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Abstract—Convolutional neural networks (CNNs) are data-
driven methods that automatically extract the rich information
embedded in remote sensing images. However, most current deep
learning-based remote sensing image change detection methods
prioritize high-level semantic features, while not enough attention
is given to low-level semantic features, resulting in the loss of
edges and details of the change region. To address this problem,
this article constructs a spatial-spectral cross fusion network (SS-
CFNet), divided into the following three modules: 1) a feature
extractor network module; 2) a combined enhancement module;
3) a semantic cross-fusion module. A new combined enhancement
strategy is proposed to construct several semantic feature blocks in
the combined enhancement module. Different convolution opera-
tions are applied to the newly constructed semantic feature blocks
in the semantic cross fusion module, and the obtained semantic
features at various levels are cross-fused. Experiments show that
the proposed SSCFNet outperforms the other six state-of-the-art
methods on four publicly available remote sensing image change
detection datasets.

Index Terms—Change detection, combined enhancement,
convolutional neural network (CNN), cross-fusion, remote sensing
image.

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) excel in var-
ious fields of deep learning, mainly due to their highly

effective feature extraction capabilities, as supported by several
studies [1], [2], [3], [4], [5], [6], [7], [8], [9]. For complex tasks
such as target detection, semantic segmentation, and change
detection [10], [11], [12], the need for high-quality features is
even more significant due to the diverse and intricate nature of the
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scenes. Consequently, numerous scholars have dedicated their
research to explore how to achieve optimal feature extraction.

It is essential to utilize remote-sensing images to assist in
decision-making. On the one hand, it decreases the human and
material resources invested in the process of investigation [13];
on the other hand, dynamic monitoring of the land surface
change using remote sensing technology is an important tech-
nique that is very commonly used in the agricultural investiga-
tion, land use [14], urban expansion [15], disaster monitoring
[16], and other applications. Especially in agriculture, change
detection is often used for arable land area control, plantation
monitoring, disaster assessment [17], deforestation monitoring,
forest resource control, etc. For urban areas, building change
monitoring [18] is also a helpful task. It is of great interest
in applications, such as urban environment, town expansion
monitoring, urban development planning, and assessment of
natural disasters like earthquakes [19].

Remote sensing change detection refers to the process of
extracting change information in image pairs acquired from the
same geographical location at different time phases [20]. In a
multitemporal image, pixels are classified as either changed or
unchanged, and a binary label is assigned to each pixel to indicate
whether it has changed or not. Finally, a change map is obtained.
The general process of remote sensing change detection is as
follows.

1) Firstly, multitemporal remote sensing images are pre-
processed to provide high-quality data input (correction,
enhancement, and registration [21] of original data, etc.).

2) Secondly, feature extraction and selection (spectral, spa-
tial, object, and scene) can be carried out [22], [23]. In
this process, feature fusion [24] at different levels can
be carried out, which is related to the change detection
algorithm model. To a certain extent, deep networks are
also automatic feature extraction processes.

3) Then, construct change indices, mainly interpolation cal-
culations, ratios, similarities, etc., to help us integrate
various change information from multitemporal data into
discriminative feature maps.

4) Finally, the change detection algorithm models are per-
formed on extracted feature maps. The final change map
was obtained.

Traditional change detection methods rely greatly on man-
ually designed feature descriptors [25], and the construction
of descriptors highly depends on the experience of experts
and domain knowledge. With the wide application of deep
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neural network models in the field of change detection, both
the powerful feature extraction capability and pattern modeling
competence of the CNNs are shown.

In the continuous development of change detection methods
based on CNNs, the following two main feature extraction
frameworks have been derived: 1) one is a single stream network,
which takes image pairs as input to generate the change map
directly; 2) the other is the siamese network [26]. Each branch
of the siamese network shares the weights and the images
of two periods go through two network branches for feature
extraction. Subsequently, the obtained features are processed by
the following processing.

