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Abstract—With the booming of high-resolution Earth observa-
tion and open-data efforts, petabyte-scale Earth observation data
have been available for free access. Due to the unprecedented
availability of big data deluge, regional to global spatio-temporal
analysis has been significantly challenged with the huge computa-
tional barriers, the tedious cycles of “download-preprocess-store-
analyze” leading to excessive data downloading overhead, and the
acquisition-oriented 2-D file-based structure, which is not fit for
spatio-temporal analysis. The Earth observation data cube (EODC)
paradigm revolutionizes the traditional way of storing, managing,
and analyzing spatio-temporal RS data, and solves problems of
easy-to-use of RS data to a certain extent. However, different EODC
solutions are becoming “information silos.” Therefore, the sharing
and joint use of remote sensing (RS) data across EODCs have
become extremely challenging. To address the abovementioned
challenges, we proposed a method of in-memory distributed data
cube autodiscovery and retrieval across clouds. We construct a
distributed in-memory data orchestration across clouds to shield
the heterogeneity of the EODC storage solutions, solving “infor-
mation silos” problems, and we put forward a larger-sites-first
and spatio-temporal aware RS data discovery strategy, which can
automatically discover data across clouds for requirements. Based
on the data cube paradigm, this article proposes a quality-first data
filtering strategy, which can help users to filter out high-quality data
covering the target spatio-temporal range from the huge amount of
data, and solve the problem of data cube joint retrieval and efficient
use across clouds. In addition, we have confirmed that our method
is effective and efficient through comparative experiments.

Index Terms—Clouds, data cube, data discovery, data
integration, distributed computing, GEE, in-memory distributed
file system, remote sensing (RS) big data.

I. INTRODUCTION

THE continuous pressure on natural resources introduced
by growing human activities have gradually aggravated
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global environmental changes [1] and led our planet onto an
unsustainable pathway [2]. The Earth observation (EO) data [3]
from satellite sensors facilitates regular and continuous mon-
itoring of our planet from different facets [4]. The informa-
tion and valuable patterns elaborated from EO data enable a
great stride in understanding the Earth system dynamics [5]
from the human side and mitigating environmental changes.
Benefiting from high-resolution EO, especially the booming
diversity of advanced sensors, makes it possible to achieve
global coverage of the Earth’s surface daily with higher spatial
and spectral resolutions [6]. Up till now, the global archived
EO data have undergone explosive growth and are approaching
exabytes [7]. In particular, the U.S. Geological Survey (USGS)
Landsat dataset [8] reaches 4.5 petabytes, whereas the European
Space Agency (ESA) Sentinels data [9] are increasing with
a daily volume of nearly six terabytes. Furthermore, due to
the open-data efforts, petabyte-scale analysis-ready data (ARD)
from the spatial agencies have become increasingly available
for free access [10], [11]. Accordingly, the flood of EO data
has been widely perceived as “big data” [12], [13]. In turn,
the unprecedented availability of EO data also gives rise to
the surging demand for larger scale resources and environmen-
tal changes monitoring [14], [15] (involving land [16], [17],
atmosphere [18], oceans [19], etc.) over longer time spans [20],
such as large-scale cropland mapping [21], global agricultural
drought monitoring [22], and global forest mapping [23].

However, in the context of “big data” [24], regional to global
research could be practically overwhelmed by the tremendous
EO data deluge. Despite the great efforts laid in harnessing the
full potential of the enormous multisensor and multitemporal
EO data [25], [26], [27], spatio-temporal analysis at a much
larger scale remains significantly challenged with several trou-
bling issues. First of all, the major challenge goes with the
tedious cycles of “download-preprocess-store-analyze” in the
traditional paradigm [3]. Despite the abundant data available, it is
significantly suffering for scientists to download all the required
data into the local repository right before analyzing. Moreover,
the excessive data transport may take several weeks and make
the entire processing unfeasible when scaling to a larger region.
Second, the other obstacle lies in the computational barrier
resulting from the massive computing power demand introduced
by the staggering scenes of EO data, which far transcend the
capacity of mainstream computing resources. Even accelerated
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by several dominant and promising high-performance comput-
ing (HPC)-enabled solutions [28], traditional ways of process-
ing remain considerably time-consuming, especially for global
monitoring [29]. What is more, EO data processing commonly
follows a scene-by-scene manner using images-as-a-temporal-
snapshot data model [10]. However, the multidimensional-
array data concepts have long been uptaken up for spatio-
temporal analysis by remote sensing (RS) experts. It becomes
quite clear that the acquisition-oriented 2-D file-based data
structure is not a user-friendly granularity for spatio-temporal
analysis. Moreover, the cumbersome data transformation for
bridging the data structure gap could inevitably lead to extra
overhead.

The EO data cubes (EODC) [30], [31], [32] as an innovative
paradigm has revolutionized the way EO data are stored, pro-
cessed, and the way users interact with large spatio-temporal
datasets. Alternative to acquisition-oriented 2-D scene-file-
based approaches, data cube is essentially an analysis-oriented
multidimensional array solution [33] that facilitates data access
along the spatial or temporal axis within one single data struc-
ture [10], [34]. Moreover, the sliced multidimensional array
structure with inherent data parallelism could simplify data
operations and make parallelization straightforward, especially
for time series analysis [33]. Recently, with HPC-enabled or
cloud-facilitated platforms, data cubes could serve massive
spatio-temporal EO data in an analysis-ready way at high service
quality and speed by lowering the big data barriers [35]. Even-
tually, it could offer web-based online analysis while avoiding
massive data downloads [36].

Nevertheless, despite the increasing attention the EODC have
gained [37], its data and service model is still rather confus-
ing[34]. Furthermore, the thriving varieties of data cube in-
frastructures and initiatives also raise further interoperability
challenges among different solutions for data cubes. With the
prosperity of EODC, several typical varieties of data-cube im-
plementations spring up, including the open data cube-based
(ODC) initiatives, such as Australian Geoscience Data Cube
(AGDC) [36], Swiss Data Cube (SDC) [35], and Colombian
Data Cube [38], the DB-based solutions, such as EarthServer
on Rasdaman [39] and E-sensing platform [40] on SciDB [41],
as well as the cloud-based infrastructure, such as Google
Earth Engine (GEE) [42] and Earth on Amazon web services
(EAWS) [43]. However, this wide range of data cube solutions
not only varies in data scales and resolutions but also differs
in system infrastructures, software implementations, and user
interfaces [44]. As a result, these differences will inevitably
result in limited interoperability among existing data cube in-
frastructures. Accordingly, due to the incompatibility, these data
cube infrastructures would tend to act as closed “information
solis,” where data sharing and joint data use across them would
be considerably difficult [35], [45]. Make it worse, to take full
advantage of different data cubes for a comprehensive harness-
ing of big EO data, the massive data transport among these
infrastructures featured with various system architectures would
be another challenging barrier. It would be significantly trivial
and even unfeasible to fetch the data from other data cubes before
joint analysis across different data cube platforms.

To properly tackle the challenging obstacles abovementioned,
we propose an in-memory distributed data cube discovery
method for RS big data across the Clouds with quality-first (QF)
data filtering. First, this method employs Alluxio, a virtual file
system, to conduct in-memory data orchestration across Clouds.
It virtually mounts massive EO data from different Clouds or
data cubes (such as Amazon Cloud, Ali Cloud, Tencent Cloud,
and local Hadoop Distributed File System) onto Alluxio as
a locally cached data catalog. Instead of conducting massive
data transport among different Clouds, it offers transparent data
prefetching from underlying heterogeneous platforms ahead to
facilitate in-memory data access across Clouds. Second, we pro-
pose larger-sites-first (LSF) and spatio-temporal aware (LSA)
data discovery strategy to optimize comprehensive and fast
data discovery across clouds. By employing distributed crawler
engine on multicore Hadoop-powered clusters, we implement
LSA data discovery in parallel as bunches of distributed crawler
tasks to search data throughout the virtually mounted in-memory
data catalogs. In addition, for further enhancement, we adopt a
QF data filtering strategy to filter out the data with high data
quality while fitting the spatio-temporal coverage with minimal
data cost. Eventually, benefiting from smart in-memory data
cube discovery and quality-aware data filtering, we could expect
fast and accurate data discovery out of the extremely big EO
datasets across Clouds.

The rest of this article is organized as follows. The following
section reviews the state-of-art works related to RS data man-
agement, sharing, and discovery. Then, Section III discusses
the challenging issues of RS data discovery and joint use. In
Section IV, we go into detail about the design and implementa-
tions. Then, Section V demonstrates the experiment result and
comparative analysis. Section VI discusses the effectiveness and
efficiency of the approach proposed based on the experimental
result. Finally, Section VII concludes this article.

II. RELATED WORK

A. Traditional RS Data Managing and Sharing on a
Scene-File Basis

Traditionally, RS data are organized into scene-based units
and stored in file systems in file formats. The distributed parallel
file systems, such as GPFS, Lustre, PVFS, and OrangeFS [46],
have been introduced to speed up the reading and writing of
RS image data [47], [48], [49]. Although these file systems
are optimized for data parallel access, they are not good at
accessing RS data with multiple dimensions, such as time, space,
and spectrum. The scene-file structure is not a user-friendly
granularity for spatio-temporal analysis, and the cumbersome
data transformation for bridging the data structure gap could
inevitably lead to extra overhead.

On a scene-file basis, most data providers build web por-
tals to share their data, such as EORS Earth Explore [50],
the Copernicus Open Access Hub [51], and the FY Satellite
Data Service Web Portal [52]. However, users have to log into
each platform’s website. Then, they have to manually search
and filter data through the website portal, and download them
into local storage, which is quite time-consuming. In addition,
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different providers offer different types of data and with different
spatio-temporal ranges, the data from a single data platform are
not sufficient for large-scale data processing. So users have to
download data from multiple platforms for large-scale process-
ing at a large region or even globally [53]. Therefore, a long
processing cycle of “download-pre-process-storage-analysis” is
inevitable. In the case of large-scale data processing, large-scale
data download is extremely time-consuming or even infeasible.
This becomes a huge obstacle for large-scale analysis and limits
the effective information extraction of RS big data.

B. RS Data Managing and Sharing in Data-Cube Paradigm

In the context of RS big data, the traditional processing
way of “download–preprocess–store–analyze” is inefficient.
The EODC paradigm has revolutionized the way of data storage,
management, and analysis. It adopts the sliced multidimensional
array structure with inherent data parallelism, which could
simplify data operations and make parallelization straightfor-
ward [33], [34]. It supports bringing processing to data without
large-scale data download [36]. At present, there are three main
types of EODC solutions, such as cloud-based solutions, DB-
based solutions, and ODC-based solutions.

The Cloud-based solutions provide spatio-temporal analysis
tools and algorithms to support near-data computation, which
avoids large-scale data transfer, such as GEE [42], EAWS [43],
and DIAS [32]. They offer online access and on-the-fly analysis
to petabytes of global spatio-temporal RS data in a cube-like
format [54]. However, they have limited processing temporal
and spatial scales [32]. The cube-like operations could be time-
consuming for data retrieval and spatial aggregation over a large
region. In addition, the uncertainty about the sustainability of
these proprietary cloud platforms has become a major concern
for users [45].

