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Digital Soil Mapping Based on Fine Temporal
Resolution Landsat Data Produced
by Spatiotemporal Fusion

Haoxuan Yang ™, Qunming Wang

Abstract—Multitemporal Landsat-8 satellite images with fine
spatial resolution (i.e., 30 m) are crucial for modern digital soil
mapping (DSM). Generally, cloud-free images covering bare topsoil
are common choices for DSM. However, the number of effec-
tive Landsat-8 data is greatly limited due to cloud contamination
coupled with the coarse temporal resolution, and interference of
material covering topsoil in most of the months, hindering the
development of accurate DSM. To address this issue, temporally
dense Landsat images were predicted using a spatiotemporal fusion
method to improve DSM. Specifically, the recently developed vir-
tual image pair-based spatiotemporal fusion method was adopted
to produce simulated Landsat-8 time-series, by fusing with 500-m
moderate resolution imaging spectroradiometer time-series with
frequent observations. Subsequently, the simulated Landsat-8 data
were used for distinguishing different soil classes via a random
forest model. Training and validation samples of soil classes were
collected from legacy soil data. Our results indicate that the simu-
lated data were beneficial for improving DSM owing to the increase
in class separability. More precisely, after combining the observed
and simulated data, the overall accuracy and kappa coefficient
were increased by 3.099% and 0.047, respectively. This article
explored the potential of the spatiotemporal fusion method for
DSM, providing a new solution for remote-sensing-based DSM.

Index Terms—Digital soil mapping (DSM), Landsat-8, soil
classes, spatiotemporal fusion.

1. INTRODUCTION

OIL is critical for ecosystems cycling and plays a consid-
S erable role in carbon cycling, food security, biodiversity,
environmental quality, and human activity [1], [2], [3], [4]. To
sustainably utilize the soil resources, it is necessary to accurately
distinguish soil classes on the Earth’s surface. Traditional field
surveys based on soil profiles are laborious, resulting in spa-
tially sparse measurements of soil profiles. Moreover, spatial
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variations of the soil profile cannot be accurately portrayed.
However, the results of traditional field surveys are important
data sources for legacy soil data, which have been used as
key data in many fields. With the continuous development of
information technology, a number of digital soil mapping (DSM)
methods have been developed [5], [6]. Reliable DSM can be
achieved accurately by coupling the spatial differences between
soil and environmental factors [7], [8], [9].

As significant environmental factors, legacy soil data are
always used for DSM, which can provide an approximate
description of the soil information. Pahlavan-Rad et al. [10]
demonstrated that the use of legacy soil data can improve the
classification accuracy. Kempen et al. [11] accomplished DSM
in The Netherlands using legacy soil data based on a multino-
mial logistic regression approach. An accuracy improvement of
approximately 6% indicates that the use of the legacy soil data
is valid. Legacy soil data can also be used as prior information.
Specifically, multiple samples collected from legacy soil data
are commonly used for training and validation purposes. Collard
et al. [12] updated the soil map of France by using soil samples
acquired from legacy soil data. It should be noted that fuzzy
boundaries in legacy soil data can provide unavoidable uncer-
tainties, which can affect the DSM accuracy. To address this
issue, Yang et al. [13] extracted training and validation samples
from the core areas of legacy soil data to ensure accurate DSM.
In addition to legacy soil data, optical satellite images are also
important environmental factors for DSM, as they provide mul-
tiple reflectance bands with different wavelengths. Considering
that different wavelengths of the reflectance bands are sensitive
to disparate information for topsoil, the difference in topsoil can
be characterized by satellite images [14], [15]. This type of data
can provide continuous spatial observation, frequent updates,
and convenient downloads [16], [17]. Accordingly, Kornblau
et al. [18] used multispectral satellite images to generate soil
classification maps, and Dobos et al. [19] supplied a normalized
difference vegetation index (calculated from satellite images) in
DSM to characterize vegetation phenology [20]. With topsoil
information being the primary DSM target, Flynn et al. [21]
developed a soil adjusted vegetative index for predicting soil
properties at a farm-scale to intensify topsoil information.

Monotemporal data are common choices for DSM; however,
the accuracy of using monotemporal data is generally lim-
ited, since many inevitable factors can amplify the uncertainty,
such as abnormal climatic conditions and artificial land cover
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changes. Multitemporal data have been widely applied in DSM
to increase the accuracy. By extracting common information and
capturing subtle spectral difference, the uncertainty of monotem-
poral data can be effectively reduced [22], [23]. Both Maynard
et al. [24] and Yang et al. [13] demonstrated that numerous
optical satellite data can improve the reliability of DSM. Dematte
et al. [25] developed a procedure to improve DSM accuracy
by composing a representative image based on multitemporal
satellite images. Therefore, the use of multitemporal data is a
preferable choice in DSM. It should be noted that, however, the
interference of dense land coverings (e.g., vegetation, crops, and
snow) is the main obstacle for DSM using satellite images, as
they contaminate the spectral reflectance of topsoil. Specifically,
to acquire the topsoil spectral reflectance directly, the satellite
images for DSM are always selected in a period when the topsoil
is bare (called the bare soil period) [26], [27], [28]. However, the
bare soil period is always short for most of the areas. This means
that it can be very difficult to collect sufficient usable satellite
images for DSM in the required period.

