed for two data-augmented samples of one image,
so it is not applicable. Inspired by the literature [26], we bor-
rowed the idea of multiple data augmentations, but with the
difference to set up images with original images and images
with random speckle noise interference. Those samples were
treated as positive samples, while the other instances and their
noise-interfering pictures were considered as negative samples.
After a batch of instances was extracted with encoder, we first
used pseudolabel consistent alignment loss and then applied the
feature consistent alignment loss to align the feature vectors
of views from one instance. Pseudolabel consistency alignment
aims to distinguish SAR samples well from positive and negative
samples, while feature space consistency alignment is to bring
samples of the same class closer together. Finally, we froze the
learned weights and migrated them to the downstream network
for robust recognition. In the fine-tuning phase, the testing set
data were added with speckle noise, while the training set were
left unnoised. With the “prior knowledge,” the CNN can easily
recognize different noise views of the same target and thus
obtains robust recognition performance. The implementation
process of each part is described in detail separately in the
following paragraphs.

A. Speckle Noise Data Augmentation Mechanism

The SAR imaging system introduces the speckle noise of
SAR images. Unlike the widely studied additive noise in optical
images, it belongs to multiplicative noise, a large proportion of
which is of high frequency [12], [13], [14], [50], [51], [52]. To
prove the effectiveness of target recognition of the suggested
method for speckle noise SAR images, we began with speckle
noise modeling referring to the literature [11] for the generation
of SAR images with various degrees of speckle noise. The
speckle noise in SAR images can be represented by multiplica-
tive noise

I(x, y) = Q(x, y) � S(x, y) (1)

in which I represents the SAR image produced with speckle
noise, x and y denote the coordinates of each resolution unit of the
SAR image, Q refers to the original SAR image, and S represents
the intensity of speckle noise matching with the exponential
distribution. The process goes with the generation of a random
noise with mean 0 and variance 1, followed by exponential
transformation and multiplication with the original image at last.
Because the standard exponential distribution noise possesses
some pixel points which can darken the image, we replaced
standard exponential distribution with the truncated exponential
distribution ea = min(exp(randn(M, N), a)), in which a stands
for the truncation parameter, and randn(M, N) means randomly
generated two-dimensional (2-D) distribution of M × N. The
rationale for M× N is that SAR images are 2-D grayscale maps.
In this way, SAR images with various levels of speckle noise can
be obtained by using various parameters a. Fig. 2 presents an
original SAR image and four noisy SAR images under different

Fig. 2. Speckle noise SAR images. (a) Example of MSTAR image. (b) Speckle
noise SAR image with truncated exponential distribution and a = 1. (c) Speckle
noise image with a = 0.9. (d) Speckle noise image with a = 0.8. (e) Speckle
noise image with a = 0.7.

parameters a. With the decrease of the parameter value, the
corresponding SAR images can be obtained; however, the target
in them shows less visibility and somehow damaged structure.
In the algorithm implementation, this part is operated as Sn(a).

Given the dataset D = {X, Y}, herein x�X stands for the
training samples and y�Y refers to the corresponding labels. We
started with a random speckle noise addition operation on a batch
of data. The noise interference intensity was defined between
[0.71] to ensure relatively complete target. The mathematical
expression for the random speckle noise interference is

xi = x
Sn(rand(a))
i , a ∈ R : ‖a‖ ≤ ε, i ∈ {1, . . . , N} (2)

where xi is a set of speckle noise SAR images after noise
enhancement, ε is the range of interference, and N is the sample
size of a batch of data.