Array databases are specialized in managing large N-
dimensional arrays and offer basic data operations focused
on data cubes, such as aggregation on dimensions, which
can simplify spatio-temporal RS data extraction, preparation,
and analytical processing [55]. Current DB-based EODC im-
plementations include EarthServer[39] with Rasdaman [56],
EarthDB [57], and INPE Data Cube [58] with SciDB [59]. In
addition, TileDB with a cloud-native array format at its core
also has a promising future in RS storage and management [60].
These array databases provide relatively good performance and
scalability for accessing and analyzing multidimensional spatio-
temporal RS data, making them suitable for repeated access to
regional data [61]. However, data ingestion and format conver-
sion from a large number of image files to a multidimensional
data cube can have an impact on the overall performance [62].

As an open-source, flexible, and promising data cube frame-
work, ODC [63], has been used in numerous national or regional
data cubes projects, such as SDC [35], CDCol [64], ARDC [65],
and CDC [45]. It organizes and manages data with a large-scale
multidimensional array [66], [67] that can support seamless
spatial, temporal, spectral, and feature analysis [68], [69]. So
users can access RS data based on spatio-temporal coordinates
rather than the traditional single “scene” file [24], [30], [70].

Thus, the data cube structure enables the shift from “scene”
file-based to pixel-based processing, greatly improving RS data
organization, management, and analysis performance. However,
the cube storage format, NetCDF4, has weak object storage
access performance [71]. Although lightweight computing en-
gine Dask has been used for memory computing [72] in the
ODC, highly intensive data I/O and data transmission remain
significant performance bottlenecks [73].

These diverse EODC implementations solve the problem of
downloading large-scale RS data by bringing algorithms and
processing to the RS data (near-data computing). They provide
application programming interfaces (APIs) to facilitate data
sharing and access, such as JavaScript and Python APIs of
GEE, Python API of the AGDC [36], and Amazon’s API of
the Earth on AWS [74]. Instead of manually logging into the
web portal, users can call the data platforms’ APIs and retrieve
and access data through different APIs, reducing manual efforts
and improving data analysis efficiency. However, these APIs
can only be used within a single data platform, limiting data
sharing and usage across platforms. These diverse data platforms
with different system infrastructures, software implementations,
user interfaces, and data standards are currently closed and are
becoming “information silos.” The existing RS data managing
and sharing systems could barely offer efficient data discovery
across different cloud platforms or data cube platforms. This
results in the inability to share and use data from multiple
EODC platforms, and RS data analysis over large regions or
even globally becomes extremely challenging.

C. RS Data Discovery Across Clouds

Traditional RS data sharing and access methods are using web
portals and APIs of data platforms. However, both methods can
only be used for data retrieval, download, and access within the
single data platform, and cannot support data discovery across
multiple cloud platforms. The latest version of ODC [75] only
provides interfaces to access cloud storage buckets. Users have
to manually find and filter the data needed for their applications
from multiple cloud platforms separately. The data must be
downloaded locally, parsed, and indexed into the ODC to support
access to the data from cloud platforms. ODC only supports a
small number of cloud storage types. In a short, some approaches
could support indirect data access from multiple clouds, but they
cannot yet support data discovery across Clouds.

In the managing and sharing of Internet data, the data orches-
tration function of Alluxio [76] enables the sharing and joint
use of data from multiple cloud platforms. Some web crawler
strategies can be used to discover and retrieve data from differ-
ent cloud platforms. For example, the LSF [77], [78] strategy
prioritizes access to important pages to traverse the most critical
information as soon as possible, making it especially suitable
for searching for large-scale data without consuming too much
time and resources. Depth-first search (DFS) strategy [79] is to
prioritize traversing the deep links of a web page until the deepest
link is reached, then return to the previous level and continue
traversing other links. This search method is usually used to find
specific information in a short time, but it may fall into an infinite
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loop, leading to a waste of resources. Although these web data
search strategies support data discovery across Clouds, most of
them rely on keyword searches for text data, which is not friendly
to RS data discovery and search. Due to the multidimensional
attributes, such as time, space, and spectrum of RS data, during
the RS data discovery, users need to access the metadata file of
each scene data to obtain information (including time, space,
cloud coverage, etc.) to effectively discover the target data that
meet application requirements. Therefore, these data discovery
methods do not well support fast and accurate RS data discovery
across Clouds.

On the whole, the existing RS data managing and sharing sys-
tems could barely offer efficient data discovery across Clouds.
But for Internet data, there are ways to support data search across
Clouds, such as LSF and DFS. Therefore, it is very necessary
to study the RS data discovery across Clouds in order to fully
utilize RS data at a large region even globally.

III. CHALLENGES

The EODC paradigm is gaining increasing attention as an
innovative solution to store, process, and manage EO data [35].
The novelty of the EODC paradigm has brought different inno-
vative solutions, providing various RS datasets with different
spatio-temporal scales. For regional and global RS data ap-
plications, it is a great challenge to discover and jointly use
spatio-temporal RS data from cloud platforms and data cube
platforms.

A. “Information Silos” Problem Among Cloud Platforms With
Different Solutions

The thriving varieties of data cube infrastructures and initia-
tives raise interoperability challenges among different solutions
for data cubes. Currently, there are various typical EODC im-
plementations, including AGDC [36], GEE [42], EAWS [43],
EarthServer [39], Earth System Data Cube [80], and Africa
Regional Data Cube (ARDC) [81]. These different EODC
implementations provide diverse satellite data, cover varying
spatial scales, and support different resolutions. Furthermore,
the lack of a commonly agreed definition of EODC has led
to differences in system infrastructures (e.g., HPC, Google
Cloud, and Amazon Cloud), software implementations (e.g.,
ODC, Rasdaman, SciDB), and user interfaces (e.g., Python,
JavaScript, REST, and AWS CLI) [39], [81], [82]. As a result,
these differences will inevitably result in limited interoperability
among existing data cube infrastructures [70], [83]. Due to the
incompatibility, these Data Cube infrastructures would tend to
act as closed “information silos,” making data sharing and joint
use across them difficult [35], [45]. Moreover, most current
EODC implementations, such as the EAWS, GEE, Digital Earth
Africa, and Brazil Data Cube, host RS datasets on clouds [81],
[84], [85]. In the coming years, it is expected that nearly all EO
data will exist in some ARD data cube hosted on clouds and
provided hosted analytic web services [31]. Therefore, how to
support users to efficiently access and share multisource RS data
across clouds is a challenging issue.

B. Data Discovery Challenges in the Context of Extremely
Bulky RS Data Across Clouds

The diverse RS data platforms have emerged, offering dif-
ferent types of data with different spatio-temporal scales, and
processing levels. The data from a single data platform is not
sufficient for large-scale data processing [35], so users have
to discover and download data from multiple platforms for
large-scale processing at a large region or even globally [53].
Interoperability challenges among the diverse EODCs platforms
exist due to the lack of uniform standards to support the descrip-
tion and disclosure of RS data, making it difficult to commonly
search for data cubes. The traditional RS data sharing and access
methods based on web portals and APIs of data platforms are
only available within the data platform. Although data search
strategies, such as DFS [79] and LSF [78], support data search
across clouds, they are oriented to Internet data and do not apply
well to RS data. Most data platforms host RS data on public
clouds [45], but the existing RS data managing and sharing
systems could barely offer efficient data discovery across clouds.
It is extremely challenging to find high-quality data that meets
the application requirements from the massively available data.
These challenges severely limit the data utilization and hinder
the full information potential of RS data [45], [86].

C. Performance and Scalability

As the demand for analyzing large-scale RS big data in-
creases, users require efficient methods to discover and down-
load the data needed for their applications from multiple data
platforms. Traditional data discovery methods require users to
interact with multiple data platforms separately, and under-
stand each platform’s system structure, service APIs, metadata
standards, data download approaches, and more. This makes
large-scale data discovery and downloading tedious and time-
consuming. Data discovery through the web portal approach
also demands significant user effort and time to search, select,
and download the target data. Data discovery through APIs is
typically a single-threaded process, which cannot meet the needs
of real-time or near real-time data discovery and data access.
Furthermore, large-scale multisource RS data discovery and
access face huge network bandwidth and data I/O pressure. To
provide higher performance and scalability while overcoming
the I/O bottleneck, it is essential to explore the parallelism of
data discovery.

IV. DESIGN AND IMPLEMENT

A. Main Solution

With the increasing demand for analyzing and processing
large-scale multisource RS big data, this article presents an
innovative approach for in-memory distributed data cube au-
todiscovery and retrieval across clouds. The main solution of
this article is shown in Fig. 1.

Our proposed solution consists of several key components.
First, we establish a distributed in-memory data orchestration
across clouds, allowing for the virtual mounting of multisource
RS datasets. This provides users with a unified in-memory access
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Fig. 1. Main solution.

view and operation interface, enabling the sharing and joint use
of RS data across clouds. Second, we deploy a distributed data
discovery architecture, leveraging STAC standards, to achieve
data cube discovery and indexing across clouds. We propose the
LSA data discovery strategy across clouds, which can quickly
discover target RS data from multiple cloud platforms and
improve the efficiency of spatio-temporal aware data discovery.
Finally, we implement data cube retrieval across clouds using
QF data filtering to select high-quality data from multiple cloud
platforms covering a target spatio-temporal range. In addition,
we provide a data cube retrieval interface across clouds, sup-
porting large-scale RS analysis and applications.

B. In-Memory Data Orchestration Across Clouds With Alluxio

For the problem of “information silo” among cloud plat-
forms of different EODC solutions, we construct a distributed
in-memory data orchestration across clouds with Alluxio. This
orchestration allows for the virtual mounting of RS data from
various clouds, enabling the seamless access and sharing of
multisource data across different cloud platforms. Alluxio (for-
merly known as Tachyon) [76] is a memory-centric distributed
virtual storage system that bridges the gap between data-driven
applications and various storage systems, making data more
accessible from different storage systems, such as Amazon S3,
Google Cloud Storage, OpenStack Swift, HDFS, Gluster FS,
NFS, and Ceph.

In this article, we deploy the Alluxio in highly available
mode via the Zookeeper cluster to construct an in-memory data
orchestration across clouds, and the architecture is shown in
Fig. 2. By virtually mounting RS datasets from different clouds
including AWS S3, COS, OSS, HDFS, and LOCAL, we shield

Fig. 2. Architecture of distributed in-memory data orchestration across clouds.

Fig. 3. Data in-memory access view across clouds.

the heterogeneity of the underlying storage systems. This virtual
data mounting mode provides users with a unified access view
of all mounted datasets under the same namespace, which is
structured as a directory tree, as shown in Fig. 3. This approach
fully guarantees the data sovereignty of the data providers while
allowing users to access and analyze data on demand directly
from different clouds. The cloud platforms or data providers are
responsible for maintaining and updating the original RS image
data. When users initiate data access requests with clients, the
master node locates the original data and notifies workers to read
and cache the data from the remote clouds to the local in-memory
(MEM) and hard disk drive (HDD). As a result, users do not
need to keep a full copy of all data locally and can access and
analyze data on demand directly from different clouds, avoiding
the high requirement of local storage capacity for large-scale
datasets.