It has been acknowledged widely that Landsat-8 satellite im-
ages are common choices for DSM [29], [30], [31], as the 30-m
spatial resolution can clearly describe the spatial texture at a large
scale [32], [33], [34]. Moreover, the stable data quality and long
on-board periods are beneficial for DSM using multitemporal
data. However, there are still three problems constraining the
development of DSM using multitemporal Landsat-8 data. First,
optical satellite images of the study area should be cloud-free, but
optical satellite images are easily contaminated by atmospheric
conditions, resulting in the gaps in the data [35], [36]. Second,
Landsat-8 satellite images have a coarse temporal resolution
(i.e., 16-day), leading to limited number of effective images. This
can be further exacerbated by the limited usable data in the short
bare soil period, as mention earlier. Third, for distinguishing
soil classes, the class separability is small using images at
limited time points. This means that the available optical satellite
data are not sufficient for DSM. Therefore, it is worthwhile to
increase the number of usable multitemporal Landsat-8 satellite
images to improve DSM, especially in the bare soil period of
study area.

In this article, a strategy for improving DSM was proposed.
Currently, spatiotemporal fusion has shown its applicability in
increasing the temporal of Landsat time-series. Specifically,
by fusing 500 m, daily moderate resolution imaging spectro-
radiometer (MODIS) data with 30 m, 16-day Landsat data,
30 m, daily Landsat time-series can be simulated [37], [38].
Based on spatiotemporal fusion, this article simulated Landsat-8
time-series data with fine temporal resolution in the bare soil
period, which were applied jointly with the observed Landsat-8
data for DSM. We adopted a random forest (RF) model to
classify different soil classes and demonstrated that the devel-
oped spatiotemporal fusion method is beneficial for improving
DSM. By introducing simulated Landsat-8 images produced
by spatiotemporal fusion, the separability between different
soil classes can be increased, improving the accuracy of DSM.
Consequently, the proposed strategy provides new insights for
future DSM research by increasing the temporal resolution of
Landsat-8 data.
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Fig. 1. Overview of the study area (including location and exhibition of the
legacy soil data) and distribution of the samples.

II. DATA
A. Study Area

As shown in Fig. 1, the study area (125°34'-126°21'E,
47°01'-47°16'N) is located in Heilongjiang Province, China,
which covers approximately 2360 km?. The annual average
temperature and precipitation are approximately 2.9 °C and
480 mm, respectively. The climate type is monsoon climate
of medium latitudes (i.e., Dwa in the Koppen—Geiger climate
classification system). Hence, it is rainy and warm in the summer
but dry and cold in the winter. This area is called the black soil
region by the local inhabitants because the soil surface appears
black. In China, the soil in the black soil region is a valuable
resource because of its abundant nutrients, which is suitable for
cultivation [39]. According to the World Reference Base for Soil
Resources, there are three primary soil classes in the study area,
including Phaeozems, Chernozems, and Cambisols (Fig. 1). It
should be noted that the three soil classes have similar spectral
curves, since the surface of the Phacozems and Chernozems
is covered by black or dark humus, and the spectral curves of
Cambisols are similar to those of the adjacent soil classes [40].

Based on basic land cover data and visual interpretation, land
use types were classified as farming and construction land. Only
farming land was extracted for DSM to ensure the reliability
of classification. Most of the extracted farming land is used
for cultivation, in addition to land that is easy to waterlog and
salinize. Therefore, more than 80% of the farming land is used
for cultivation, and the remainder is grassland. Annual crops,
such as corns and soybeans, play a dominant role due to climatic
conditions. According to the cultivation habit, almost all crop
residues are used for burning and feeding livestock by local
farmers. Meanwhile, cultivated land is ploughed from the end
of March to the beginning of April every year, indicating that the
topsoil can be directly exposed without a large area of vegetation
and snow cover (Fig. 2). Generally, the crop growing period is
from June to September, and the coldest period of the year is from
November to February. As a result, the period after ploughing
and before crop growth is considered the bare soil period for
cultivated land (i.e., April and May).

B. Legacy Soil Data

The legacy soil data in China were completed in the 1980 s
based on the second national soil survey of China, as shown in
Fig. 1. Although the data are still widely used in studies, the
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Fig. 2. Photograph of the soil surface in the farming land after ploughing (in
the bare soil period).

TABLE I
DATE (MM-DD-YY YY) OF SATELLITE IMAGES FOR DSM (/ REPRESENTS
THE AVAILABILITY OF THE DATA)

Date Landsat-8 | MODIS Date Landsat-8 | MODIS
04-28-2018 v v 04-25-2018 v
05-30-2018 v v 05-09-2018 v
04-15-2019 v v 05-11-2018 4
04-11-2017 v 05-18-2018 v
04-15-2017 4 05-19-2018 v
04-21-2017 v 05-31-2018 v
05-02-2017 v 04-02-2019 4
05-08-2017 v 04-11-2019 v
05-09-2017 v 04-12-2019 v
05-25-2017 v 04-16-2019 v
04-04-2018 v 04-19-2019 4
04-06-2018 v 04-21-2019 v
04-07-2018 v 04-29-2019 v
04-09-2018 v 05-02-2019 v
04-15-2018 v 05-09-2019 v
04-22-2018 v 05-29-2019 v

uncertainty of the legacy soil data is unavoidable due to back-
ward field survey technology and slow update (approximately
40-year temporal interval).

C. Satellite Images

The study period of interest was from 2017 to 2019. By
screening, only three cloud-free observed Landsat-8 images in
the bare soil period (April and May) were collected for the DSM,
as the remaining images were contaminated by atmospheric
conditions. Meanwhile, 32 scenes of cloud-free MODIS satellite
images in this period were employed in this article. The detailed
image dates are listed in Table I. Six surface reflectance bands
in both Landsat-8 and MODIS data were considered in this ar-
ticle, including blue, green, red, near infrared (NIR), shortwave
infrared 1 (SWIR1), and shortwave infrared 2 (SWIR2). The
selection, processing, and download of the satellite data were
performed using the Google Earth Engine [41], [42].