B. Dual-Consistency-Alignment-Based Self-Supervised
Learning

For the data under the influence of speckle noise, we have tried
to filter out SAR image noise before target recognition [51], but
unfortunately, it is challenging to achieve SOTA results. From
the experimental performance in Fig. 9, the RestNet18 network
with discrete wavelet transform (DWT) for filtering still suffers
from unstable recognition results. We conjectured that purely
using the filter for noise reduction can damage the feature repre-
sentation of the target because the speckle noise often belongs to
the high-frequency part of the SAR image, and the original target
features tend to be damaged if speckle noise is denoised with
force, which can affect the learning of high-frequency semantic
information of the SAR images in the neural network. We shifted
our perspective to noise tolerance, in which the neural network
should be able to learn how the target samples maximize the
related information relationship between the target samples and
their augmented images so that the CNN learns the invariant
consistency between multiple augmented images. The literature
[16] demonstrates that SSL can improve the robustness of the
model. Mainstream comparison learning always use two data
augmentations to transform one sample, however, our setting is
to compare original images with multiple levels speckle noise
interference pictures, so mainstream comparison learning cannot
be adopted. We proposed using S different thresholds of speckle
noise data augmentations for one target sample, thus maximizing
the similarity representation of original SAR images and their
speckle noise enhancing images, as shown in Fig. 3.

First and foremost, we recalled the classical loss function of
contrastive learning: InfoNCE loss. Given two vectors V1 and
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Fig. 3. (a) Generic contrastive loss conception, where both data augmentations
of the same image are considered as positive samples. (b) Our proposed con-
trastive loss conception based on SAR images with multiple noise views, where
the original image and various degrees of speckle noise views are classified as
positive samples, with the help of which the pseudolabels achieve alignment.

V2 in the feature space, we interpreted contrastive learning as a
binary classification problem with sample pairs (V1, V2), where
the label is 1 if the sample pair is from the same joint sample in-
stance of the data augmented view, and−1 if it is from a different
instance of the data augmented view. In general, the contrastive
learning loss function is based on two data augmentations, so
that we can clearly write InfoNCE loss as follows:

LInfoNCE(x, v, i)

= − 1

n

n∑
i=1

log
ef(x)

T g(v)/t

ef(x)
T g(v)/t +

∑K
i=1 e

f(x)T g(vi)/t
(3)

where f(x) and g(v) are embedded by CNN, t is a positive value
of temperature to avoid gradient saturation, while K is the value
of the negative sample pair. For the specific task of this article,
the same SAR samples and their noise views are labeled as label
1, thus achieving pseudolabel alignment of SAR noise instances.

After S thresholds of speckle process a mini-batch data of size
N, the original SAR images and the speckle-processed samples
are passed into the feature extraction network with (S+1)N
samples. The original SAR images and the speckle-processed
samples {xs ∈ Rn×s, s = 1, 2, . . . S}are passed into the feature
extraction network with a total of (S+1)N samples. The category
pseudolabel consistency alignment is performed on the label
space so that the instance and their noise images (noted as
positive samples) are close to each other in the feature space,
while the SAR images of different instances and their noise
images (noted as negative samples) are separated. This process is
called pseudolabel consistency alignment, and the loss function
is denoted as

LLA(r
+
s , r

−
i , i) = −

1

n

n∑
i=1

log
er

+
s

er
+
s +

∑K
i=1 e

r−i

:= − 1

n

n∑
i=1

log
ef(x)

T g(vs)/t

ef(x)
T g(vs)/t +

∑K
i=1 e

f(x)T g(vi)/t
. (4)

Herein, r = {{r+s }Ss=1, {r−i }Ki=1} , r denotes a batch of SAR
data, whereas r+and r−i are the scores of relevant SAR samples
(positive samples) and uncorrelated SAR samples (negative
samples), and t is the temperature parameter introduced to avoid
gradient saturation. The loss function learns to classify whether

Algorithm 1: Pseudocode of DCA–SSL for SAR ATR.
Input: Batch size N, S times speckle noise augmentation,
full connected layer ffc, feature extraction fθ , learning
rate η , temperature T.
Pretraining: pretrain the network with LLA and LFA