The data orchestration across clouds presented in this article is
capable of virtually mounting RS data from multiple cloud plat-
forms and local file systems, providing a global virtual view of
the data. Furthermore, it allows users to transparently cache fre-
quently accessed data, especially from remote locations, which
can provide memory-level data I/O throughput for subsequent
data discovery, data cube retrieval, and data access across clouds.
Overall, this data orchestration solution effectively addresses the
challenges of sharing and accessing data across diverse EODC



4534 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 4. Process of spatio-temporal aware data cube discovery across clouds.

solutions, thereby facilitating efficient access to multisource RS
data across cloud platforms and data cube platforms.

C. Distributed Spatio-Temporal Aware Data Cube Discovery
Across Cloud

To address the challenges of inefficient data discovery and
joint use for regional or global large-scale RS data analysis,
this article proposes a distributed spatio-temporal aware data
cube discovery approach across cloud platforms, as illustrated in
Fig. 4. First, we propose an LSA RS data discovery strategy,
inspired by web data crawling strategies in the internet domain
and taking into account the temporal and spatial attributes of
RS data. The LSA strategy helps users quickly and accurately
locate the target RS data for a particular application from
multiple datasets mounted in a distributed data orchestration
across clouds. Second, we parse the RS metadata files found
in the distributed in-memory data orchestration based on the
SpatioTemporal Asset Catalog (STAC) standard, extract key pa-
rameter information, and construct data cube indexes to store in a
local database. The cube extension of STAC allows for the direct
construction of data cube indexes from the original STAC Item
files, eliminating the tedious and time-consuming process of
index construction. To improve the performance and scalability
of data discovery, a distributed data discovery architecture is
deployed to manage and execute various data discovery tasks,
including regular and incremental data discovery tasks.

The architecture of our distributed data discovery architecture
is based on Crawlab and Redis. Crawlab [87] is chosen as the
management platform for data discovery tasks. It is responsible
for parallel task scheduling, interval task management, task
status monitoring, and result summary and display. Redis [88]
is used to store task queues and results to ensure communication
and data synchronization among distributed task nodes. When
users wish to perform data discovery across cloud platforms,
they can select different data discovery tasks (regular or incre-
mental), the number of task nodes, and the target discovery
parameters on the Crawler master. The master schedules a
specified number of nodes to synchronize tasks with workers
and perform data discovery tasks concurrently. A thread pool is
set for every worker to dynamically adjust the number of threads
performing different analysis tasks during the data discovery
process, thereby improving the performance and scalability of
data discovery.

1) LSA Data Discovery Strategy Across Clouds: The in-
memory virtual data orchestration across clouds enables a uni-
fied view (in the form of a directory tree) of all mounted datasets,
eliminating the challenge of data sharing and collaboration
across multiple clouds. When users want to discover the data
required for applications from multiple cloud platforms, it is
necessary to search the directory tree structure provided by the
data orchestration across clouds and parse the metadata files of
RS scene data in it to determine whether the scene data meet
the target requirements. However, in the field of RS, there is
currently no mature algorithm for efficient data discovery across
clouds. After mounting terabyte and petabyte-scale datasets,
traditional DFS or breadth-first search (BFS) algorithms become
excessively time-consuming and complex for searching and
discovering target data. To address this issue, the LSF crawling
strategy [78] offers better scalability and is more suitable for
large-scale distributed data crawling, which improves data dis-
covery efficiency. However, this strategy does not consider the
temporal and spatial attributes of RS data, and thus cannot be
directly applied to RS data discovery. Given the abovementioned
problems, this article proposes an LSA RS data discovery across
clouds strategy. This strategy takes into account the temporal and
spatial attributes of RS data and supports fast discovery across
clouds, thereby providing an efficient and effective solution for
RS data discovery.

The LSA data discovery strategy is presented in Algorithm 1
and illustrated in Fig. 5. The strategy comprises the following
steps.

Step 1: Get the user’s data discovery task parameters, including
data type, spatio-temporal range, cloud coverage, etc.

Step 2: Create data discovery tasks based on the caching.
Check the distributed in-memory database (Redis) to deter-
mine whether a data discovery task with the spatio-temporal
intersection has been cached. If the cache hits, create an
incremental data discovery task to search for updated data
only within that region; otherwise, create a new regular data
discovery task.

Step 3: Select the data sources of the “larger sites” cloud plat-
forms for data discovery among all cloud platforms registered
in the current system, following the LSF strategy. Cloud
platforms with larger datasets, higher data access frequency,
and access volume are deemed “larger sites” and searched
first to locate target data and improve efficiency.

The steps involved are.

Step 3-1: Poll all registered data source sites (including AWS S3,
COS, OSS, HDFS, and LOCAL) for virtual mount directories
in the in-memory data orchestration.

Step 3-2: Calculate the site “rank” for all sites according to the
dataset size, data access frequency, and access volume.

Step 3-3: Create new site data discovery tasks for each cloud
platform data source site and add them to the directory task
scheduling queue(stored in the zset structure of Redis, which
is automatically sorted according to rank).
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Algorithm 1: LSF and Spatio-Temporal Aware.

Input: paramlist
Output: results

function DATA_DISCOVERY(paramlist)
params← getTargetParamas(paramlist) � get target parameters
if params is in Redis′s task cache then � cretae data discovery tasks based on caching
create an incremental data discovery task

else
create a regular data discovery task

for site in datasites do � poll data site
rank ← CALCULATE_RANK(site) � calculate site rank
dir_queue.add(site, rank) � store and sort site rank

while dir_queue is not empty do
dir ← dir_queue.popmax() � select the directory discovery task with the maximum rank
childlist← alluxio.ls(dir) � get a list of subdirectories through alluxio
if childlist is scene data then � subdirectory is scene data
match← CALCULATE_MATCH(childlist[0], params) � calculate scene data match
for child in childlist do
scene_queue.add(child,match) � store and sort scene data match

threadpool.submit(DATA_ANALY SIS, params) � execute a new thread to analyze scene data
else � subdirectory is normal directory

for child in childlist do
rank ← CALCULATE_RANK(child) � calculate subdirectory rank
dir_queue.add(child, rank) � store and sort subdirectory rank

function DATA_ANALYSISparams
while scene_queueisnotempty do
scene← scene_queue.popmax() � select the scene data analysis task with the maximum match
keyparams← parseMetadata(scene) � analyze scene data
if params = keyparams then � compare with target parameters
results.add(scene) � add to results set
updateRank(scene) � update the rank of this scene’s parent directories
updateMatch(scene) � update the match of this scene’s sibling nodes

return results
function CALCULATE_RANKdir
level← getLevel(dir) � get the level of directory
site_pr ← getDataSitePriority(dir)
if level = 2 then � data site level
rank ← level ∗ site_pr

else if level = 3 then � dataset level
type_pr ← getDataTypePriority(dir)
rank ← level ∗ site_pr ∗ type_pr

else � normal directory level
type_pr ← getDataTypePriority(dir)
num← db.ls(dir).length
num_pr ← 1− 1/(num+ 1)
rank ← level ∗ site_pr ∗ type_pr + num_pr

return rank
function CALCULATE_MATCHscene, params
time, bbox, type← readMetadata(scene) � get scene information
search_time, search_bbox, search_type,← readParam(params) � get specific target parameters
time_match← calculateT ime(time, search_time) � calculate data time_match
spce_match← calculateSpace(bbox, search_bbox) � calculate data space_match
type_match← calculateType(type, search_type) � calculate data type_match
order = getDataOrder(scene) � get dataset major order
w1, w2← getWeights(order) � set weight coefficient according to major order
match = (w1 ∗ time_match+ w2 ∗ space_match) ∗ type_match � calculate scene data match
return match
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Fig. 5. Dataflow of LSA data discovery strategy cross clouds.

Step 4: Based on the spatio-temporal aware data search strategy,
create multiple data search threads in the distributed clus-
ter, which calculate the “match” value between the spatio-
temporal data range of the RS scene data and the user’s data
discovery task. The scene data with a better “match” value is
selected for further data analysis.

The steps involved are given as follows.

Step 4-1: Create multiple data search threads in the distributed
cluster system.

Step 4-2: Each data search thread is used to select the
site/directory data discovery task with the maximum “rank”
from the directory task scheduling queue to execute.

Step 4-3: Perform recursive data search and discovery for the
selected site/directory task. Poll all data subdirectories in the
data directory corresponding to the site/discovery task and
calculate the “rank” of these data subdirectories. Create new

directory discovery tasks for these data subdirectories and add
them to the directory task scheduling queue.

Step 4-4: Repeat steps 4-2 to 4-3 until the RS scene data are found
in the directory. Then, randomly select one scene data from
the directory to calculate the “match” value, which represents
the “match” value of the remaining scene data in the directory.
Create the new scene data analysis tasks for these scene data
and added them to the scene data task scheduling queue
(stored in the zset structure of Redis, which is automatically
sorted according to match).

Step 4-5: Select the scene data analysis task with the maximum
“match” value from the scene data task scheduling queue each
time to perform further data analysis. Compare this scene data
with the target parameter requirements and record the data
path information that meets the data discovery requirements
into Redis for storage, for subsequent data cube indexing and
integration. Then, update the rank of the parent directory of
this scene data and the match of the rest of the scene data.

Directory rank metric: With more and more petabytes of
analysis-ready datasets being available free on the cloud, it
is time-consuming and difficult to search all the datasets and
analyze whether they meet target requirements. To address this
challenge, we apply the LSF strategy, commonly used in web
crawling, to RS data discovery. This strategy involves priori-
tizing the downloading of the most “important” pages “early”
during the crawling [78]. In our case, we prioritize “larger sites”
cloud platforms with larger datasets, higher data access fre-
quency, and access volume as they are likely to contain the target
data. We set a “rank” metric for the directory discovery tasks,
which indicates the order in which they should be executed.
Directory tasks with higher “rank” are expected to be executed
first to help users discover the target data earlier. The “rank” is
described by the following equation:

rank = level ∗ site_pr ∗ type_pr + num_pr. (1)

Level: It refers to the level of the data directory, which can
be determined directly from the data path. The scene data are
located on the leaf nodes of the tree. The deeper the level, the
more likely to find the target data. As a result, rank and level are
positively correlated, the deeper the level, the higher the rank.

site_pr: It refers to the access priority of the data site, which
is a number in the range of [0,1]. The dataset size, data access
frequency, and access volume of data sites of cloud platforms
are different. For example, local data are accessible faster than
data from remote clouds. Amazon Cloud’s public RS datasets
are maintained and updated by authoritative institutions or data
platforms, such as the U.S. geological survey, digital Earth
Africa, and INPE-Brazil data cube, which have higher access
frequency. Data sites with larger datasets, higher data access
frequency, and access volume have higher priority, the earlier
we access them during the data discovery task. Therefore, rank
and site_pr are positively correlated; the larger the site_pr, the
higher the rank.

type_pr: It refers to the data type access priority, which is
a [0,1] number. Based on the initial dataset information, if we
explicitly know the dataset to contain the target data type, set
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type_pr= 1 to prioritize access. If we explicitly know the dataset
to not contain the target data type, set type_pr = 0 and drop the
directory task. If the data type of the dataset is unknown and it is
not certain whether it meets the target requirements, set type_pr
= 0.5 and analyze it later.

num_pr: It refers to the number priority, which is a number
in the range of (0,1). When accessing different directories from
the same level, the same data site, and the same data type,
we prioritize the directory containing more subdirectories for
analysis, so that there is a greater possibility of finding more
data. Rank and the number of subdirectories (num) are positively
correlated, the larger the num, the higher the rank. Since num is
a positive integer number, and the value is generally large, we
normalize num to a number in the range of (0,1) as num_pr, with
the equation as (2). In addition, the num_pr metric is mainly used
to measure the priority of the directory from the same site, type,
and level, and the impact on rank is smaller than the previous
three metrics, so we use addition to num_pr in the equation of
rank.

num_pr = 1− 1

num + 1
. (2)

On the whole, we mainly refer to the LSF strategy for web
crawling to design the “rank” metric. We computed level, site_pr,
type_pr, and num_pr metrics, and all of them have a positive
relationship with “rank.” Among these metrics, level, site_pr,
and type_pr have a greater influence on “rank,” and num_pr has
a smaller influence on “rank.” A higher “rank” indicates earlier
access to the directory during data discovery tasks, enabling us
to discover more target data from larger sites earlier.