D. Sample Collection

We collected training and validation samples from legacy
soil data, following three principles. First, the samples were
collected in the core area to prevent original errors due to
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the fuzzy boundaries of the soil classes. Second, for the same
soil class, the samples were collected separately in different
areas. This is because the same soil class can exhibit disparate
spectral reflectance in different regions. Third, to ensure that
the samples were spatially uniform, the number of samples for
each soil class is affected by the corresponding cover area [43].
Based on these three principles, 100 samples in Phacozems,
80 samples in Cambisols, and 60 samples in Chernozems were
randomly collected (Fig. 1). To minimize the effects of abnormal
spectra extracted from a single pixel, all collected samples were
executed outwards for buffer processing, at a distance of 50 m.
Processed samples were randomly divided into training and
validation samples, with a training to validation sample ratio of
1:1 for each soil class. The final training and validation samples
include 636 and 638 pixels of Phaeozems, 513 and 524 pixels
of Cambisols, and 390 and 387 pixels of Chernozems.

III. METHODS

A. Spatiotemporal Fusion Method

The virtual image pair-based spatiotemporal fusion (VIPSTF)
method proposed by Wang et al. [38] has shown a flexible and
stable performance in blending MODIS and Landsat data. It
should be emphasized that the VIPSTF method requires known
image pairs as input, that is, the MODIS and Landsat-8 images
at the same time (on 04-28-2018, 05-30-2018, and 04-15-2019
in this article). Based on the known image pairs, this method
was used to generate simulated Landsat-8 images by fusing the
available MODIS images. Specifically, each simulated Landsat-
8 image is expressed as follows:

L_T; = Lyp + AL (1)

where IAJ_Tt is the simulated Landsat image at time 7} and
AL is the 30-m increment Landsat-8 image of the model.
Lypp is the virtual Landsat-8 image, which is produced with
a linear combination of the multiple known Landsat-8 images,
as follows:

L\/lp = Z G,Z'L_Ti + b (2)

1=

where a; is a coefficient for the ith image L_T;, b is a constant,
and n refers to the number of known Landsat-8 images (n = 3
in this article). According to the assumption of scale invariance
[44], the optimal coefficients a; and b are predicted by

M_T, =Y a;M_T; + b+ AM 3)
i=1
where M_T; and M_T; refer to known MODIS images at
the corresponding time of Landsat-8 images. AM denotes the
residual image of the regression model in (3).
The increment image AL in (1) is predicted based on the
following spatial weighting scheme:

AL(w,y0) = Y wi AM(zy, yk) “4)
k=1
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where (xy,yy) is the spatial location of the similar pixels
surrounding the center pixel (xg, yo), wy represents a weight
acquired from the distance between the center pixel and the
kth surrounding similar pixels, and s refers to the number of
surrounding similar pixels. In this article, s was set to 30. To
match the spatial resolution of Landsat-8, the AM image was
interpolated to 30 m in advance using the bicubic method.

B. Classification Model

The RF method was used for DSM based on the observed
and simulated Landsat-8 images. The RF model is an ensemble
learning method consisting of multiple decision trees [45], [46].
Owing to the random and bootstrap-based sampling technique,
the RF model can effectively hinder overfitting. Therefore, many
articles have adopted the RF model for regression and classifi-
cation [47], [48], [49]. As a key parameter, the number of trees
(n_tree) should be optimized by testing the out-of-bag (OOB)
error in the RF model. Specifically, n_tree was set to 150 in this
article. In addition, the importance of each independent variable
is provided by the RF model according to the OOB error, which
is always used to analyze the contribution degree of different
independent variables to the model.

For the classification model, the soil classes in the training
samples (extracted from Section II-D) were used as dependent
variables. The values of multiple spectral reflectance bands cor-
responding to the location of the training samples were regarded
as independent variables, which are extracted from different
Landsat-8 data. Specifically, the classification model can be
constructed using the dependent and independent variables.
Subsequently, complete reflectance bands corresponding to the
independent variables were injected into the model to acquire
the results of the soil classes.

C. Class Separability

To illustrate that the increase of usable data can improve the
DSM, the divergence between soil classes o and S (i.e., Dqag)
was calculated, which is a widely used method for measuring
the class separability in remote sensing images [50], [S1]. The
detailed calculation of D, is as follows:

Dag = 5 (Ha = pg) (Cal + C/El) (Hta — 11p)

1 ~1 -1
+ 5T [(ca—cﬁ) (cﬁ rC )} )
where i, and C,, are the mean vector and covariance matrix
of the normal distribution for soil class «, respectively. Tr
represents a trace function. D, g varies from O to oo, and a higher
D, 3 means a stronger separability between classes o and 3.

D. Validation Strategy

The validation contains two aspects in this article, that is,
validating the spatiotemporal fusion method and DSM accuracy.
For the spatiotemporal fusion method, the simulated Landsat
images were validated with the observed Landsat images on
04-28-2018, 05-30-2018, and 04-15-2019. Four quantitative
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TABLE II
EVALUATED RESULTS OF THREE SIMULATED LANDSAT IMAGES (OBSERVED
LANDSAT-8 IMAGES ON 05-30-2018 AS REFERENCE)

CcC RMSE ubRMSE Bias

Ideal 1 0 0 0
Blue 0.644 0.011 0.009 0.005
Green 0.630 0.012 0.010 0.005
Red 0.576 0.017 0.016 0.005
NIR 0.761 0.036 0.035 0.009
SWIR1 0.787 0.039 0.036 0.014
SWIR2 0.792 0.037 0.035 0.010
Mean 0.698 0.025 0.024 0.008

evaluation indices were utilized to evaluate the accuracy of the
simulated images, including the correlation coefficient (CC),
root mean squared error (RMSE), unbiased RMSE, and bias
(Bias).