In general, CNN extracts discriminative features from images
layer by layer, from shallow to deep. During this process, a valid
receptive field is crucial for the quality of extracted features.
The perceptual field size of the network affects the spatial
information and semantic representation of the output features.
Some researchers have made some attempts in this field, such as
the DeepLab family of networks for semantic segmentation [27],
[28], [29], [30], pyramid scene parsing network (PSPNet) [31],
and criss-cross attention network (CCNet) [32]. It is well known
that in deep neural networks, deeper layers have larger receptive
fields and shallow layers have smaller ones. Deeper features with
larger receptive fields have a strong ability to represent semantic
information but lose a part of spatial information and geometric
details after many convolution operations; shallow features with
smaller receptive fields have rich spatial information and high
resolution but a weak ability to represent high-level semantic
information [33].

Because of the powerful data pattern modeling and feature
representation learning ability, CNNs were introduced and now
are widely used in remote sensing change detection. Although
CNNs have been applied to various change detection methods,
most existing methods utilize a single layer of features integrated
at the end of the backbone network without effectively utilizing
the features’ substantial and essential semantic representation
information at different levels of the intermediate hidden layers.

Features at different levels and scales are vital for various
downstream tasks. For example, in the object detection method
single-shot multiBox detector [34], a multiscale feature map
is used to predict targets, using shallow low-level features to
predict small targets and deep high-level features to predict
large targets. However, in predicting small targets, using only
shallow low-level features will make the prediction of small
targets unsatisfactory. Low-level features contain rich spatial
features of small targets, while high-level features focus more on
large targets. In the meantime, low-level features concentrate on
spatial information, while high-level features focus on abstract
semantic features. For the detection of small targets, both spatial
information in low-level features and semantic information in
high-level features are indispensable. Therefore, to reduce the
false alarm rate of target detection, high-level and low-level
features are necessary for detecting both small and large targets.
As with target detection, change detection requires multiscale,
multilevel information. Hence how to effectively exploit the
feature at different semantic levels is the focus of this work.

A commonly used strategy is to perform multiscale fea-
ture fusion to account for low-level and high-level features.

Fig. 1. Visualization graph of four levels of features extracted from remote
sensing images in two time phases t1 and t2 are illustrated [35]. The feature
extracting backbone network is based on ResNet101. As the network layers
change from shallow to deep, the extracted features have different biases.

Low-level and high-level feature maps complement each other
and guide each other to improve the final discrimination per-
formance. Feature fusion strategies roughly include simple and
direct concatenation or using high-level semantic information
to assist the training of low-level feature maps and selectively
fusing low-level features. In the change detection experiments
in this work, we demonstrate that the shallow low-level features
are more biased toward detecting small discrete targets, while
the deep high-level features are more friendly to large individual
targets, as shown in Fig. 1.

To address the limitations of existing change detection meth-
ods, which do not effectively utilize multiscale features and
focus solely on increasing the diversity of discriminative fea-
tures, we implement a novel spatial-spectral cross fusion module
(SSCF) in this work, inspired by the pyramid squeeze attention
module in efficient pyramid squeeze attention block on convo-
lutional neural network (EPSANet) [36] and multiscale design
strategies for networks [37]. The SSCF combines features from
each hidden layer in the feature extractor module, and applies
different attention mechanisms to the resulting feature maps.
This enhances the feature maps with multiscale information and
stronger semantic representation capability. By incorporating
the proposed SSCF into a different backbone as the feature
extraction module, we achieve state-of-the-art change detec-
tion performance on several public datasets, including LEVIR
building change detection dataset (LEVIR-CD), WHU building
dataset (WHU), season-varying, and Sun Yat-sen university
change detection dataset (SYSU-CD).

The main contributions in this work are summarized below.
1) A novel remote sensing image change detection model

spatial-spectral cross fusion network (SSCFNet) is imple-
mented, which is superior to other advanced methods on
multiple remote sensing image change detection datasets.