For all t ∈ {1, . . . , epochs}do:
for each minibatch do
Initialize the parameters of ffc
For all s ∈ {1, . . . , S}do
For sampled minibatch {xi}Ni=1do
For all i ∈ {1, . . . , N}do
Assign instance label yki to x̃s

i whereyki = i
# Set the random level speckle noise
x̃k
i = ak(xi)

hk
i = f t

fc(f
t
θ(x̃

k
i ))

end for
end for
define

LLA = − 1
nS

S∑
s=1

n∑
i=1

log es
+

es++
∑K

i=1 e
s−
i

Update network f t
θand f t

fcto minimize LLA

end for
for all s ∈ {1, . . . , S} and i ∈ {1, . . . , N}do
xk
i = f t

θ(x̃
k
i )

end for
define

LFA = 1
DN

N∑
i=1

D∑
d=1

‖Xs
id −Xid‖22W s

i #dth dimension

vector alignment
W s

i =

{ 1, thes − th speckle noise view of the i − th instance,
0, otherwise,

update network f t
θto minimize LFA

end for
#momentum update network
θt ← mθt−1 + (1−m)θt

end for
Fine-Turned: Computational identification of similar
category under speckle noise interference for minibatch
{xs

i}
do
lc(f

t
θ(t(x)))→ c

where c is the logical labels values of the same category
update network f t

θto maximized between loss lc and c.
end for

a pair (x, vs) is a positive or negative sample by maximiz-
ing/minimizing the positive scores and negative scores. When
ith vector xi is extracted from CNN, there are S vectors similar to
it, i.e., x has S positive samples. For a minibatch (S+1)N samples
xi (i = 1,2 …,(S+1)N), our goal is to make them grouped into
N corresponding categories.

Then, FA loss function is introduced to closely draw the
similarity relationship between S noise-interfered images and
their original noise images on the feature space for feature
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alignment. Due to the SAR imaging characteristics, there is
little variability between the speckle noise interfered SAR image
and the original SAR images in the high dimension. Thus, we
compare the noisy picture (s views) feature Xs

i = f(xs
i ) on

the given latent space after feature extraction with the original
feature Xi. Then, the Euclidean distance was calculated in each
of the d(d = 1,2 …,D) dimensions with the aim of weakening
the gap between the original image and the speckle noise image
of different degrees. The consistent alignment loss function can
be expressed as

LFA =
1

DN

N∑
i=1

D∑
d=1

‖Xs
id −Xid‖22W s

i (5)

where subscript d means the dth dimension of a feature vector.
The network learning parameters are updated by minimizing
LFA. W s

i serves to closely link instances i and the semantic
features with the same instances are to be aligned. We define
this as the following equation:

W s
i =

{
1, the sth speckle noise view of the ith instance,
0, otherwise.

(6)
Our model is optimized by instance discriminant alignment

and consistency alignment loss functions, and the total loss
function can be written as

LDCA = LLA + LFA. (7)

In general, the gradient optimization is updated by back-
propagation with the objective of reducing the value of LDCA.
The parameters of network learning are defined as the current
epoch θt, m stands for the momentum confidence from 0 to1,
and θt−1 refers to the historical parameters of the model. To
enhance the stability and timeliness of the model, we used the
momentum update learning strategy by

θt ← mθt−1 + (1−m)θt. (8)

Further, we migrated the above pretrained parameters to the
ResNet18 network for learning with speckle noise only added
to the testing set. For images disturbed by speckle noise, the
classifier is able to assemble enhanced views of the same target
image into adjacent regions. For the input x belonging to cate-
gory c, we predict the category of x by computing its transformed
expectation distribution

S(x) = argmax
c∈Y

Et∼Γ(lc(f(t(x))) = c). (9)

Here, lc(.) is the logical value of the category. The category
distribution expectation Et∼Γis maximized by aggregating the
SAR image features through multiple speckle noise processing.
Algorithm 1 is a pseudocode based on DCA–SSL, which sum-
marizes the ideology of this article.