For the DSM accuracy, the validation samples extracted from
Section II-D were adopted to evaluate the mapping. Based on a
confusion matrix, overall accuracy (OA) and kappa coefficient
(Kappa) were calculated to describe the accuracy of the classifi-
cation. In addition, the user’s accuracy and producer’s accuracies
were used to evaluate the accuracy of each soil class.

IV. EXPERIMENTS AND RESULTS
A. Experimental Design

In this article, we constructed three image pairs (MODIS-
Landsat-8) based on available data. Based on the 29 acquired
scenes of MODIS time-series images, 29 scenes of simulated
Landsat-8 time-series images were generated using the VIPSTF
method, which were subsequently employed for DSM. To il-
lustrate the advantages of the simulated images, we executed
three DSM tests using different data, including three scenes
of observed images (i.e., Observed), 29 scenes of simulated
images (i.e., Simulated), and a combination of observed and
simulated data (i.e., Observed + Simulated). Both mono and
multitemporal data were adopted for the DSM. The detailed
flowchart is presented in Fig. 3.

B. Evaluation of the VIPSTF Method

Each of the three observed Landsat-8 images was simulated
(e.g., the data on 05-30-2018), in turn, with the other two image
pairs as known data for fusion (e.g., the data on 04-28-2018
and 04-15-2019). The three types of satellite data, including
MODIS, observed Landsat-8, and simulated Landsat-8 images,
were exhibited in Fig. 4. We randomly selected three subregions
to display the spatial details of the data. It can be seen that the
Landsat-8 images have finer spatial resolution than the MODIS
data. Thus, the Landsat-8 images are more suitable for DSM
than MODIS images. Moreover, we found that the observed and
simulated Landsat-8 images have similar spatial texture.

The quantitative evaluation results for the simulated Landsat-
8 images on 05-30-2018 are depicted in Table II. It is seen that
the mean CC and RMSE of the simulated Landsat-8 images are
0.698 and 0.025, respectively. According to CC, the SWIR bands
(i.e., SWIR1 and SWIR?2) show greater accuracy than the visible
bands (i.e., blue, green, and red). In addition, the blue band has
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: Observed MODIS image

: Observed Landsat-8 image

L | : Simulated Landsat-8 image
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Fig. 3. Flowchart of DSM by using different input images.
TABLE III

DIFFERENT SOIL CLASSES

SIMILARITY (CC) AND DIFFERENCE (RMSE) IN SPECTRAL PROFILE
(EXTRACTED FROM THE OBSERVED IMAGES ON 05-30-2018) BETWEEN

Phaeozems vs Phaeozems vs Chernozems vs
Chernozems Cambisols Cambisols
CcC 0.999 0.983 0.981
RMSE 0.003 0.013 0.015

Fig. 4. Spatial-temporal fusion results of the study area (on 05-30-2018; red,
green, and blue as RGB).

the smallest RMSE among the six bands. Overall, all six bands
have small Bias values, with an average value of 0.008.

To demonstrate that the simulated Landsat-8 images are sim-
ilar to the observed Landsat-8 images, we used the training
samples to extract spectral reflectance curves from the observed
and simulated Landsat-8 images for the three soil classes. The
spectral reflectance curves are acquired from the image on
05-30-2018, as shown in Fig. 5. With respect to the three soil

classes, it can be seen from Table III that the spectral reflectance
curves of Phaeozems and Chernozems are greatly similar, with a
CC and RMSE of 0.999 and 0.003, respectively. This is because
that the topsoil of the Phaeozems and Chernozems is covered
by black or dark humus. Additionally, the spectral reflectance
curves of the Cambisols are slightly different from those of the
Phaeozems and Chernozems, especially for the NIR, SWIRI,
and SWIR2 bands. Theoretically, the spectra of Cambisols are
similar to those of adjacent soil [40]. However, sparse vegetation
in grasslands affects the spectra of Cambisols, resulting in an
increase in the NIR value and a decrease in the SWIR value.

C. Comparison Between DSM Results Produced Using
Different Inputs

Based on the RF model, the classification results of the three
tests are portrayed in Fig. 6 (for using monotemporal data, only
the optimal results are shown). It is seen that using multitemporal
data is more accurate than using monotemporal data. Moreover,
the classification results for the simulated images are more
satisfactory than those for the observed images. This indicates
that the numerous simulated images, which were generated by
the spatiotemporal fusion strategy (e.g., VIPSTF), are more ef-
fective for DSM than insufficient observed images. Additionally,
compared with using the observed or simulated images alone, the
combination of the observed and simulated images can reduce
the classification errors and image noise, further eliminating
classification uncertainty.
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The results of the quantitative assessment are presented in
Table IV. For monotemporal DSM, we found that using observed
images has a higher accuracy than using simulated images.
The optimal OA and Kappa of monotemporal observed data
(on 05-30-2018) are 79.342% and 0.684, which are 1.614%
and 0.024 larger than those of monotemporal simulated data
(on 05-02-2019). Meanwhile, the use of multitemporal data
can produce more accurate results than optimal monotemporal

data. The OAs for observed and simulated multitemporal data
are 81.536% and 83.925%, which are 2.194% and 6.197%
larger than that for observed and simulated monotemporal data,
respectively. Furthermore, the accuracies of DSM can be further
increased by using both observed and simulated images, with an
OA of 84.635% and a Kappa of 0.766, which are 0.710% and
0.011 larger than those obtained using the simulated images,
respectively.
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TABLE IV

STATISTICAL METRICS FOR DSM

Mono-temporal .
(optimal) Multi-temporal
Ob J OA 79.342% 81.536%
Served "Kappa 0.684 0.719
Simulated OA 77.728% 83.925%
Kappa 0.660 0.755
Observed OA 84.635%
+Simulated | Kappa 0.766
16000
[ Observed
14000 I Simulated
I Observed-+Simulated
12000
10000
8000
oF 6000
150°
100
50
Cambisols-Chernozems Pl Cambisols Ph Chernozems
Fig.7.  Dqg of using different satellite images (D, g refers to the separability

between soil classes « and ).