2) An effectively combined enhancement module is pro-
posed. The representative ability of the combined features
is enhanced by the misplaced combination of semantic
features at different levels.

3) A novel semantic cross-fusion module is proposed. This
module provides cross-fusion enhancement of semantic
features by performing different convolution operations
on each feature after the misplaced combination, and
the semantic information in each feature sufficiently and
differently interacts.
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This article is organized as follows. Section II introduces
several related works, while Section III provides a detailed
description of the proposed SSCFNet. Section IV presents and
analyzes the experimental setup and results. In Section V, the
limitations of the proposed method are discussed. Finally, Sec-
tion VI concludes this article.

II. RELATED WORK

In this section, we will present several related works in re-
mote sensing change detection. The general change detection
pipeline includes feature extraction, change index construction,
and a change detection algorithm model. Most traditional change
detection methods employ hand-crafted feature descriptors that
perform well under certain conditions. However, given the com-
plexity of land cover in real-world situations, these manually
designed feature descriptors may not always meet the necessary
assumptions, leading to unsatisfactory performance.

By the time of the popularity of deep learning, deep neural
network-based methods had primarily improved the detection
accuracy and robustness. A more intuitive idea is to consider
this task as a semantic segmentation task with dual-temporal
inputs, so that we can obtain prior knowledge from the se-
mantic segmentation literature. Network structures like ResNet
[8], DenseNet [9], EfficientNet [38], and InceptionNet [7] that
perform well in other fields are used to carry out remote sensing
image change detection. Unlike traditional methods, CNN is a
data-driven method that automatically extracts rich information
from remote sensing images.

Semantic segmentation has successfully applied fully convo-
lutional networks [11]. To some extent, the change detection
task can be viewed as a semantic segmentation task. Therefore,
many fully supervised change detection approaches are based
on a two-branch siamese fully convolutional network (FCN)
architecture. The FCN network represented by UNet [39] has
been applied by many scholars in the task of remote sensing
image change detection.

As far as we know, many CNN-based remote sensing image
change detection methods use Siamese networks as their feature
extracting network structure. However, some other methods
leverage a single-stream architecture to generate the change
map. In siamese networks [40], two weights-shared networks
are used to extract features from each stream of input, which are
then fed to the following operation modules to obtain the final
change prediction map. Feature fusion operation and attention
mechanisms are often combined with siamese networks. After
feature fusion or attention mechanisms, information from differ-
ent temporal stages can be meaningfully fused and aggregated.
Considering the stage of fusion, feature fusion can be divided
into early fusion and late fusion. From the perspective of fusion
methods, it can be divided into single-scale fusion and multiscale
fusion. Single-scale fusion only fuses the highest-level features,
while multiscale fusion can map low-level spatial information
to high-level semantic features.

In [41], the dual-temporal images are early-fused (concate-
nated) and fed into an improved UNet++. Daudt et al. [42]
used different feature fusion strategies on the UNet for change
detection. Based on the siamese structure, the authors fused the

multilayer features extracted from UNet using feature concate-
nation and feature difference strategies, and constructed FC-
Siam-Conc and FC-Siam-Diff, which are two methods to realize
change detection of remote sensing images. In [43], Zhang and
Shi performed multiscale feature extraction from pairs of input
images using a pair of siamese very deep convolutionalnetworks
(VGG) networks and fused the extracted features by perform-
ing differences and concatenations, generating the final change
results. In [44], the authors directly concatenated two-branch
features for triplet-loss-based training. In [45], the deep feature
extracted from a pretrained multilayer CNN was utilized to
construct change vector of multitemporal images and those
features were processed through a layerwise feature selection
mechanism to retain only the change-relevant features. In [46],
the dual-temporal features were constrained both in bitemporal
feature extraction and feature fusion. In addition, a nonlocal
feature pyramid network, and a dense connection-based feature
fusion module were used to fuse the bitemporal information. In
[47], an unsupervised multimodal change detection framework
based on structural relationships was proposed. The authors
represented images with graphs and performed graph convo-
lutions on constructed graphs to reconstruct vertex and edge
information. Then, an adaptive variance-based mechanism was
leveraged to fuse the local edge and nonlocal vertex information.
In [48], based on their previous work, the authors extended the
structural relationship analysis to the graph Fourier domain. The
proposed framework exploits both local and nonlocal structural
relationships and is implemented in the graph Fourier domain.
A frequency-decoupling adaptive fusion method was leveraged
to fuse local and nonlocal structural difference maps of high and
low frequencies separately.