IV. EXPERIMENT AND DISCUSSION

A. Experiment Setup

In our experiment, the MSTAR dataset [1], [53] is introduced
to prove our method’s effectiveness. The database includes

X-band SAR images of multiple targets with 0.3 m × 0.3 m
resolution. Before the experiment, we cropped all images from a
size of 128× 128 to 64× 64 to remove background interference.
In this case, samples with a 17° pitch angle are categorized as
the training set and those with a 15° pitch angle as the testing
set. The quantity of each type samples in the experiments is
concluded in Table I. And the corresponding SAR targets and
their natural images are displayed in Fig. 4. To fit the actual
SAR target recognition anti-speckle noise testing, we proposed
a more demanding experimental strategy by adding speckle
noise to the testing set while nothing to training set. Since the
original SAR data are distributed with local speckle noise, our
experimental setup is to simulate the problem of inconsistent
noise distribution between the training set and the testing set.
The experiment results from subsections B, C, and D are all
based on the inconsistent noise setting.

The optimization of this model is conducted through Adam
optimizer. The pretraining learning rate is regulated at 0.3, while
the momentum parameter at 0.9 with the batch size of 512 and
the trained epochs of 300. In the fine-tuning phase, the learning
rate is 0.03 and 200 epochs are trained. The basis for the selection
of these parameters is described in detail in the subsequent
Section B.

Since computational consumption of SSL is associated with
the backbone network, the computational complexity of our
method depends on the depth of the backbone feature extrac-
tion network. Subsection B, Part 3 concludes our method has
the best performance for SAR image target recognition with
RestNet18 as feature extraction network. We calculated the
consumption performance of our method under this setting,
and Table II displays the consumption performance of our
method under the condition of a single image input. Params
is the total number of network parameters, and Flops is the
amount of floating point arithmetics. It is notable that in ad-
dition to the parameter values and FLOPs, commonly used by
CNNs to consume computational metrics, we also presented the
amount of multiplication metrics and the amount of memory
usage during the computation. They are denoted as “Madd”
and “Memory usage,” respectively. We may set the sample
batch size of 512 to accommodate unburdened computations on
our computer workstation that owns Nvidia 2080Ti with 11G
RAM.

B. Ablation Studies

1) Times of Data Augmentation: The time of data augmen-
tation for unsupervised pretraining affects the positive and neg-
ative sample contrastive pairs for network contrastive learning.
Traditionally, self-supervised contrastive learning is performed
twice for data augmentation, but the effect of two data aug-
mentations is not ideal due to the diversity of noisy views.
We would like to prove the consistency of an instance sample
under different levels of noise views. To study the influence
of the quantity of data augmentation on our method, we did the
experimental comparison shown in Table III. Setting the extreme
condition that the noise interference intensity is a = 0.7, it can
be observed that the fine-tuned recognition performs best when
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TABLE I
CATEGORIES AND QUANTITIES OF MSTAR DATASET

Fig. 4. Selection of samples from the MSTAR database and their natural images.

TABLE II
COMPUTATIONAL OF DCA–SSL WITH SINGLE IMAGE INPUT

TABLE III
RECOGNITION ACCURACY FOR THE TIMES OF DATA AUGMENTATION AND ITS

FINE-TUNED WITH THE NOISE INTENSITY OF THE MSTAR DATA VALIDATION

SET AS 0.7

the number of data augmentation for pretraining is 6. Therefore,
we chose to carry out six data augmentations.

2) Learning Rate: To determine the target recognition rate
of the model for speckle noise interference, we did a set of
comparison experiments to verify this and it was demonstrated
that the greater the intensity of the speckle noise, the worse the
recognition performance. We set the extreme noise condition of
0.7. In the fine-tuning stage, we selected the learning rate of 0.3,
0.03, 0.003, and 0.0003 to determine which parameter shows

Fig. 5. Learning rate and its recognition rate for 200 iterations fine-tuned when
the MSTAR data validation set noise intensity is adjusted to 0.7.

the best performance. Fig. 5 shows the results of comparison.
It was noticed that the model could converge quickly and keep
a high recognition rate when the learning rate was 0.03, so we
chose 0.03 as the learning rate in the fine-tuning stage.