D. Evaluation Based on Separability Between Soil Classes

We calculated the D,z (the separability between soil classes
« and () of using different images. Fig. 7 shows that using the
observed and simulated data jointly yields the optimal D,g for
classification, and the separability is the largest in all cases. We
also found that the D, g of the simulated data is higher than that
of the observed data. This is because sufficient common infor-
mation can be extracted (including 29 scenes of simulated data).
However, there are only three scenes of the observed data, which
are difficult to provide sufficient common information because
of the low divergence. In addition, the D, 3 between Phaeozems
and Chernozems is distinctly smaller than that between other
soil classes due to their similar spectral reflectance curves.
Conversely, since the spectral reflectance curve of Cambisols is
different from that of Phaeozems and Chernozems, Cambisols
can be easily distinguished than Phaecozems and Chernozems.

To analyze the relationship between the separability and
accuracy of the DSM, we gradually increased the number of
simulated data in the independent variable based on the observed
satellite images, and calculated the D,z and accuracy. Since
subtle changes in the independent variable cannot improve the
DSM, the increased step of the simulated images was set to 5. For
instance, the independent variable contains the observed images
and increasing simulated images (e.g., Observed + 5, Observed
+ 10, etc.). As shown in Fig. 8, the increase of the simulated
data gradually improves the accuracy of the DSM. Meanwhile,
the separability between disparate soil classes also increases.
Hence, separability is positively correlated with the accuracy of
DSM.
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Fig. 9. User’s and producer’s accuracies of each soil class.

E. Accuracy of Each Soil Class

To analyze the accuracy increase for each soil class, we
calculated the user’s and producer’s accuracies based on the
three tests. It can be seen from Fig. 9 that the three soil classes
show greater accuracies through the use of multitemporal data,
which are larger than 70%. With respect to Phaecozems and Cher-
nozems, the user’s and producer’s accuracies based on the ob-
served images are smaller than those using the simulated images.
The results indicate that the use of the simulated data is more
effective for improving the accuracy of these two soil classes.
However, itis difficult to distinctly increase the accuracy of Cam-
bisols by using simulated data alone. When the observed and
simulated data are coupled, both the user’s and producer’s accu-
racies of the three soil classes are further increased, which are
larger than 80%. Thus, the incorporation of simulated data is sig-
nificant for improving the accuracy of most soil classes in DSM.

V. DISCUSSION
A. Contribution of Different Inputs in the RF Model

To evaluate the contribution of different independent variables
for DSM, all independent variables (i.e., including observed
and simulated images) were used for analysis based on the RF
model. The importance was normalized before comparison. The
importance of the six bands is depicted in Fig. 10(a). We found
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that the contribution of the blue, SWIR1, and SWIR2 bands are
higher than that of the remaining bands. Meanwhile, the three
wavelength ranges of the blue, SWIR1, and SWIR2 bands are
similar to those of spectral characteristics extracted by Zhang
et al. [40] when allocating soil individuals to soil classes in
laboratory. This means that the blue, SWIR1, and SWIR2 bands
are more suitable for distinguishing soil classes in the black soil
region than the other bands in the Landsat-8 image. Fig. 10(b)
refers to the data importance on different dates, which displays
the top 15 of all the data. It is seen that many of the simulated
data can provide a more important contribution to the optimal
DSM than the observed data. For example, the simulated data
on 04-22-2018 have the highest importance among all the data.
For the observed data, the highest contribution is provided by the
data on 05-30-2018, ranking the 10th highest contributor overall.
These results indicate that the information acquired from spa-
tiotemporal fusion plays a significant role in the DSM process.

B. Spatial Difference Between the DSM Result and Legacy
Soil Data

The proposed spatiotemporal fusion strategy can improve
the accuracy of DSM. However, spatial difference still exists
between the produced DSM result and legacy soil data. To
analyze the reasons, we portrayed the spatial difference between
the optimal DSM result and legacy soil data. As showninFig. 11,
we found that the difference is always located at the boundaries
of the different soil classes. There are three primary reasons
for the difference. First, the spectral reflectance of topsoil for
the three soil classes is similar, which increases the difficulty in
the detection of the boundaries between different soil classes.
Second, land use change and land degeneration in some areas
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change the reflectance of the topsoil spectra, leading to the
difference in classification. Third, complex terrain can affect
DSM,; for example, the mapping in the western area is more
accurate than that in the central and eastern areas. This is because
that terrain can determine the soil classes [52]. In the study area,
the western terrain is relatively flat, whereas the terrain in the
central and eastern regions is relatively complex.