Attention mechanism are also often used in feature fusion.
In [49], building extraction is set as an auxiliary task for
change detection. The two-stream feature maps are fused by
skip connections and a dual attention mechanism. In [49], the
dual-attention mechanism captures long-range dependencies
and allows for more representative features. Fang et al. [50]
proposed siamese network for change detection (SNUNet), a
densely connected siamese network for remote sensing image
change detection. It reduces the loss of deep features through
dense information transmission, and incorporates an improved
attention module with channel attention, residual connection
weights, and refinement of the most important features for
change map generation. In [50], a pyramid-style feature fusion
is leveraged, where feature maps at different scales are fused
by concatenation, channel attention, and spatial attention. In
[52], a pyramid pooling module is used to capture features
with different receptive fields. In [53], both channel attention
and spatial attention are integrated into each fusion node of the
decoder to adaptively emphasize areas that may be relevant to
change. In [54], attention-based feature pyramids are used to
retain small-scale features and filter spatially and channel-wise
useful features, leading to the fusion of bitemporal features.

There are also a lot of related works based on other feature
fusion approaches. In [55], the authors use an long short term
memory (LSTM) and skip connections to fuse the temporal
and spatial information. The gating function of the LSTM is to
retain or omit information from the deep features. Xu et al. [56]
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Fig. 2. Proposed network structure for remote sensing image change detection, SSCFNet. The network uses a weight-sharing siamese network structure to obtain
semantic features of different layers from two remote sensing images at different time series. The proposed SSCF module is divided into a combined enhancement
module for recombining multilayer semantic features and a semantic cross-fusion module for semantic feature fusion. Down indicates downsampling; Up refers
to upsampling operation by transpose convolution; SEAttention indicates Squeeze-and-Excitation Block.

proposed multidirectional fusion pathway (MFP-Net), a network
for remote sensing image change detection that incorporates a
multidirectional fusion path and an adaptive weighted fusion
strategy to enhance the flexibility and diversity of information
pathways. The adaptive weighted fusion (AWF) policy weights
at each fusion node are calibrated to emphasize representative
feature maps and resolve semantic differences. Moreover, a new
perceptual similarity module and perceptual losses are utilized
to generate a high-quality change map. In [57], the authors use
point-wise addition on the superpixel-based features to fuse the
information in the dual-time phase.

These methods are effective in acquiring pixel-level change
maps, but they also have some drawbacks. Although they con-
sider the semantic feature information on different levels, the
intermediate scale features are not directly expressed in the final
discriminative features. Still, they are concatenated or fused
with other features in the feature extraction process and enter
the information transfer pathway again. Thus, the information
extracted from each hidden layer in the information transfer of
feature extraction is not utilized more effectively.

To address the existing methods’ inefficient feature utilization
problem, we propose the SSCFby using all features of different
scales for change map generation. At the same time, the features
of different scales are crossed and misplaced for fusion, which
increases the diversity of features and achieves feature enhance-
ment, and improves the quality of change maps to some extent.

III. METHOD

In this section, we first briefly introduce the overall structure
of the proposed network in Section III-A. The SSCF is described
in Section III-B, which can combine features from various levels

in the backbone network to avoid missing small targets in change
detection. Finally, the multiloss strategy is illustrated in Section
III-C.

A. Overview of SSCFNet

Fig. 2 shows the overall structure of the proposed network
in this article. The input to this network is two remote sensing
images at different time series, and the output is a binary map
of change predictions.