Scene data match value: Although “rank” metrics designed
with the LSF strategy can effectively improve the efficiency of
data discovery, it may not be entirely suitable for RS data discov-
ery across clouds as it ignores the temporal and spatial attributes
of RS data organization. Currently, most datasets are organized
and stored in time or space order. For example, USGS’s global
Landsat and Digital Earth Africa’s Landsat data are first divided
into directories by different years, and then by path and row
codes regarding the WRS. They organize the overall data in
the order of “Year-Path-Row,” which means the order of time
before space. Similarly, for Sinergise’s Sentinel2, Brazil Data
Cube’s Sentinel2, and Digital Earth Africa’s Sentinel2, the data
are first divided into directories by different spatial codes and
then by different years. Therefore, we design a “match” value to
indicate the data match value between the scene and the target.
We randomly select one scene data from the parent directory,
parse the metadata file to calculate the “match” value, and use
the “match” value to represent the priority for the scene analysis
task of other scenes in the same directory. The “match” value is
described by the following equation:

match = w1 ∗ time_match + w2 ∗ space_match. (3)

time_match: It refers to the match between the time of the
scene data and the target time, which is a number normalized
to the range of (0,1]. When time_match is closer to 1, it means
the time of scene data is closer to the target time, and when
time_match=1, it means the time of scene data fully meets
the target time requirement. When calculating time_match, we
mainly measure the time distance between the scene data time
and the target time. In addition, the specific calculation should
distinguish whether the data discovery target is a time point or
a period to discuss. When the data discovery target is a period,
time_match is described as follows:

time_match =

⎧⎪⎨
⎪⎩
1 Ts ≤ To ≤ Te

1− Ts−To

Te−To
To < Ts

1− To−Te

To−Ts
To > Te.

(4)

In the equation, Ts is the start time of the target time range,
Te is the end time of the target time range, and To is the time
of the scene data. We use the ratio of the distance between the
scene data time and the target time range to measure the time
match, and normalized it. The smaller the time distance ratio is,
the smaller the time distance is, and the larger the time_match is,
the closer to the target time. Therefore, time_match is positively
related to match, the larger the time_match, the larger the match.

When the data discovery target is a time point, we consider
this point as the smallest period (one day). Tp is the target
time point and To is the scene data time point. If To < Tp, set
Ts = Tp, Te = Tp + 1; if To > Tp, set Ts = Tp − 1, Te = Tp.
Bringing them to (4), the time_ match of the time point is
calculated in (5).

time_match =

⎧⎪⎨
⎪⎩
1 To = Tp

1− Tp−To

Tp+1−To
To < Tp

1− To−Tp

To−Tp+1 To > Tp.

(5)

space_match: It refers to the match between the spatial
range of the scene data and the target space, which is a number
normalized to the range of (0,1]. When space_match is closer
to 1, it means the spatial extent of scene data is closer to the
target spatial extent; when space_match=1, it means the spatial
extent of scene data intersects with the target spatial extent. The
scene data of RS are usually irregular polygon. To simplify data
analysis, we often use the minimum bounding rectangle (MBR)
of the scene to represent its spatial extent. When calculating
the space_match of the data, the key is to compare the space
distance between the MBR of scene data and the target bounding
rectangle. space_match is described in the following (6) shown
at the bottom of this page:

In the equation, rectangle B represents the MBR of the scene
data, and rectangle S is the target spatial extent. Bx is the length
of rectangle B in the X (longitude), By is the length of rectangle
B in the Y (latitude), Sx is the length of rectangle S in the X, Sy

space_match =

{
1 Ox ≤ (Sx +Bx)/2 andOy ≤ (Sy +By)/2

min
(

(Sx+Bx)/2
Ox

,
(Sy+By)/2

Oy

)
Ox > (Sx +Bx)/2 orOy > (Sy +By)/2.

(6)
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is the length of rectangle S in the Y, Ox is the distance between
the center point of rectangle B and the center point of rectangle
S in the X, and Oy is the distance between the center point of
rectangle B and the center point of rectangle S in the Y. When
the two rectangles intersect, the spatial extent of the scene data
meets the target spatial requirement, and the space_match is 1.
When the two rectangles do not intersect, we calculate the spatial
distance ratios of the two rectangles separated in the X and Y,
respectively, and choose the smallest distance ratio in the X and
Y as the whole spatial distance ratio. The smaller the spatial
distance ratio is, the smaller the spatial distance is, the larger the
space_match is, and the closer to the target space. Therefore, the
match increases with the increase of space_match.

The w1 and w2 are the associated weights of the two metrics,
and w1 + w2 = 1. The w1 represents the weight of time_match,
and w2 represents the weight of space_match. When the major
order of the dataset is time, then w1 > w2; when the major order
of the dataset is space, then w2 > w1.

On the whole, we fully consider the temporal and spatial
attributes of RS data to design “match” metrics to achieve
spatio-temporal aware RS data discovery. In the same directory,
the “match” value of one scene data is used to represent the
“match” value of its sibling nodes, and the “match” value is
dynamically adjusted and updated during the scene analysis
task. We use time_match and space_match metrics to measure
the overall spatio-temporal data “match” between the scene data
and the target. A higher “match” value indicates that we should
perform earlier the scene analysis task, to discover the target data
faster among millions of scene data and increase the efficiency
of data discovery.

2) Data Cube Parsing and Indexing With STAC Standards:
To address the challenge of the tedious and time-consuming pro-
cess of constructing a data cube index for diverse RS datasets, we
aim to implement automatic data parsing and data cube indexing
for discovered RS data. There are various RS data products
with different formats and standards, which makes it difficult to
extract cube items and construct the data cube index. Therefore,
this article focuses on parsing and data cube indexing of RS
metadata adhering to the STAC standard. STAC is a standard
that enhances access to information about spatio-temporal data,
providing a standardized way to disclose and query RS datasets
and making them more accessible and interoperable [89]. In
addition, STAC supports data cube extensions, and most data
cube platforms already use the STAC standard to index data or
data cube products [90]. The files of STAC items can be directly
parsed and converted to data cube format, which can improve
the work efficiency without the user’s tedious work of metadata
parsing and data cube index construction.

First, we offer predefined data products, such as Landsat-
5/7/8/9 and Sentinel-1/2, and support the parsing and indexing
of most datasets using STAC standards. We also provide product
definitions for Chinese domestic satellites GF-1/2/3, facilitating
automatic parsing of their XML format metadata files and data
cube index construction. Moreover, users can customize more
data cube products and metadata formats, and we support the
free extension of data cube products. Second, we use Alluxio to
read metadata files and use the stac_transform function in the

Fig. 6. Process of data cube retrieval and optimization across clouds.

odc.apps.dc_tools library to directly parse the original STAC
standard metadata file into the form of a data cube index. Third,
we supplement the generated data cube index with the product
type of the data cube and additionally add the attribute field of the
data_source, which is used to record the different data sources of
the RS dataset. Then, we need to perform virtual path mapping
to map all the original data access paths into virtual access
paths in Alluxio to support the subsequent data integration and
access across clouds based on Alluxio. Finally, based on the data
product definition, we use the index_update_dataset function of
odc.apps.dc_tools.utils to load and store the complete data cube
index information into the ODC’s PostgreSQL database.

In this way, subsequent data applications can directly retrieve
and access RS data stored in multiple cloud platforms and
distributed file systems through the local data cube indexes, thus
supporting unified data cube retrieval and data access across
clouds.

D. Data Cube Retrieval Across Clouds With QF Filtering

The traditional scene file storage structure is complex and
time-consuming for time series analysis of RS data. To address
this, we expect that data can be processed in the multidimen-
sional spatio-temporal array structure of RS data logically. This
article deploys a data cube platform to manage spatio-temporal
RS data using the widely adopted ODC [63] framework in
various EODC implementations [32]. We have extended and
optimized the ODC with the use of Alluxio to read data to sup-
port data cube indexing directly from different cloud platforms,
allowing data cube retrieval across clouds without downloading
metadata files locally. Fig. 6 shows the process for data cube
retrieval and optimization across clouds.

In the process of data cube construction, users need to retrieve
and filter out some data based on query conditions to provide
support for subsequent data analysis and processing. However,
the traditional RS data retrieval conditions are relatively simple,
and a large number of retrieval results that meet the requirements
will be obtained, and there may be a large amount of redundant
data that overlap in time range or spatial region. If users want to
finely filter out the ideal data for data analysis and calculation,
they need to further filter the data manually, which is very time-
consuming and laborious.
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Algorithm 2: Qf Data Filtering.
Input: Q
Output: Results

function Data_FilteringQ
Q1, Q2. . .Qn ← getChunk(Q) � the target area is chunked
for i = 1 to n do � perform data filtering tasks in parallel
datalist← findDatasets(Qi) � query data cube across Clouds
for data in datalist do
data.S ← Polygon(data.extent) � get the polygon of the data space extent
data.score← getScore(data.cloud_cover) � set the scoring criteria for data sorting, default is cloud
coverage(score = - data.cloud_cover)

Candlist← datalist.sort(score) � sort the data by data.score to form a candidate list
while Qi.area > ε and Candlist.size > 0 do � ε is a number close to 0, depending on the precision
data← Candlist.popmax() � select the one with the highest score from the candidate list
Inter ← data.S

⋂
Qi

if Inter.area > ε then � determine if the selected data intersects with the target area
Qi ← Qi − Inter � subtracts the intersecting polygons from the target area
Results.add(data) � the selected data is added to the result set

return Results

Fig. 7. Filtering process for data covering the target area.