3) Backbone: Since representation extraction of unsuper-
vised feature learning is a crucial procedure, we used MSTAR
data as input to study the unsupervised deep CNN which is
suitable for learning SAR images. Because the residual network
is a classical CNN network, RestNet (RestNet18, RestNet34,



3922 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE IV
RECOGNITION ACCURACY OF THE THREE METHODS WHEN THE TESTING SET SPECKLE NOISE INTENSITY IS 1.0

Fig. 6. Recognition rate of the fine-tuned feature extraction network for
unsupervised learning using different depths when the testing set speckle noise
interference intensity is set to 0.7.

RestNet50, and Re-stNet101) in PyTorch deep-learning archi-
tecture was employed in this article for recognition performance
at different depths. Also, we designed RestNet9 based on deep
residual. Fig. 6 shows the effect of unsupervised representation
learning after performing fine-tuning, and the speckle noise in
the testing was set at the fine-tuning stage set to 0.7. Equipped
with the best effect, RestNet18 is naturally selected as the
architecture for representation learning.

4) Iteration Number of Pretraining: The iteration number of
pretraining is likewise a hyperparameter of unsupervised learn-
ing. On this device, we visualized SAR image representation
learning with t-SNE [54] to turn high-dimensional vectors into
2-D vectors, as shown in right of Fig. 7. When the iteration of
pretraining reached 300, the representations of the same category
can all be close together, indicating that feature alignment has
been well performed, so we set the iteration number of pretrain-
ing to 300.

5) Pretraining and Feature Alignment: We now study the
effect of pretraining model with dual alignment idea on SAR
speckle noise view recognition. First, we verified the testing
accuracy of the backbone network RestNet18 after a random de-
gree of speckle noise augmentation. As our method set up a mo-
mentum update strategy and used a self-supervised pretraining
strategy, the MoCo with feature extractor RestNet18 was chosen
for study. In this article, random speckle noise augmentation was
also added in the pretraining phase, while noise was only added
to the testing set not the training set in the fine-tuning phase.
Table IV demonstrates our ablation learning of pretraining and
feature alignment. We set the noise intensity of the testing set

to 1.0 for proving the effectiveness of pretraining and feature
alignment. In particular, the unsupervised pretraining alone does
not distinguish the learned representations well, but with the idea
of dual alignment, the unsupervised representation learning can
be distinguished well. Fig. 7 shows the t-SNE plot of MoCo after
300 iterations of unsupervised noise view learning. Although
some of the features are clustered, it did not have an obvious
effect; on the contrary, the DCA demonstrated a significant
effect, which leads to the success of the downstream task.