The proposed network SSCFNet consists of the feature ex-
tractor module and the SSCF module for spatial spectrum cross-
fusion. We use ResNet and ResNext [58] as the backbone net-
work module to extract generic features. Each of these backbone
networks has five stages, among which Stage 0 has a simpler
structure and can be regarded as a preprocessing of the input,
and the last four stages are composed of bottlenecks. To use the
semantic features of each layer for change detection, we feed the
output features of the last four stages into the SSCF module for
fusion. The SSCF is a key structure in our proposed SSCFNet,
consisting mainly of a combined enhancement module and a
semantic cross-fusion module. The details of these two modules
will be provided in Section III-B.

B. Spatial-Spectral Cross Fusion Module

As shown in Fig. 3, the SSCF consists of the following three
modules: 1) a feature size unifier; 2) a combined enhancement
module; 3) a semantic cross-fusion module.

1) Feature Size Unifier: As shown in Fig. 3(a), the output
features from the backbone network’s last four stages represent
information at different scales. The feature size unifier upsam-
ples these features at different scales to the same scale by nearest
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Fig. 3. Illustration of the proposed SSCF.

neighbor interpolation. Here, the size of the first stage features
is used as the unifying scale to facilitate subsequent feature
cross-fusion

Si
out = Upsample(Si

in, (H1,W1)) i ∈ 1, 2, 3, 4 (1)

where H1,W1 represent the size of the output features of the
first stage of ResNet, and Sin, Sout represent the input and output
feature size of the module for each stage, respectively.

2) Combined Enhancement Module: In the combined en-
hancement module, a combined enhancement strategy is pro-
posed for recombining semantic features at different levels of
the backbone network.

The combined enhancement strategy separates the four-level
feature maps X0, X1, X2, X3 equally into four semantic feature
blocks in the channel dimension. Then, it recombines them into
new semantic feature blocks F0 ∼ F3 according to (2). The new
combined semantic feature blocks do not intersect with each
other and are different from each other. Such splitting and re-
combination can obtain richer location information of semantic
features and process them on multiple scales in a parallel man-
ner, which makes the low-level semantic features interact more
closely with the high-level semantic features. As each feature
block in F0 ∼ F3 contains a part of each of X0, X1, X2, X3,
and each input feature map contains semantic and spatial infor-
mation of different layers, the semantic features are essentially
combined and enhanced to obtain more discriminative (more
representative of the change region) features at different levels.
The combined enhancement strategy is expressed as follows:⎧⎪⎪⎨

⎪⎪⎩

F0 = Concat [X11 X22 X33 X04]
F1 = Concat [X21 X32 X03 X14]
F2 = Concat [X31 X02 X13 X24]
F3 = Concat [X01 X12 X23 X34]

(2)

Fi = Concat
(S=4)

([
X(i+1)%S,1 X(i+2)%S,2 . . . Xi,S

])
. (3)

In the equation, Fi is the multiscale feature map obtained from
the ith layer.

3) Semantic Cross-Fusion Module: In the semantic cross-
fusion module, different convolution operations are performed
on the newly constructed semantic feature blocks F0 ∼ F3,

resulting in feature maps Y0 ∼ Y3, which are then cross-fused
to obtain Y ′. This approach allows the features in the same
channel to consider both the small targets, which are focused
on by lower-level features, and the larger targets, which are the
focus of higher-level features, thus capturing both rich spatial
information and more robust semantic information. Next, we use
the channel attention mechanism to selectively strengthen more
beneficial features and weaken less significant features in the
fusion result and finally up-sample the feature map to produce
the final result Y . After our experimental tests, the cross-fusion
of features from different channels are more efficient than the
sequential fusion of features.