To address the abovementioned problems, this article pro-
poses a QF filtering strategy for data cube retrieval across clouds,
which solves the problem of redundant data. This strategy can
filter out data with high quality (i.e., less cloud coverage) that
covers the target spatio-temporal range to construct the data
cube. This data filtering strategy prevents poor-quality data
from affecting data analysis results and also avoids loading
duplicate data, which can affect the efficiency of data analysis.
The strategy is outlined in Algorithm 2, and the data filtering
process that covers the target area is depicted in Fig. 7.

Step 1: Chunk the target query area (spatial range) to get several
target subspace regions Q1, Q2,... Qn to filter data in parallel.

Step 2: Query data cubes across clouds based on each target
subspace to obtain a list of data (each scene data includes
information, such as time, spatial range, and cloud coverage)
that meet the target requirements.

Step 3: According to the boundary of the spatial range of each
scene data in the list, create the corresponding polygon S of
scene data, and sort all the data according to the specified
scoring criteria to form an ordered candidate list. In this
article, data quality is selected as the scoring criterion (score
= – cloud_cover), that is, the less cloud coverage, the higher
the data quality and the higher score. Of course, users are

free to customize this scoring criterion for data sorting and
filtering according to the actual application needs.

Step 4: When the candidate list is not empty and the area of
subspace Qi is larger than ε (ε is a number close to 0, depending
on the precision), the data with maximum score (the best data
quality) is selected from the candidate list each time.

Step 5: Judge whether polygon S of the selected data intersects
the target subspace Qi. If they intersect, the data will be added
to the result set, and the intersecting polygons (S intersects
Qi) will be subtracted from Qi.

Step 6: Repeat Step 4 and Step 5 until the target subspace Qi is
completely covered.

Overall, the QF filtering strategy aims to select high-quality
and nonoverlapping data from a large amount of available data
in order to cover the target area with minimal overlap. This
strategy could help improve the data processing efficiency and
ensure better data analysis results.

V. EXPERIMENTS

In this article, we present the method of in-memory distributed
data cube autodiscovery and retrieval from RS big data across
clouds. For performance and scalability analysis, we conducted
multiple groups of experiments, given as follows:

1) several performance comparative experiments on different
data discovery methods (ODC-based, BFS, DFS, I-BFS,
I-DFS, and LFS) and LSA data discovery strategy;

2) several scalability experiments on LSA data discovery
strategy;

3) a scalability experiment on data cube retrieval across
clouds, and a performance experiment on retrieval with
and without QF data filtering.

We conducted these comparative experiments in a HPC clus-
ter environment equipped with 13 nodes. Three nodes are con-
figured with Zookeeper service to support the high availability of
Alluxio masters and ten nodes are Alluxio workers, providing
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TABLE I
RS DATASETS MOUNTED TO IN-MEMORY DATA LAYER FROM ACROSS THE CLOUDS

a total of 20 TB of storage capacity through a tiered storage
mechanism. Each node has 8 core CPUs and 8 GB memory, and
the operating system is Centos7.9.

A. Experimental Datasets

In the data orchestration with Alluxio, we mounted several
RS datasets from Amazon Cloud, Ali Cloud, Tencent Cloud, and
HDFS. The details of the RS datasets mounted to the in-memory
data layer from across the clouds are given in Table I.

B. Performance Experiments on Data Discovery

To test the effectiveness and efficiency of the LSA data discov-
ery strategy, three groups of comparative experiments have been
conducted in this section. The first group is a comparative experi-
ment on ODC-based data access and LSA. Because the existing
RS data managing or sharing platforms could barely provide
direct and effective RS data discovery across clouds, whereas
the ODC could offer data accessing and indexing across clouds
through APIs of cloud storage buckets. Therefore, we use ODC
to simulate data access across clouds, called the ODC-based
data access method in the experiment, to compare with LSA
data discovery. The second group is comparative experiments
with some typical tree traversal strategies, such as DFS) BFS,
and improved DFS (I-DFS) and improved BFS (I-BFS). This is
because Alluxio can provide in-memory directory trees once
we mount datasets from multiple clouds, which causes data
discovery across clouds to look like a directory tree traversal
process. So we compared LSA with the mainstream directory
tree traversal methods. The third group is a comparative exper-
iment on LSA and LSF data crawling strategy used for Internet
data.

1) Comparative Experiment on ODC-Based Data Access and
LSA Data Discovery: We have conducted five comparative ex-
periments of data discovering between the ODC-based method
and our LSA strategy, as the number of data scenes scales

TABLE II
TIME OVERHEAD OF ODC-BASED DATA ACCESS AND LSA DATA DISCOVERY

from 10, 50, 100, and 200 to 500, whereas the ODC-based data
accessing follows a manual way. We have to download and parse
the metadata of the entire huge datasets including our requested
data from the cloud platform using s3 API (“s3-to-dc” command
of odc_apps_dc_tools package) offered by ODC based on user
experiences. Then, the data must be indexed into ODC to support
data access across cloud platforms. The experimental data are
the Landsat8 datasets in a temporal span of the year 2019 and a
spatial range of 0◦ − 30◦N, 0◦ − 30◦E.

According to the experimental results in Table II, the time
overhead of both approaches goes up nearly linearly, as the
amount of discovered data increases. The time performance of
the LSA data discovery is 22 times better than that of the ODC-
based data access. As the amount of data increases, the time gap
between the two approaches becomes even larger. Especially in
the case of discovering 500 scenes, the time performance of the
LSA data discovery is 115 times better than that of the ODC-
based data accessing. The main reason is that the data accessing,
filtering, and huge data downloading operations are mainly done
in a manual way in ODC-based accessing. This could inevitably
result in extra higher time overhead when compared with our
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Fig. 8. Time overhead of DFS, BFS data search, and LSA data discovery.

LSA approach. In contrast, the LSA data discovery strategy can
support automatic data searching among large RS datasets across
clouds based on application requirements, without manually
searching, filtering, and downloading. Because Alluxio virtually
mounts multiple datasets across clouds, it can support local
virtual data through data prefetching. The LSA data discovery
strategy is spatio-temporal aware, which can narrow the searches
in the data discovery process and find the target data more
quickly from a large number of mounted datasets. Apparently,
the performance of LSA is much better than the ODC-based
method. When the data scale became larger, the performance of
LSA turned out to be even more outstanding than ODC-based
data access.

2) Comparative Experiment on DFS, BFS, I-DFS, I-BFS, and
LSA Data Discovery: The data orchestration across clouds with
Alluxio supports unified data access across clouds in the form
of a directory tree. To test the performance of the LAS data
discovery strategy, we compare it with DFS and BFS directory
tree traversal strategies, comparing the time overhead of the
different approaches to discover the same amount of data. We
implemented data discovery experiments to find Landsat8 data
with a time in 2018, a spatial range of 0◦ − 30◦N, 0◦ − 30◦E,
and a cloud coverage of less than 50%. It is an experiment on
small datasets of terabyte scale.

According to the results shown in Fig. 8, the time overhead
of all three data discovery methods is increasing linearly as the
amount of discovered data increases. Among them, the time
overhead of LSA is increasing more gently, DFS is the second,
and BFS has the most drastic increase in time overhead. When
discovering the 4000 scene data, LSA took 6 min, DFS took
over 8 h, and BFS took over 23 h. At this point, the time
overheads of DFS and BFS are 80 and 230 times higher than
that of LSA, respectively. The reason for this significant time
gap is that during the data discovery across clouds, the directory
discovery and scene analysis tasks have different execution
priorities in different data discovery strategies. DFS and BFS
data search strategies do not perform any sorting or filtering of
directories and scene data during data discovery. So they need to
discover and analyze all data in mounted datasets, which is very
time-consuming and difficult to find target data. In contrast, the
LSA strategy can sort the directories based on the importance
and amount of directories and sort the scenes based on the

Fig. 9. Region and source of data discovery results across clouds on the map.

spatio-temporal match of the data and target to narrow the data
searches, enabling faster target data discovery. In short, the time
performance of the LSA data discovery strategy is better than
that of DFS and BFS.

Fig. 9 displays 4000 scenes of data obtained from the above-
mentioned data discovery experiment on a map. Each small box
on the map represents one scene of RS data, with varying colors
indicating different data sites (cloud platforms, distributed file
systems, local storage, etc.). Pink boxes indicate data sourced
from AWS, blue boxes represent data from COS, green boxes
indicate data from OSS, and yellow boxes represent data from
HDFS. The various colored boxes in the map demonstrate the
multiple data sites involved in the data orchestration across
clouds in the experiments and confirm that the LAS strategy
enables data discovery across clouds.

Considering the organization and directory division of RS
data, most datasets are organized by different years. We have
improved the BFS (I-BFS) and DFS (I-DFS) strategies to filter
directories that do not match the target year. We conducted
comparative experiments between LSA and I-BFS, I-DFS data
discovery strategies. One experiment was implemented on a
small terabyte-scale dataset to find Landsat8 data in the year
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Fig. 10. Time overhead of I-DFS, I-BFS, and LSA data discovery for small
datasets.

Fig. 11. Time overhead of I-DFS, I-BFS, and LSA data discovery for large
datasets.

2020, with a spatial range of 5◦S − 20◦N, 5◦W − 20◦E, and a
cloud coverage of less than 80%. The other was implemented on
a large petabyte-scale dataset to find Sentinel2 data in the year
2021, with a spatial range of 10◦S − 80◦N, 25◦W − 170◦E,
and a cloud coverage of less than 40%.

The experimental results of Figs. 10 and 11 show that LSA
has the least time overhead, I-DFS the second least, and I-BFS
the most when discovering the same amount of target data.
Based on the small-scale data discovery results in Fig. 10, the
time overhead of LSA is about 20% less than that of I-DFS
and about 50% less than that of I-BFS when discovering 6000
scenes of data. Based on the large-scale data discovery results in
Fig. 11, the time overhead of LSA is about 66% less than that
of I-DFS and 87% less than that of I-BFS when 40 000 scenes
of data are found. This indicates that the performance of LSA
turned out to be even more outstanding than I-DFS and I-BFS in
the larger-scale data discovery experiments. Because the LSA
strategy makes full use of the spatio-temporal information of
RS data, the spatio-temporal matching of data and target is
used to narrow down the data search, so that the target data
can be found quickly from the huge amount of data. While
the I-DFS and I-BFS strategies can only filter out the data
year directories, the rest of the data directories still need to be
traversed and parsed sequentially, which is very complicated
and time-consuming. On the whole, the time performance of the
LSA data discovery strategy is better than that of the I-DFS and
I-BFS methods in large-scale and small-scale datasets, and has
greater performance advantages in large-scale data discovery.

Fig. 12. Time overhead of LSF data search and LSA data discovery.

3) Comparative Experiment on LSF and LSA Data Discov-
ery: Generally, the LSF data crawling strategy ranks the web-
sites based on the number of uncrawled pages as the priority for
picking a website. In this experiment, we use the LSF strategy to
sort the data directory for data discovery. Unlike the single rank
metric of LSF, our LSA strategy uses two metrics to accelerate
RS data discovery. During data discovery, we use “rank” values
based on the LSF strategy to sort the directories and use “match”
values based on spatio-temporal matching of RS data to sort
the scenes in the directory. The experiment was implemented
to conduct a data discovery task of searching Landsat8 data
in a temporal span of the year 2019 and a spatial range of
0◦ − 30◦N, 0◦ − 30◦E among all the mounted datasets from
clouds, and the data quality requirement was a cloud coverage
of less than 60%.