C. Uncertainty and Future Prospect in DSM

Although the proposed method can effectively improve the
accuracy of DSM, there still exist inevitable uncertainties in
DSM. First, the legacy soil data were generated in the 1980 s.
A temporal gap of approximately 40-year can influence the
reliability of the legacy soil data. Although we collected samples
from the nonboundary area, these errors cannot be ignored. Sec-
ond, considering the different ploughing methods for disparate
crop types, residual straw and vegetation can still disturb the
acquisition of topsoil spectral information in some areas. It is
difficult to ensure that the topsoil spectral information is acquired
from pure pixels, leading to the uncertainty in the samples.

As a reconstruction method for remote sensing data in the
temporal domain, the spatiotemporal fusion method provides
simulated data to improve the DSM. Similarly, a reconstruction
method for remote sensing data in the spatial domain is inspiring.
Specifically, the satellite images contaminated by clouds and
haze also contain partly effective information. By removing
clouds and haze, more cloud-free images can be simulated
[35], [53]. Therefore, DSM can further be enhanced based on
the cloud removed results. Additionally, only optical satellite
images were employed for accurate DSM in this article. It
should be noted that, however, the data from various sources
can also provide useful information (e.g., terrain, moisture,
and geomorphic information). Theoretically, a combination of
optical satellite images and data from various sources has the
potential to further improve DSM.

VI. CONCLUSION

In this article, we explored the potential of the spatiotemporal
fusion method for improving DSM, solving the insufficient
data of Landsat-8 satellite images for DSM. Specifically, the
advanced VIPSTF method was adopted to generate temporally
more frequent Landsat-8 images by fusing the MODIS data with
fine temporal resolution. The RF classifier was employed for
distinguishing different soil classes. The results indicated that
by introducing simulated Landsat-8 data, the class separability
is greatly increased, resulting in the improvement of DSM in
terms of accuracy. More precisely, the OA and Kappa of DSM
were increased from 81.536% and 0.719 (using only observed,
temporally sparse Landsat-8 data) to 84.635% and 0.766 (us-
ing observed and simulated, temporally fine Landsat-8 data),
indicating that the simulated Landsat-8 data produced from
spatiotemporal fusion can be used for enhancing DSM. Thus,
the developed method can overcome the limitation of insufficient
observed Landsat data in DSM, especially in the short bare soil
period.



YANG et al.: DIGITAL SOIL MAPPING BASED ON FINE TEMPORAL RESOLUTION LANDSAT DATA PRODUCED BY SPATIOTEMPORAL FUSION

[1]

[2]

[3]

[4]

[5]
[6]

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

REFERENCES

0. Coban, G. B. De Deyn, and M. van der Ploeg, “Soil microbiota as game-
changers in restoration of degraded lands,” Science, vol. 375, no. 6584,
Mar. 2022, Art. no. abe(0725.

G. Shi, Y. Wu, T. Li, Q. Fu, and Y. Wei, “Mid- and long-term effects of
biochar on soil improvement and soil erosion control of sloping farmland
in a black soil region, China,” J. Environ. Manage., vol. 320, Aug. 2022,
Art. no. 115902.

X. Wang, L. Wang, S. Li, Z. Wang, M. Zheng, and K. Song, “Remote
estimates of soil organic carbon using multi-temporal synthetic images and
the probability hybrid model,” Geoderma, vol. 425,2022, Art. no. 116066.
L. Duarte, M. Cunha, and A. C. Teodoro, “Comparing hydric erosion soil
loss models in rainy mountainous and dry flat regions in Portugal,” Land,
vol. 10, no. 6, 2021, Art. no. 554.

A. B. McBratney, M. L. Mendonca Santos, and B. Minasny, “On digital
soil mapping,” Geoderma, vol. 117, no. 1-2, pp. 3-52, 2003.

P. A. Sanchez et al., “Digital soil map of the world,” Science, vol. 325,
no. 5941, pp. 680-687, Aug. 2009.

B. Minasny and A. B. McBratney, “Digital soil mapping: A brief history
and some lessons,” Geoderma, vol. 264, pp. 301-311, 2016.

J. Padarian, B. Minasny, and A. B. McBratney, “Machine learning and soil
sciences: A review aided by machine learning tools,” Soil, vol. 6, no. 1,
pp. 35-52, 2020.

Y.Zhou, W. Wu, H. Wang, X. Zhang, C. Yang, and H. Liu, “Identification of
soil texture classes under vegetation cover based on sentinel-2 data with
SVM and SHAP techniques,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 15, pp. 3758-3770, 2022.

M. R. Pahlavan-Rad et al., “Legacy soil maps as a covariate in digital
soil mapping: A case study from northern Iran,” Geoderma, vol. 279,
pp. 141-148, 2016.

B.Kempen, D.J. Brus, G. B. M. Heuvelink, and J. J. Stoorvogel, “Updating
the 1:50,000 dutch soil map using legacy soil data: A multinomial logistic
regression approach,” Geoderma, vol. 151, no. 3—4, pp. 311-326, 2009.
F. Collard et al., “Refining a reconnaissance soil map by calibrating
regression models with data from the same map (Normandy, France),”
Geoderma Regional, vol. 1, pp. 21-30, 2014.

H. Yang et al., “Hyper-temporal remote sensing data in bare soil period
and terrain attributes for digital soil mapping in the black soil regions of
China,” Catena, vol. 184, 2020, Art. no. 190.

E. Ben-Dor et al., “Using imaging spectroscopy to study soil properties,”
Remote Sens. Environ., vol. 113, pp. S38-S55, 2009.

X. Wang et al., “Are topsoil spectra or soil-environmental factors better
indicators for discrimination of soil classes?,” Catena, vol. 218, 2022,
Art. no. 6584.