As shown in Fig. 3(b), each branch of the fusion path contains
deep and shallow features, so it learns features at all four levels.
Then, as shown in Fig. 3(c), convolution kernels with different
sizes are used to extract features at different scales for different
branches. We use group convolution to address the problem of
increasing the number of parameters due to the large size of
convolution kernels. To maintain consistency of features across
different branches after the convolution operation, padding is
used to keep the input and output sizes consistent during the
convolution process. The generation function of the feature map
after convolution can be written as follows:

Yi = Conv(ki × ki, Pi, Gi)(X) i = 0, 1, 2, 3. (4)

In the equation, define ki = 2× (i+ 1) + 1 as the calculation
method of the size of the ith convolution kernel, define Pi =
� 2×(i+1)+1

2 � as the calculation method of the size of the ith
padding size, and define Gi = 2i+1 as the calculation method
of the size of the ith group. Next, we use the channel attention
mechanism to select the focus location and produce a more
discriminative feature representation. Then, to cross-fuse the
convolved results, the spatial and semantic information of each
semantic feature block is fused without increasing the com-
putational effort, thus obtaining the entire multiscale channel
attention vector Y ′ in a direct summation as

Y ′ =
3∑

i=0

SEAttention(Yi). (5)
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Fig. 4. Illustration of a multiloss module design, where “SSCF” represents
spatial-spectral cross fusion.

The cross-fused result Y ′ is further applied to the channel atten-
tion mechanism (SEAttention) [59] then upsampled to obtain
the final result Y , Y can be expressed as

Y = Upsample(SEAttention(Y ′)). (6)

For the details of SEAttention, take Y′ as an example, the
SEAttention of Y′ can be formulated like

SEAttention(Y′) =
C∑
i=1

sc · Y ′
c (7)

where the Y ′
c is the cth channel of the feature map Y′, the C is

the number of channels of Y′, and the sc can be formulated like

sc = fc2 (fc1 (GAP (Y ′
c))) . (8)

In the equation, the fc1 is a fully connected layer with rectified
linear unit (ReLU) activation function, and the fc2 is a fully
connected layer with Sigmoid activation function. The global
average pooling (GAP) can be formulated as

GAP (Y ′
c) =

1

H ×W

H∑
i=1

W∑
j=1

Y ′
c(i , j ). (9)

C. Design of Multiloss

An improved version of the proposed SSCF is obtained by
adding auxiliary losses after each branch in the combined en-
hancement module. In addition to using the final prediction
graph of the semantic cross-fusion module to calculate the
losses, the auxiliary losses are also back-propagated to optimize
the parameters jointly. Experimental results show that this leads
to more effective cross-fusion of the newly constructed semantic
feature blocks. All losses are calculated using the binary cross-
entropy (BCE) loss function. For samples in dataset k, the loss
function L can be defined as

L = − 1

Nk

Nk∑
m=1

∑
i,j

(
ymi,j log

(
ŷmi,j

)

+
(
1− ymi,j

)
log

(
1− ŷmi,j

))
(10)

where ŷmi,j represents the confidence map predicted by the SS-
CFNet at the location (i, j) for sample m of dataset k, and ymi,j
represents the ground-truth label of the corresponding pixel in
the input image.

As shown in Fig. 4, L2, L3, L4, and L5 are all auxiliary
losses, and loss1 is the main loss. The auxiliary losses help
to optimize the learning process, and the main loss is still the

main optimization direction. During training, different weights
wi are given to the auxiliary and the main losses to balance the
auxiliary losses. In the testing phase, the auxiliary branches are
dropped, and only the optimized main branch is used for the
final prediction. For the final optimization of the network, the
weighted sum of all these losses is denoted as Ltotal

Ltotal =

5∑
i=1

wiLi (11)

where w1 is set to 1 and (w2, w3, w4, w5) is set to 0.5.