From the experimental results in Fig. 12, we can tell that
the time overhead of LSA and LSF is increasing linearly as
the amount of discovered data goes up. The time overhead of
the LSA strategy could nearly be 50% of that of the LSF Internet
data discovering method, as the data scale from 10 to 6000. This
indicates that the LSF strategy does not work well for RS data
discovery. Because the LSF strategy is mainly used for crawling
text data on the Internet, and it does not take multidimensional
attributes, such as time and space of RS data into account. The
LSF is blind to the spatio-temporal attributes of the data, which
could lead to the inefficiency of the whole discovery process. In
contrast, our LSA strategy is based on LSF, while taking into
account the spatio-temporal attributes of RS data. It narrows the
data search by calculating the spatio-temporal match between
the scene data and the target, so the target data can be found
faster during the data discovery. Overall, the time performance
of LSA data discovery is twice as good as the LSF strategy, and
the LSA is more efficient in RS data discovery.

C. Scalability Experiments on Data Discovery

1) Experiment on Spatio-Temporal Scalability of LSA: We
tested the scalability of different time spans and spatial regions
for LSA data discovery. The first experiment was conducted to
discover Sentinel2 data in the Asian region and different time
spans (10 days, 20 days, and 30 days), with cloud coverage of
less than 50%. The second experiment was conducted to discover
Landsat7 data in a temporal span of the year 2020 and different
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Fig. 13. Time overhead of LSA data discovery in different time spans.

Fig. 14. Time overhead of LSA data discovery in different spatial regions.

spatial regions (15◦ × 15◦ grid, 20◦ × 20◦ grid, and 25◦ × 25◦

grid), with cloud coverage of less than 50%.
According to Fig. 13(b), when the target time span is scaling

from 10 days, 20 days to 30 days, the time overhead of dis-
covering 10 000 scenes of data is reduced by 24% and 32% in
order. According to Fig. 14(b), when the target spatial region is
scaling from a 15◦ × 15◦ grid, a 20◦ × 20◦ grid to a 25◦ × 25◦

grid, the time overhead of discovering 2000 scenes of data is
reduced by 9% and 22% in order. These experimental results
prove that the time overhead of discovering the same amount
of target data decreases as the time span or spatial region of
the discovery is expanded. Because the larger the time span or
spatial region of discovery leads to a larger amount of data that
meets the requirements, the easier it is to locate the target data
from a large amount of mounted data, and the time overhead to
discover the same amount of target data decreases. Based on the
results of Fig. 13(a), when the time span was from 10 days to 20
days, the total amount of data found doubled and the total time
overhead increased by 20%. Based on the results of Fig. 14(a),
when the spatial region from a 15◦ × 15◦ grid to a 20◦ × 20◦

grid, the total amount of data found increased by half and the
total time overhead increased by approximately 28%. This is
because with the expansion of time span or spatial region, more
data of mounted datasets meet requirements, and it takes more
time to find all the target data. Overall, as the time span or spatial

region of the data discovery target increases within a certain
range, the LSA strategy can still discover the target data in a
short time with better performance. However, if the time span
and spatial region of the data discovery target are expanded to
the full spatio-temporal range of the dataset (when all the data
of the dataset match the target requirements), the LSA strategy
will no longer have the performance advantage. In this case, it
would be more appropriate to use the DFS strategy to perform
the data discovery task.

2) Experiment on Parallel Scalability of LSA: We deployed
a distributed data discovery architecture to manage and execute
data discovery tasks. To test the parallel scalability of the LSA
data discovery strategy, we execute the same data discovery task
with a different number of threads (each node with a thread
pool of up to ten threads). We implemented data discovery
experiments to discover Landsat7 data in 2020 with a spatial
range of 0◦ − 30◦N, 0◦ − 30◦E and a cloud coverage of less
than 50%.

From the results in Fig. 15, we can tell that the more threads
execute tasks, the better the performance of LSA data discovery.
The largest performance improvement in data discovery was
found when the number of threads was increased from 10 to
20, with a 54% performance improvement. The performance
improvement was between 30% and 20% for each additional
ten threads as the number of threads increased from 20 to



4544 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 15. Time overhead of LSA data discovery with different number of
threads.

60. When the number of threads reaches 60, the performance
improvement is less than 10% for each additional ten threads and
the performance improvement is getting smaller, which may be
limited by the network communication or bandwidth of the dis-
tributed system, etc. Therefore, using 60 threads (six nodes) can
achieve optimal execution efficiency without wasting resources
under the current experimental conditions. Overall, the LSA data
discovery strategy deployed on a distributed architecture can
scale well and improve data discovery efficiency by increasing
the number of threads (nodes).

D. Retrieval Experiments With QF Filtering

1) Experiments on Spatio-Temporal Scalability of Data Re-
trieval: For RS data discovered from multiple cloud platforms,
we construct data cube indexes for them and store them in
ODC’s database, thus supporting subsequent data cube retrieval
and access across clouds. To test the scalability of data cube
retrieval across clouds in different time spans or spatial regions,
we conducted data cube retrieval experiments based on two
million data cube indexes in the database. As shown in Fig. 16,
we tested the time overhead of data cube retrieval in different
time spans (time span: 1 month, 3 months, 6 months, 9 months,
and 12 months) and Shandong Province, China. As shown in
Fig. 17, we tested the time overhead of data cube retrieval
in January 2020 and different spatial regions (spatial region:
Shandong Province, Heilongjiang Province, Xinjiang Province,
Inner Mongolia Province, and China).

Based on the results in Fig. 16(a), the amount of data retrieved
for the 12 months was about 11.9 times that of the one month,
and the total time overhead was about 11.6 times. From the
results in Fig. 17(a), the amount of data retrieved for the China
region was about 73.7 times than that of the Shandong province,
and the total time overhead was about 71.84 times. These results
indicate that as the time span or spatial region of data retrieval
expands, the total amount of data retrieved increases, as does
the total time overhead. The reason is that as the time span or
spatial region of the retrieval increases, the more data in the
database that meet the requirements, the larger the amount of
data retrieved. It takes a lot of time to load these retrieval results
into memory and return them to the user at one time, so the total

time overhead of data retrieval increases. Based on the results
in Figs. 16(b) and 17(b), the average time overhead of data re-
trieval (total time overhead/number of results) remains relatively
stable in the range of 0.0010 to 0.0012 s as the time span or
spatial region of data retrieval expands. This indicates that the
average time overhead of data cube retrieval is hardly affected
by the time span and spatial region of retrieval, maintaining a
good retrieval performance. Overall, the total time overhead of
retrieval is increased by the number of results when the time
span or spatial region increases, but the average time overhead
of retrieval remains almost constant, which confirms the good
spatio-temporal scalability of data retrieval.

2) Comparative Experiment on Data Retrieval With and
Without QF Filtering: This article introduces a QF data filtering
strategy for data cube retrieval across clouds. To test the perfor-
mance of this filtering strategy, we constructed a comparison
experiment on data cube retrieval with and without the QF
filtering strategy. The retrieval experiment was implemented to
search Sentinel2 data in January 2021, with a spatial range of
25◦ − 45◦N, 95◦ − 115◦E.

Fig. 18(a) displays the results of direct data retrieval without
data filtering on the map. It took 4 s to retrieve 5812 scene data,
which have a large amount of overlap on the map. Fig. 18(b)
displays the results of data retrieval with QF data filtering on the
map. It took 34 s to retrieve and filter out 894 high-quality scene
data, which maximized coverage of the target area with a small
overlap. The experimental results show that the QF data filtering
strategy can help us filter out a small amount of high-quality
data covering the target area from a large amount of data at
a small time overhead. This strategy avoids a large number of
overlapping data retrieved, thereby improving the efficiency of
subsequent data processing and analysis. In addition, it prevents
poor-quality data from affecting the accuracy of the data analysis
results.

VI. DISCUSSION

In this article, we conduct several comparison experiments
to evaluate the performance and scalability of the LSA data
discovery and data cube retrieval across clouds. The experi-
mental results show that the methods are effective, efficient,
and scalable. From the comparative experiments on LSA and
ODC-based data access, the time overhead of the ODC-based
approach is tens or even hundreds of times higher than the that
of LSA discovery strategy, and the LSA data discovery is more
efficient. In the comparative experiments on DFS, BFS, I-DFS,
I-BFS, LSF, and LSA discovery, the time overhead of LSA is
about 20% less than that of I-DFS and about 50% less than
that of I-BFS in the small-scale data discovery experiments; the
time overhead of LSA is about 66% less than that of I-DFS
and 87% less than that of I-BFS in large-scale data discovery
experiments; the time overhead of the LSA strategy is 50% less
than that of the LSF strategy. These experimental results show
that the LSA strategy is more effective than other data discovery
strategies. From the scalability experiments on data discovery,
as the time span or spatial region of the data discovery target
increases within a certain range, the LSA strategy shows good
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Fig. 16. Time overhead of data cube retrieval in different time spans.

Fig. 17. Time overhead of data cube retrieval in different spatial regions.

Fig. 18. Data cube retrieval results with and without QF filtering.

spatio-temporal scalability. In addition, the LSA data discovery
can scale well as increasing the number of threads, and using
60 threads (six nodes) can achieve optimal execution efficiency
without wasting resources under the current experimental con-
ditions. The experiments on spatio-temporal scalability of data
retrieval show that data cube retrieval scale well and keep the
average retrieval time stable within a small range when the

time span or spatial region increases. Finally, the comparative
experiment on data retrieval with and without data filtering
proves that the QF data filtering strategy can help us filter out a
small amount of high-quality data covering the target area from
a large amount of data at a small time overhead.

In short, the data discovery, retrieval, and filtering method
proposed in this article facilitates unified discovery, retrieval, and
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access to RS data from multiple cloud platforms, distributed file
systems, and local systems. It demonstrates good performance
and scalability, thereby enabling users to improve the efficiency
of data discovery and acquisition, and focus on data analysis and
application. However, network speed and stability can impact the
performance of data discovery, due to the data being sourced
from multiple public cloud storage. It is important to note that
the LSA data discovery strategy may not be suitable for all data
discovery tasks.

VII. CONCLUSION

The amount of global archived EO data has increased sig-
nificantly, reaching exabytes. The innovative paradigm of the
EODC has transformed the traditional way of EO data acqui-
sition, storage, processing, and sharing. However, the diverse
data cube solutions have led to limited interoperability among
existing data cube infrastructures, hindering data sharing and
joint use across them. To tackle these issues, we proposed
a method of in-memory distributed data cube autodiscovery
and retrieval from RS big data across clouds. We constructed
distributed in-memory data orchestration to provide users with
a unified in-memory access view and operation interface of
different cloud platforms. We proposed an LSA data discovery
strategy across clouds and a QF data filtering strategy to support
efficient data discovery and retrieval. These efforts overcome the
challenge of data cube joint use and enable fast and accurate data
discovery and retrieval across clouds. However, network speed
and stability could impact the performance of data discovery,
due to the experimental data being sourced from multiple public
cloud storage. In the future, we will take the multidimensional
and geometric characteristics of spatio-temporal RS data into
account, as well as the spatial direction of data access in the anal-
ysis of RS data, to design access pattern-aware spatio-temporal
RS data cache prefetching and replacement strategy, so as to
further improve the access performance of spatio-temporal RS
data.