Z. Zhu et al., “Benefits of the free and open landsat data policy,” Remote
Sens. Environ., vol. 224, pp. 382-385, 2019.

Z.Zhu, S. Qiu, and S. Ye, “Remote sensing of land change: A multifaceted
perspective,” Remote Sens. Environ., vol. 282, 2022, Art. no. 113266.

M. L. Kornblau and J. E. Cipra, “Investigation of digital landsat data for
mapping soils under range vegetation,” Remote Sens. Environ., vol. 13,
no. 2, pp. 103-112, Jan. 1983.

E. Dobos, E. Micheli, M. F. Baumgardner, L. Biehl, and T. Helt,
“Use of combined digital elevation model and satellite radiometric data
for regional soil mapping,” Geoderma, vol. 97, no. 3—4, pp. 367-391,
Sep. 2000.

L. Duarte, A. C. Teodoro, and H. Gongalves, “Deriving phenological
metrics from NDVI through an open source tool developed in QGIS,”
in Proc. SPIE, Earth Resour. Environ. Remote Sens./GIS Appl. V, 2014,
Art. no. 924511.

T. Flynn, A. Rozanov, F. Ellis, W. de Clercq, and C. Clarke, “Farm-
scale soil patterns derived from automated terrain classification,” Catena,
vol. 185, 2020, Art. no. 104311.

X. Dou et al., “Prediction of soil organic matter using multi-temporal
satellite images in the Songnen plain, China,” Geoderma, vol. 356, 2019,
Art. no. 659854.

C. Luo, Y. Wang, X. Zhang, W. Zhang, and H. Liu, “Spatial prediction
of soil organic matter content using multiyear synthetic images and parti-
tioning algorithms,” Catena, vol. 211, 2022, Art. no. 106023.

J.J. Maynard and M. R. Levi, “Hyper-temporal remote sensing for digital
soil mapping: Characterizing soil-vegetation response to climatic variabil-
ity,” Geoderma, vol. 285, pp. 94-109, 2017.

J. A. M. Dematté, C. T. Fongaro, R. Rizzo, and J. L. Safanelli, “Geospatial
soil sensing system (GEOS3): A powerful data mining procedure to
retrieve soil spectral reflectance from satellite images,” Remote Sens.
Environ., vol. 212, pp. 161-175, 2018.

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

[48]

[49]

3913

M. Zhang et al., “Mapping soil organic matter and analyzing the prediction
accuracy of typical cropland soil types on the northern Songnen plain,”
Remote Sens., vol. 13, no. 24, 2021, Art. no. 5162.

C. Luo, X. Zhang, Y. Wang, Z. Men, and H. Liu, “Regional soil organic
matter mapping models based on the optimal time window, feature selec-
tion algorithm and Google Earth Engine,” Soil Tillage Res., vol. 219,2022,
Art. no. 23514.

X. Meng, Y. Bao, H. Liu, X. Zhang, and X. Wang, “A new digital soil
mapping method with temporal-spatial-spectral information derived from
multi-source satellite images,” Geoderma, vol. 425,2022, Art. no. 116065.
A. Abuelgasim and R. Ammad, “Mapping soil salinity in arid and semi-
arid regions using landsat 8 OLI satellite data,” Remote Sens. Appl.: Soc.
Environ., vol. 13, pp. 415425, 2019.

S. Aksoy, A. Yildirim, T. Gorji, N. Hamzehpour, A. Tanik, and E. Ser-
tel, “Assessing the performance of machine learning algorithms for soil
salinity mapping in Google Earth Engine platform using Sentinel-2A and
landsat-8 OLI data,” Adv. Space Res., vol. 69, no. 2, pp. 1072—-1086, 2022.
C. Luo et al., “Regional mapping of soil organic matter content using
multitemporal synthetic landsat 8 images in google earth engine,” Catena,
vol. 209, 2022, Art. no. 105842.

D. P. Roy et al., “Landsat-8: Science and product vision for terrestrial
global change research,” Remote Sens. Environ., vol. 145, pp. 154-172,
2014.

M. A. Wulder et al., “Fifty years of landsat science and impacts,” Remote
Sens. Environ., vol. 280, 2022, Art. no. 113195.

C. I. Alvarez-Mendoza, A. Teodoro, and L. Ramirez-Cando, “Improving
NDVI by removing cirrus clouds with optical remote sensing data from
landsat-8 — a case study in Quito, Ecuador,” Remote Sens. Appl.: Soc.
Environ., vol. 13, pp. 257-274, 2019.

Q. Wang, L. Wang, Z. Li, X. Tong, and P. M. Atkinson, “Spatial-spectral
radial basis function-based interpolation for landsat ETM+ SLC-Off
image gap filling,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 9,
pp. 7901-7917, Sep. 2021.

X. Ma, Q. Wang, X. Tong, and P. M. Atkinson, “A deep learning model
for incorporating temporal information in haze removal,” Remote Sens.
Environ., vol. 274, 2022, Art. no. 113012.

G. Feng, J. Masek, M. Schwaller, and F. Hall, “On the blending of
the landsat and MODIS surface reflectance: Predicting daily landsat
surface reflectance,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 8,
pp. 22072218, Aug. 2006.

Q. Wang, Y. Tang, X. Tong, and P. M. Atkinson, “Virtual image pair-
based spatio-temporal fusion,” Remote Sens. Environ., vol. 249, 2020,
Art. no. 112009.

X. Meng, Y. Bao, Y. Wang, X. Zhang, and H. Liu, “An advanced soil or-
ganic carbon content prediction model via fused temporal-spatial-spectral
(TSS) information based on machine learning and deep learning algo-
rithms,” Remote Sens. Environ., vol. 280, 2022, Art. no. 113166.