C. Recognition Performance of Supervised Networks Under
Different Noise Intensities

Each experiment was repeated 10 times and the average test
accuracy was regarded as the recognition result. When training
labeled data, we apply some data augmentation operations, such
as random rotation, flipping, and cropping. Fig. 8 shows the con-
fusion matrix of the fine-tuned recognition rates for the testing
set after the same pretraining with different degrees of speckle
noise interference. Results show the excellent recognition rates
are maintained by the model under diverse noisy interference,
even just under one training round. Fig. 9 presents the image
results of the comparison algorithm on the original image and the
four noisy image sets. The mainstream neural networks maintain
high recognition rates for recognizing SAR targets without noise
interference; however, the recognition performance plummeted
after the addition of a little noise to the testing set. When the
parameter a is set to 1, the recognition rates of ResNet18,
RestNet50, SIN-CNN [12], EfficieNetV2, Wavelet-SRNet [14],
and RestNet18 with DWT, MFFA-SARNet [55], A_ConvNet
[1], and MFCNN [13] drop sharply from 96.19%, 94.88%,
98.81%, 99.30%, 97.5%, 97.81%, 95.78%, 95.21%, and 96.88%
to 74.65%, 61.47%, 36.30%, 57.5%, 50.33%, 56.28%, 53.96%,
63.59%, and 52.15%, respectively. In the same condition, the
recognition rates of our method only show a mild decrease
from 98.21% to 93.60%. Moreover, traditional methods perform
worse in recognition when a is set to 0.9, 0.8, and 0.7, indicating
a great impact of speckle noise on the recognition performance
of the neural network. Nevertheless, in this case, our method can
still maintain the recognition rate over 93.4%, which probably
thanks to the fact that the neural network has learned to maximize
the relationship between the category information in different
threshold cases.

D. Recognition Performance of Self-Supervised Networks
Under Different Noise Intensities

Comparison between the proposed method and the main-
stream SSL methods(SimCLR [39], MoCo-v2 [40], BYOL [42],
SimSame [43], SwAV [44], AdCo [25], and RLRS [26]) as well
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Fig. 7. T-SNE visualization of unsupervised learning representations after 300 iterations of the MSTAR training set. Left: MoCo; right: DCA-SSL (ours). Colors
represent categories.

Fig. 8. Confusion matrix of fine-tuned recognition rates for testing sets with different degree of speckle noise interference after once pretraining.

as SSL methods based on SAR ATR (RotANet [56], CLPL-SAR
[57], and MS-SSL [58]) was still conducted with the dataset
set in experiment setting. To ensure a fair comparison, the
unlabeled SAR images were also mixed with speckle noise in
the pretraining phase with 300 epochs while with 200 epochs
in the fine-tuning phase. During the fine-turning phase, we used
only 10% of the training data. In addition to fine-tuning, linear
evaluation was applied to this experimental evaluation as an

alternative way of SSL model evaluation. After a pretrained
model was obtained in the SSL phase, the linear evaluation
model was updated with parameters only for the fully connected
layer of the model by virtue of a few labeled data, and the
other weights of the model were kept fixed. The literature [39]
found that linear evaluation was slightly less accurate than the
strategy of fine-tuning, and all parameters were updated for the
downstream recognition task. Table V records the performance



3924 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 9. Recognition rates of 10 methods under four intensities of speckle noise
interference.

TABLE V
COMPARISON OF RECOGNITION ACCURACY (%) OF MSTAR DATASET ON

SELF-SUPERVISED LEARNING METHODS UNDER DIFFERENT THRESHOLDS OF

SPECKLE NOISE

of various SAR target recognition under different degrees of
speckle noise interference, which explicitly demonstrates the
superiority of our method in SSL.

TABLE VI
RECOGNITION ACCURACY (%) OF DCA–SSL WITH VARIOUS LEVEL OF

SPECKLE NOISE DATA AND SMALL-SAMPLE NUMBER

E. Recognition Performance of DCA–SSL With Various Level
of Speckle Noise Data and Small Sample

It was noticed that the recognition rate of our method can still
be maintained at a high level when the training samples were
reduced. We took the MSTAR data training set as 1:2, 1:3, 1:4,
1:8, 1:16, and 1:32, respectively, and added different thresholds
of speckle noise to the testing set as in the previous experimental
setup method, while left the training set untreated. Table VI and
Fig. 10 show the recognition rates of different levels of speckle
noise data in small-scale training samples. When the training
samples were gradually reduced, the recognition performance
of our method did not drop significantly, which showed that our
method can be well applied in SAR target recognition scenarios
with insufficient data volume and is less sensitive to speckle
noise.