IV. EXPERIMENTS

This section describes the experimental setup used to evaluate
the proposed algorithm in a change detection task. We begin by
introducing the four datasets used in the evaluation: LEVIR-CD,
WHU, season-varying, and SYSU-CD. Next, we provide an
overview of six state-of-the-art comparison methods. We then
describe the implementation details of the training process,
followed by a quantitative and qualitative comparison of the
results obtained by our algorithm on the four datasets with
those of the six comparison methods. Finally, we discuss the
effectiveness of our proposed method. The source code will be
released at https://github.com/Wprofessor/SSCFNet.

A. Dataset Description

1) LEVIR-CD [60]: LEVIR-CD is a new massive building
open change detection dataset [60], as shown in some samples in
Table I(a). It contains 637 high-resolution (50 cm/pixel) image
pairs of 1024 × 1024 pixels. These dual-temporal images cover
changes in various buildings, such as garages, warehouses, and
villas spanning from 5 to 14 years. In addition, the remote
sensing images originated from 20 different areas in respective
cities in TX, USA, containing Austin, Buda, Bee Cave, Dripping
Springs, Manor, Pflugervilletx, Kyle, Lakeway, and others. Its
authors divided the dataset into a training set, a validation set,
and a test set. We cropped each sample into 16 small-size blocks
of 256 × 256 pixels using a nonrepeating sliding window,
generating 7120 pairs of image blocks for training, 1024 for
validation, and 2048 for testing.

2) WHU [61]: This dataset contains aerial images acquired
in April 2012 and includes 12 796 buildings over 20.5 km2 (a new
dataset released in 2016 includes 16 077 buildings in the same
area). Some examples are shown in Table I(b). The subdataset
was geo-corrected to an aerial dataset with a 1.6-pixels accuracy
by manually selecting 30 ground control points (GCPs) on the
ground surface. This subdataset and the corresponding images
from the original dataset are now publicly available, along with
the constructed vector and raster maps.

It contains a high-resolution aerial image of size 32 507 ×
15 354. No data decomposition scheme is given in [61]. We crop
the image into small 512× 512 pixel blocks without overlapping
by sliding window and divide it into three parts: Training set,
validation set, and test set, containing 1189, 319, and 319 pairs
of image blocks, respectively.

3) Season-Varying [62]: The season-varying dataset [62]
consists of seven pairs of 4725 × 2200 pixel high-resolution

https://github.com/Wprofessor/SSCFNet
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TABLE I
SAMPLE DIACHRONIC IMAGES AND GROUND TRUTH FROM LEVIR-CD, WHU DATASET, SEASON-VARYING, AND SYSU-CD CHANGE DETECTION DATASETS

seasonal change images for manual creation of ground truth and
four pairs of 1900 × 1000 pixel images for manual addition of
other objects. The spatial pixel density of the obtained images
is between 3 and 100 cm/px. Some examples are shown in
Table I(c). The dataset considers objects of various sizes (e.g.,
from cars to large building constructions) and seasonal variations
of natural things (e.g., from individual trees to vast forest areas).
The dataset originated by clipping 256 × 256 randomly rotated
segments (0–2) with at least a portion of the target objects.
Thus, the target center coordinates are unique, and the distance
between target centers is 32 pixels for each axis. Finally, the
dataset contains 16 000 pairs of 256 × 256 pixel images: 10 000
training sets, 3000 test, and validation sets.

4) SYSU-CD [62]: The dataset [62] was made up of 20 000
pairs of 0.5 resolution high aerial images recorded in Hong Kong
between 2007 and 2014. Some samples are shown in Table I(d).
In constructing the dataset, the authors first divided the 800
acquired original image pairs into a training set, a validation
set, and a test set. The ratio of training, validation, and test sets
was 6:2:2. Then, 25 sample pairs were randomly selected from
each image pair, each of which was 256× 256 in size, to generate
the final dataset for use. Random flips and rotations were used to
extend the data. After the preprocessing, 20 000 pairs of aerial
image patches of size 256 × 256 were obtained. The main types
of changes in the dataset included new urban construction, sub-
urban sprawl, preconstruction foundations, vegetation changes,
road expansion, and marine construction.