Overall, our proposed method allows users to focus on data
analysis and processing without the tedious and time-consuming
data acquisition, such as searching and downloading data from
multiple cloud platforms. This method is beneficial to promote
the full potential of spatio-temporal RS data information, facil-
itating large-scale scientific research on global environmental
change and sustainable development.

REFERENCES

[1] J. T. Overpeck, G. A. Meehl, S. Bony, and D. R. Easterling, “Climate data
challenges in the 21st century,” Science, vol. 331, no. 6018, pp. 700–702,
2011.

[2] G. Giuliani, G. Camara, B. Killough, and S. Minchin, “Earth observation
open science: Enhancing reproducible science using data cubes,” vol. 4,
no. 4, 2019, Art. no. 147.

[3] V. C. Gomes, G. R. Queiroz, and K. R. Ferreira, “An overview of platforms
for big Earth observation data management and analysis,” Remote Sens.,
vol. 12, no. 8, 2020, Art. no. 1253.

[4] P. K. Hargreaves and G. R. Watmough, “Satellite Earth observation to
support sustainable rural development,” Int. J. Appl. Earth Observ. Geoinf.,
vol. 103, 2021, Art. no. 102466.

[5] M. D. Mahecha et al., “Earth system data cubes unravel global multivariate
dynamics,” Earth Syst. Dyn. Discuss., vol. 11, no. 1, pp. 201–234, 2020.

[6] G. Boulton, “The challenges of a Big Data Earth,” Big Earth Data, vol. 2,
no. 1, pp. 1–7, 2018.

[7] N. Dey, C. Bhatt, and A. S. Ashour, Big Data for Remote Sensing:
Visualization, Analysis and Interpretation. Cham, Switzerland: Springer,
2018.

[8] Z. Wu et al., “User needs for future Landsat missions,” Remote Sens.
Environ., vol. 231, 2019, Art. no. 111214.

[9] P. Kempeneers and P. Soille, “Optimizing Sentinel-2 image selection in a
Big Data context,” Big Earth Data, vol. 1, no. 1/2, pp. 145–158, 2017.

[10] M. Sudmanns et al., “Big Earth data: Disruptive changes in Earth obser-
vation data management and analysis?,” Int. J. Digit. Earth, vol. 13, no. 7,
pp. 832–850, 2020.

[11] B. D. Killough, “Satellite analysis ready data for the sustainable de-
velopment goals,” Earth Observation Applications and Global Policy
Frameworks. Hoboken, NJ, USA: Wiley, 2022, pp. 133–143.

[12] Y. Ma et al., “Remote sensing Big Data computing: Challenges and
opportunities,” Future Gener. Comput. Syst., vol. 51, pp. 47–60, 2015.

[13] M. Chi, A. Plaza, J. A. Benediktsson, Z. Sun, J. Shen, and Y. Zhu, “Big data
for remote sensing: Challenges and opportunities,” Proc. IEEE, vol. 104,
no. 11, pp. 2207–2219, Nov. 2016.

[14] K. A. Moser et al., “Mountain lakes: Eyes on global environmental
change,” Glob. Planet. Change, vol. 178, pp. 77–95, 2019.

[15] P. Liu, J. Li, L. Wang, and G. He, “Remote sensing data fusion with gen-
erative adversarial networks: State-of-the-art methods and future research
directions,” IEEE Geosci. Remote Sens. Mag., vol. 10, no. 2, pp. 295–328,
Jun. 2022.

[16] L. Mu, L. Wang, Y. Wang, X. Chen, and W. Han, “Urban land use and land
cover change prediction via self-adaptive cellular based deep learning with
multisourced data,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 12, no. 12, pp. 5233–5247, Dec. 2019.

[17] W. Han et al., “Sample generation based on a supervised Wasserstein
generative adversarial network for high-resolution remote-sensing scene
classification,” Inf. Sci., vol. 539, pp. 177–194, 2020.

[18] L. Zhang, P. Liu, L. Zhao, G. Wang, W. Zhang, and J. Liu, “Air quality
predictions with a semi-supervised bidirectional LSTM neural network,”
Atmospheric Pollut. Res., vol. 12, no. 1, pp. 328–339, 2021.

[19] Y. Wang, L. Wang, X. Chen, and D. Liang, “Offshore petroleum leaking
source detection method from remote sensing data via deep reinforcement
learning with knowledge transfer,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 15, pp. 5826–5840, Jul. 2022.

[20] G. Giuliani et al., “Live monitoring of Earth surface (limes): A framework
for monitoring environmental changes from Earth observations,” Remote
Sens. Environ., vol. 202, pp. 222–233, 2017.

[21] A. Shelestov, M. Lavreniuk, N. Kussul, A. Novikov, and S. Skakun, “Large
scale crop classification using Google Earth engine platform,” in Proc.
IEEE Int. Geosci. Remote Sens. Symp., 2017, pp. 3696–3699.

[22] N. Sánchez, Á. González-Zamora, J. Martínez-Fernández, M. Piles, and
M. Pablos, “Integrated remote sensing approach to global agricultural
drought monitoring,” Agricultural Forest Meteorol., vol. 259, pp. 141–153,
2018.

[23] P. Potapov et al., “Mapping global forest canopy height through integra-
tion of Gedi and Landsat data,” Remote Sens. Environ., vol. 253, 2021,
Art. no. 112165.

[24] S. Nativi, P. Mazzetti, and M. Craglia, “A view-based model of data-cube
to support Big Earth Data systems interoperability,” Big Earth Data, vol. 1,
no. 1/2, pp. 75–99, 2017.

[25] Y. Zhang and J. Cheng, “Spatio-temporal analysis of urban heat island
using multisource remote sensing data: A case study in Hangzhou, China,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 9,
pp. 3317–3326, Sep. 2019.

[26] F. Zellweger, P. De Frenne, J. Lenoir, D. Rocchini, and D. Coomes,
“Advances in microclimate ecology arising from remote sensing,” Trends
Ecol. Evol., vol. 34, no. 4, pp. 327–341, 2019.

[27] J. Li, Y. Pei, S. Zhao, R. Xiao, X. Sang, and C. Zhang, “A review of
remote sensing for environmental monitoring in China,” Remote Sens.,
vol. 12, no. 7, 2020, Art. no. 1130.

[28] C. A. Lee, S. D. Gasster, A. Plaza, C.-I. Chang, and B. Huang, “Recent
developments in high performance computing for remote sensing: A
review,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4,
no. 3, pp. 508–527, Sep. 2011.

[29] Y. Ma, L. Wang, A. Y. Zomaya, D. Chen, and R. Ranjan, “Task-tree
based large-scale Mosaicking for massive remote sensed imageries with
dynamic DAG scheduling,” IEEE Trans. Parallel Distrib. Syst., vol. 25,
no. 8, pp. 2126–2137, Aug. 2014.



SONG et al.: IN-MEMORY DATA-CUBE AWARE DISTRIBUTED DATA DISCOVERY ACROSS CLOUDS 4547

[30] A. Lewis et al., “Rapid, high-resolution detection of environmental change
over continental scales from satellite data–the Earth observation data
cube,” Int. J. Digit. Earth, vol. 9, no. 1, pp. 106–111, 2016.

[31] S. Kopp, P. Becker, A. Doshi, D. J. Wright, K. Zhang, and H. Xu,
“Achieving the full vision of Earth observation data cubes,” Data, vol. 4,
no. 3, 2019, Art. no. 94.

[32] G. Giuliani, B. Chatenoux, T. Piller, F. Moser, and P. Lacroix, “Data
cube on demand (DCOD): Generating an Earth observation data cube
anywhere in the world,” Int. J. Appl. Earth Observ. Geoinf., vol. 87, 2020,
Art. no. 102035.

[33] P. Baumann, “The datacube manifesto,” 2018. Accessed: Jan. 1, 2023.
[Online]. Available: http://www.earthserver.eu/tech/datacube-manifesto

[34] P. Baumann, D. Misev, V. Merticariu, and B. P. Huu, “Datacubes: Towards
space/time analysis-ready data,” in Service-Oriented Mapping. Berlin,
Germany: Springer, 2019, pp. 269–299.

[35] G. Giuliani et al., “Building an Earth observations data cube: Lessons
learned from the Swiss data cube (SDC) on generating analysis ready data
(ARD),” Big Earth Data, vol. 1, no. 1/2, pp. 100–117, 2017.

[36] A. Lewis et al., “The Australian geoscience data cube–foundations and
lessons learned,” Remote Sens. Environ., vol. 202, pp. 276–292, 2017.

[37] P. Merodio Gómez, A. Ramírez Santiago, O. J. Juárez Carrillo, and F.
J. Jiménez Nava, “The potential contribution of Earth observation data
cubes for the production of information for sustainable development in
emerging countries,” Geomatics Environ. Eng., vol. 16, no. 3, pp. 131–155,
2022.

[38] C. Ariza-Porras et al., “CDCOL: A geoscience data cube that meets
colombian needs,” in Proc. Colombian Conf. Comput., 2017, pp. 87–99.

[39] P. Baumann et al., “Big data analytics for earth sciences: The Earthserver
approach,” Int. J. Digit. Earth, vol. 9, no. 1, pp. 3–29, 2016.

[40] G. Camara et al., “The e-sensing architecture for big Earth observation
data analysis,” in Proc. Conf. Big Data From Space, 2017, pp. 28–30.

[41] M. Stonebraker, P. Brown, D. Zhang, and J. Becla, “SCIDB: A database
management system for applications with complex analytics,” Comput.
Sci. Eng., vol. 15, no. 3, pp. 54–62, 2013.

[42] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R.
Moore, “Google Earth engine: Planetary-scale geospatial analysis for
everyone,” Remote Sens. Environ., vol. 202, pp. 18–27, 2017.

[43] Amazon, “EAWS-Earth on Amazon web services,” 2023. Accessed: Jan.
10, 2023. [Online]. Available: https://aws.amazon.com/cn/earth

[44] P. Baumann et al., “Fostering cross-disciplinary Earth science through
datacube analytics,” in Earth Observation Open Science and Innovation.
Cham, Switzerland: Springer, 2018, pp. 91–119.

[45] G. Giuliani, J. Masó, P. Mazzetti, S. Nativi, and A. Zabala, “Paving the
way to increased interoperability of Earth observations data cubes,” Data,
vol. 4, no. 3, 2019, Art. no. 113.

[46] L. Wang, Y. Ma, A. Y. Zomaya, R. Ranjan, and D. Chen, “A parallel file
system with application-aware data layout policies for massive remote
sensing image processing in digital Earth,” IEEE Trans. Parallel Distrib.
Syst., vol. 26, no. 6, pp. 1497–1508, Jun. 2015.