V. DISCUSSION

We selected some SAR testing set samples and added different
levels of speckle noise interference to perform interpretability
analysis of the DCA–SSL method. Fig. 11 shows the Grad-cam
[59] attention maps of randomly selected 2S1 targets and their
speckle noise interference images. 2S1(a) refers to the result
of layer4 pretrained by RestNet18 and 2S1(b) stands for the
result of MoCo (feature extractor is RestNet18) pretrained and
fine-turned. We found that RestNet18 and MoCo can focus on the
target without speckle noise interference; on the contrary, after
being added with speckle noise, both networks have difficulty
in the attention of the target center area, which indicates that the
noise interference has a greater impact on the target recognition.
MoCo is able to focus on some target areas or near the target
areas, but as the interference intensity increases, the larger the
focus bias of the network will be. While DCA–SSL is able
to focus on the target regions, as shown in Fig. 12, which
is the Grad-cam attention map of MSTAR 10 categories of
targets after DCA pretraining and fine-tuning. These Grad-cam
attention maps validate that our method can learn the similarity
of SAR images under multiview speckle noise and maintain the
consistency induction bias, which improves the recognition rate
of SAR ATR for downstream tasks.
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Fig. 10. Fine-tuned/linear evaluation on small-sample database with speckle noise disturbances.

Fig. 11. Visualization of 2S1 targets under speckle noise interference and their Grad-Cam attention maps, upper: RestNet18 layer4 Grad-Cam attention maps,
lower: Moco fine-tuning stage layer4 Grad-Cam attention maps.

Fig. 12. Some MSTAR testing sets of speckle noise views and their corresponding Grad-CAM attention maps, which is the outcome of DCA-SSL in fine-tuned
stage by selecting layer.
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DCA–SSL still performs better in the case of small samples,
which proves the superiority of SSL on small-sample learning.
Classical contrastive learning methods [38], [39], [40], [41],
[42] require large amounts of unlabeled data for comparison
in upstream tasks. Tens of thousands unlabeled data are re-
quired in unsupervised learning, which are crucial to improve
the network’s ability to discriminate between “similar” and
“dissimilar.” Thus, when unsupervised learning knowledge is
transferred to downstream tasks, high classification accuracy can
be achieved with few labeled data. We performed six times data
augmentation of the SAR samples among the limited number
of training. We indirectly expanded the number of samples
for unsupervised pretraining, and considered the original SAR
samples with views under different threshold speckle noise
as positive samples, which is definitely quite helpful for the
excellent performance of small-sample SAR target recognition
for downstream tasks.

Despite the good performance of our method on speckle noise
resistant SAR target recognition, the limitation of DCA–SSL
is that hundreds and thousands of unlabeled SAR categories
similar to downstream task are required during pretraining stage.
In some extreme SAR target recognition domains, obtaining
these data may not be easy.

VI. CONCLUSION

In this article, aiming to cope with the challenge of speckle
noise on SAR target recognition, we proposed to use DCA,
including pseudolabel consistency alignment and FA to weaken
the gap between speckle noise views and original views. We
began with self-supervised representation learning from speckle
noise tolerant features and then undertook a target recogni-
tion task under interference conditions. We verified the well
performance of the proposed SAR image target recognition
method when various threshold of speckle noise was intro-
duced. Compared with the traditional supervised networks
used for speckle noise resistance target recognition and the
mainstream self-supervised networks, our method is optimal
and has the advantage of being highly resistant to speckle
noise. Extensive experiments conducted on MSTAR dataset
demonstrate the proposed method achieves optimal recogni-
tion results and possesses the advantage of strong resistance
to speckle noise. Despite of small-sample condition, satisfy-
ing recognition performance can still be located in the pro-
posed method, which provides feasible solutions for applica-
tion in SAR target recognition scenarios with insufficient data.
In the future, anti-speckle noise SAR target recognition with
extremely small amount of SAR target samples during unsu-
pervised learning will be studied, hoping that excellent anti-
speckle noise SAR target recognition performance would still be
achieved.
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