X. Zhang et al., “Allocate soil individuals to soil classes with topsoil spec-
tral characteristics and decision trees,” Geoderma, vol. 320, pp. 12-22,
2018.

J. Dong et al., “Mapping paddy rice planting area in northeastern Asia with
landsat 8 images, phenology-based algorithm and google earth engine,”
Remote Sens. Environ., vol. 185, pp. 142—154, Nov. 2016.

N. You and J. Dong, “Examining earliest identifiable timing of crops
using all available sentinel 1/2 imagery and google earth engine,” ISPRS
J. Photogramm. Remote Sens., vol. 161, pp. 109-123, 2020.

F. Qi, “Knowledge discovery from area-class resource maps: Data pre-
processing for noise reduction,” Trans. GIS, vol. 8, no. 3, pp. 297-308,
2004.

Q. Wang and P. M. Atkinson, “Spatio-temporal fusion for daily sentinel-2
images,” Remote Sens. Environ., vol. 204, pp. 31-42, 2018.

L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
Oct. 2001.

W. Zhao, N. Sanchez, H. Lu, and A. Li, “A spatial downscaling approach
for the SMAP passive surface soil moisture product using random forest
regression,” J. Hydrol., vol. 563, pp. 1009-1024, 2018.

A. Dornik, L. DrAGuT, and P. Urdea, “Classification of soil types using
geographic object-based image analysis and random forests,” Pedosphere,
vol. 28, no. 6, pp. 913-925, 2018.

X. Meng et al., “Regional soil organic carbon prediction model based on
a discrete wavelet analysis of hyperspectral satellite data,” Int. J. Appl.
Earth Observ. Geoinf., vol. 89, 2020, Art. no. 102111.

R. Zhang et al., “A comparison of gaofen-2 and sentinel-2 imagery for
mapping mangrove forests using object-oriented analysis and random
forest,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14,
pp. 4185-4193, 2021.



3914

[50]

[51]

[52]

[53]

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

V. A. Tolpekin and A. Stein, “Quantification of the effects of land-cover-
class spectral separability on the accuracy of Markov-random-field-based
superresolution mapping,” IEEE Trans. Geosci. Remote Sens., vol. 47,
no. 9, pp. 3283-3297, Sep. 2009.

P. Lu, W. Shi, Q. Wang, Z. Li, Y. Qin, and X. Fan, “Co-seismic landslide
mapping using sentinel-2 10-m fused NIR narrow, red-edge, and SWIR
bands,” Landslides, vol. 18, no. 6, pp. 2017-2037, 2021.

H. Jenny, “Factors of soil formation,” Soil Sci., vol. 52, no. 5, 1941,
Art. no. 415.

X. Ma, Q. Wang, and X. Tong, “A spectral grouping-based deep learning
model for haze removal of hyperspectral images,” ISPRS J. Photogramm.
Remote Sens., vol. 188, pp. 177-189, 2022.

Haoxuan Yang received the B.S. and M.S. degrees
in land resources management from the Northeast
Agricultural University, Harbin, China, in 2016 and
2020, respectively. He is currently working toward
the PhD. degree with the Tongji University, Shanghai,
China.

His research interests include soil properties map-
ping, reconstruction, and remote sensing.

Qunming Wang received the Ph.D. degree from the
Hong Kong Polytechnic University, Hong Kong, in
2015.

He is currently a Professor with the College of
Surveying and Geo-Informatics, Tongji University,
Shanghai, China. He was a Lecturer (Assistant Pro-
fessor) with the Lancaster Environment Centre, Lan-
caster University, Lancaster, U.K., from 2017 t0 2018,

X where he is currently a Visiting Professor. His 3-year
; A 4 Ph.D. study was supported by the hypercompetitive
o Hong Kong Ph.D. Fellowship and his Ph.D. thesis was

awarded as the Outstanding Thesis in the Faculty. He has authored or coauthored
more than 70 peer-reviewed articles in international journals, such as Remote
Sensing of Environment, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE
SENSING, and ISPRS Journal of Photogrammetry and Remote Sensing. His
research interests include remote sensing, image processing, and geostatistics.

Prof. Wang is an Editorial Board member of Remote Sensing of Environment,
and serves as an Associate Editor for Science of Remote Sensing (sister jour-
nal of Remote Sensing of Environment) and Photogrammetric Engineering &
Remote Sensing. He was an Associate Editor for Computers and Geosciences
(2017-2020).

Xiaofeng Ma received the B.S. and M.S. degrees
in geomatics engineering from the China University
of Geosciences, Beijing, China, in 2017 and 2020,
respectively. He is currently working toward the PhD.
Degree in photogrammetric and remote sensing with
the Tongji University, Shanghai, China.

His research interests include remote sensing im-
age recovery and deep learning.

Wengi Liu received the B.S. degree from the Nanjing
University of Information Science & Technology,
Nanjing, China, in 2016, and the M.S. degree from
the Northeast Agriculture University, Harbin, China,
in 2020. She is currently working toward the Ph.D.
degree with the Oklahoma State University, Stillwa-
ter, OK, USA.

Her research interests include the land cover
change, land surface process, and remote sensing.

Huanjun Liu received the B.S. degree in land re-
sources management from the Northeast Agricultural
University, Harbin, China, in 2003, and the Ph.D.
degree in cartography and geographic information
system from the Northeast Institute of Geography
and Agroecology, Chinese Academy of Sciences,
Changchun, China, in 2008.

He is currently a Professor with the Northeast
Institute of Geography and Agroecology, Chinese
Academy of Sciences, Changchun, China. His re-
search interests include remote sensing, black soil
conservation, and intelligent agriculture.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