[47] L. Wang, Y. Ma, J. Yan, V. Chang, and A. Y. Zomaya, “pipsCloud: High
performance cloud computing for remote sensing Big Data management
and processing,” Future Gener. Comput. Syst., vol. 78, pp. 353–368,
2018.

[48] Z. Sun, F. Chen, M. Chi, and Y. Zhu, “A spark-based Big Data platform
for massive remote sensing data processing,” in Proc. Int. Conf. Data Sci.,
2015, pp. 120–126.

[49] L. Li, W. Jing, and N. Wang, “An improved distributed storage model of
remote sensing images based on the HDFs and pyramid structure,” Int. J.
Comput. Appl. Technol., vol. 59, no. 2, pp. 142–151, 2019.

[50] R. D. Price, M. D. King, J. T. Dalton, K. S. Pedelty, P. E. Ardanuy, and
M. K. Hobish, “Earth science data for all: EoS and the EoS data and
information system,” Photogrammetric Eng. Remote Sens., vol. 60, no. 3,
pp. 277–285, 1994.

[51] ESA, “Copernicus open access hub,” 2023. Accessed: Jan. 16, 2023.
[Online]. Available: https://scihub.copernicus.eu/

[52] FENGYUN Satellite Data Center, “FY satellite remote sensing data ser-
vice web portal,” 2023. Accessed: Jan. 16, 2023. [Online]. Available:
http://satellite.nsmc.org.cn/portalsite

[53] Y. Shao, L. Di, Y. Bai, H. Wang, and C. Yang, “Federated catalogue for
discovering Earth observation data,” Photogrammetrie-Fernerkundung-
Geoinf., vol. 2013, no. 1, pp. 43–52, 2013.

[54] M. Appel and E. Pebesma, “On-demand processing of data cubes from
satellite image collections with the gdalcubes library,” Data, vol. 4, no. 3,
2019, Art. no. 92.

[55] M. Lu, E. Pebesma, A. Sanchez, and J. Verbesselt, “Spatio-temporal
change detection from multidimensional arrays: Detecting deforestation
from modis time series,” ISPRS J. Photogrammetry Remote Sens., vol. 117,
pp. 227–236, 2016.

[56] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann, “The
multidimensional database system Rasdaman,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 1998, pp. 575–577.

[57] G. Planthaber, M. Stonebraker, and J. Frew, “EarthDB: Scalable analysis of
MODIS data using SciDB,” in Proc. 1st ACM SIGSPATIAL Int. Workshop
Analytics Big Geospatial Data, 2012, pp. 11–19.

[58] M. C. A. Picoli et al., “Big Earth observation time series analysis for mon-
itoring Brazilian agriculture,” ISPRS J. Photogrammetry Remote Sens.,
vol. 145, pp. 328–339, 2018.

[59] M. Appel, F. Lahn, W. Buytaert, and E. Pebesma, “Open and scalable
analytics of large Earth observation datasets: From scenes to multidimen-
sional arrays using SciDB and GDAL,” ISPRS J. Photogrammetry Remote
Sens., vol. 138, pp. 47–56, 2018.

[60] S. Papadopoulos, K. Datta, S. Madden, and T. Mattson, “The TileDB
array data storage manager,” Proc. VLDB Endowment, vol. 10, no. 4,
pp. 349–360, 2016.

[61] K. Doan et al., “Evaluating the impact of data placement to spark and
SciDB with an earth science use case,” in Proc. IEEE Int. Conf. Big Data,
2016, pp. 341–346.

[62] M. D. Mahecha et al., “Earth system data cubes unravel global multivariate
dynamics,” Earth Syst. Dyn., vol. 11, no. 1, pp. 201–234, 2020.

[63] B. Killough, “Overview of the open data cube initiative,” in Proc. IEEE
Int. Geosc. Remote Sens. Symp., 2018, pp. 8629–8632.

[64] M. Villamizar et al., “Scaling the colombian data cube using a distributed
architecture,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2018,
pp. 441–444.

[65] K. Mubea, B. Killough, O. Seidu, J. Kimani, B. Mugambi, and S. Kamara,
“Africa regional data cube (ARDC) is helping countries in africa report
on the sustainable development goals (SDGs),” in Proc. IEEE Int. Geosc.
Remote Sens. Symp., 2020, pp. 3379–3382.

[66] P. Strobl et al., “The six faces of the data cube,” in Proc. Conf. Big Data
Space, 2017, pp. 28–30.

[67] H. Augustin, M. Sudmanns, D. Tiede, S. Lang, and A. Baraldi, “Semantic
Earth observation data cubes,” Data, vol. 4, no. 3, 2019, Art. no. 102.

[68] C. Xu et al., “Analyzing large-scale data cubes with user-defined algo-
rithms: A cloud-native approach,” Int. J. Appl. Earth Observ. Geoinf.,
vol. 109, 2022, Art. no. 102784.

[69] F. Gao et al., “A multi-source spatio-temporal data cube for large-
scale geospatial analysis,” Int. J. Geograph. Inf. Sci., vol. 36, no. 9,
pp. 1853–1884, 2022.

[70] M. Sudmanns et al., “Think global, cube local: An Earth observation data
cube’s contribution to the digital Earth vision,” Big Earth Data, vol. 16,
pp. 1022–1072, 2022.

[71] R. Rew et al., “NetCDF-4: Software implementing an enhanced data model
for the geosciences,” in Proc. 22nd Int. Conf. Interact. Inf. Process. Syst.
Meteorol., Oceanogr., Hydrol., 2006.

[72] W. Huang, L. Meng, D. Zhang, and W. Zhang, “In-memory parallel
processing of massive remotely sensed data using an apache spark on
hadoop yarn model,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 10, no. 1, pp. 3–19, Jan. 2017.

[73] M. Dugré, V. Hayot-Sasson, and T. Glatard, “A performance comparison
of dask and apache spark for data-intensive neuroimaging pipelines,” in
Proc. IEEE/ACM Workflows Support Large-Scale Sci., 2019, pp. 40–49.

[74] M. Amani et al., “Google Earth Engine cloud computing platform for
remote sensing Big Data applications: A comprehensive review,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 5326–5350,
Sep. 2020.

[75] “Open data cube,” 2023. Accessed: Jan. 18, 2023. [Online]. Available:
https://www.opendatacube.org/

[76] C. Jia and H. Li, “Virtual distributed file system: Alluxio,” Ph.D. disserta-
tion, Univ. California Berkeley, Berkeley, CA, USA, 2019.

[77] C. Castillo, M. Marin, A. Rodriguez, and R. Baeza-Yates, “Scheduling
algorithms for web crawling,” in Proc. WebMedia and LA-Web, 2004,
pp. 10–17.

[78] R. Baeza-Yates, C. Castillo, M. Marin, and A. Rodriguez, “Crawling a
country: Better strategies than breadth-first for web page ordering,” in
Proc. Special Int. Tracks Posters 14th Int. Conf. World Wide Web, 2005,
pp. 864–872.

[79] L. Yu, Y. Li, Q. Zeng, Y. Sun, Y. Bian, and W. He, “Summary of web crawler
technology research,” in Proc. J. Phys.: Conf. Ser., 2020, Art. no. 012036.

http://www.earthserver.eu/tech/datacube-manifesto
https://aws.amazon.com/cn/earth
https://scihub.copernicus.eu/
http://satellite.nsmc.org.cn/portalsite
https://www.opendatacube.org/


4548 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

[80] M. Mahecha et al., “The emerging Earth system data cube: Idea, imple-
mentation, and first scientific case studies,” in Proc. EGU Gen. Assem.
Conf. Abstr., 2017, Art. no. 11813.

[81] B. Killough, “The impact of analysis ready data in the Africa regional
data cube,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2019,
pp. 5646–5649.

[82] M. Flach et al., “Multivariate anomaly detection for Earth observations: A
comparison of algorithms and feature extraction techniques,” Earth Syst.
Dyn., vol. 8, no. 3, pp. 677–696, 2017.

[83] M. Sudmanns, H. Augustin, L. Van Der Meer, C. Werner, A. Baraldi, and
D. Tiede, “One GUI to rule them all: Accessing multiple semantic EO data
cubes in one graphical user interface,” GI_Forum, vol. 1, pp. 53–59, 2021.

[84] K. R. Ferreira et al., “Earth observation data cubes for Brazil: Require-
ments, methodology and products,” Remote Sens., vol. 12, no. 24, 2020,
Art. no. 4033.

[85] K. Ferreira et al., “Using remote sensing images and cloud services on
AWS to improve land use and cover monitoring,” in Proc. IEEE Latin
Amer. GRSS ISPRS Remote Sens. Conf., 2020, pp. 558–562.

[86] J. Wagemann, S. Siemen, B. Seeger, and J. Bendix, “Users of open Big
Earth Data–An analysis of the current state,” Comput. Geosci., vol. 157,
2021, Art. no. 104916.

[87] “Crawlab,” 2023. Accessed: Jan. 20, 2023. [Online]. Available: https://
www.crawlab.cn/

[88] J. Carlson, Redis in Action. New York, NY, USA: Simon and Schuster,
2013.

[89] “Spatiotemporal asset catalog,” 2023. Accessed: Jan. 16, 2023. [Online].
Available: https://stacspec.org/

[90] A. Vogt, A. Wytzisk-Arens, S. Drost, and S. Jirka, “Cloud based discovery
and processing of geospatial data,” in Proc. Accepted Short Papers Posters
22nd AGILE Conf. Geo- Inf. Sci., 2019, pp. 17–20.

Jie Song received the bachelor’s degree of manage-
ment in information management and information
system from Beijing Forestry University, Beijing,
China, in 2020. She is currently working toward the
master’s degree in signal and information processing
with the University of Chinese Academy of Sciences,
Beijing.

Yan Ma (Member, IEEE) received the M.S. and Ph.D.
degrees in signal and information processing from the
University of Chinese Academy of Sciences, Beijing,
China, in 2007 and 2013, respectively. She is currently
an Associate Professor at the Aerospace Information
Research Institute, Chinese Academy of Sciences.

Zhixin Zhang received the B.E. degree in net-
work engineering from the China University of Geo-
sciences, Wuhan, China, in 2021. She is currently
working toward the master’s degree in signal and in-
formation processing with the University of Chinese
Academy of Sciences, Beijing, China.

Peng Liu (Member, IEEE) received the M.S. and
Ph.D. degrees in signal processing from the Chinese
Academic of Science, Beijing, China, in 2004 and
2009, respectively. He is currently an Associate Pro-
fessor at the Aerospace Information Research Insti-
tute, Chinese Academy of Sciences. From May 2012
to May 2013, he was with the Department of Electrical
and Computer Engineering, George Washington Uni-
versity, Washington, DC, USA, as a Visiting Scholar.
His research is focused on big data, sparse represen-
tation, compressive sensing, deep learning and their

applications to remote sensing data processing.

https://www.crawlab.cn/
https://www.crawlab.cn/
https://stacspec.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