B. Comparison Method

1) FC-Siam-Conc [42]: A feature fusion method that fuses
the multilayer features extracted from a siamese full convolu-
tional network by concatenating features from a different branch
of the siamese network and skip connection.

2) FC-Siam-Diff [42]: A feature fusion method that uses a
siamese full convolutional neural network to extract multilevel
features and use feature differences to fuse bitemporal informa-
tion.

3) Dual Task Constrained Deep Siamese Convolutional Net-
work (DTCDSCN) [49]: A multiscale feature fusion method

combines the channel and spatial attention mechanisms in FCN
to obtain more discriminative features.

4) SNUNet [50]: A densely connected remote sensing
change detection network based on siamese nested UNet. The
SNUNet uses many skip connections to effectively transfer
information between encoders and decoders in the backbone net-
work. After feature extracting, the extracted multilevel semantic
feature maps are fused by an improved attention module based
on the channel attention mechanism and residual connection.

5) Deeply Supervised Image Fusion Network (DSIFN) [51]:
A deeply supervised network that first uses a two-branch fully
convolutional network for feature extraction and then uses a
deeply supervised difference discriminative network CNN to
detect changes in the input image pairs from extracted features.
To enhance the integrity of change map boundaries and internal
densities, the extracted multilevel feature maps are fused with
the different maps of bitemporal images through an attention
mechanism.

6) MFPNet [56]: A multidirectional fusion and perception
network for change detection of dual-time sequence high-
resolution remote sensing images. An MFPNet consisting of
MFP and AWF strategies is proposed. MFP increases the ver-
satility of information ways and simplifies information dis-
semination. The AWF module stresses the significant feature
maps along with irrelevant feature maps that inhibit dependable
information transfer. As a result, significant and comprehensive
features can be aggregated at each fusion node.

C. Evaluation Metrics

The F1 is the weighted reconciled average of precision and
recall, which considers both precision and recall to balance the
conflict and can more comprehensively reflect the performance
of the change detection model. Therefore, we use the average
F1 score of the change category and background as the primary
evaluation metric, which is calculated as follows:

F1 =
2× precision× recall

precision+ recall
. (12)
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In addition, we also used Precision, Recall, and intersection
over union (IoU) as auxiliary evaluation metrics, which are
calculated as follows:

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

IoU =
TP

TP + FN + FP
. (15)

Among them, TP, FP, TN, and FN represent the number of
true positives, false positives, true negatives, and false negatives,
respectively.

D. Experiment setup

To train the SSCFNet proposed in this article, ResNet50,
ResNeXt50, and ResNet101 are chosen as backbones. We use
BCE loss as the loss function. Stochastic gradient descent (SGD)
[63] is used as an optimizer and sets the momentum to 0.9. The
initialization learning rate is set to 0.01. Warm-up is used to
linearly increase the preset learning rate in the first five epochs
and then decay according to the cosine function value, and the
weight decay is set to 0.0005. We used a minibatch size of eight
and trained the models for 100 epochs. For all tasks, we utilize
the PyTorch [64] deep learning framework and rely on four
Nvidia 2080Ti graphics processing units (GPUs) for efficient
processing. We also intend to utilize SSCFNet on MindSpore
[65], a new deep learning computing framework.

E. Ablation Experimental Study

To compare the effect of selecting a backbone with different
feature layers on the change detection results, we set ResNet50
as the feature extraction network for the ablation experiments.
In addition, we compare the proposed SSCF with other meth-
ods and visualize the results to better assess the effect of the
fusion module on the change detection results. We conduct
relevant ablation experiments to verify the effectiveness of group
convolution and multiloss, all of which are performed on the
LEVIR-CD dataset. Furthermore, we use two composite metrics
(mean intersection over union (MIoU) [66] and F1 score) to
evaluate the results of the ablation experiments quantitatively in
this section.

1) Ablation Experiment for Selection of Feature Layers: To
explore whether all feature layers in the feature extraction mod-
ule affect the results of change detection, we divide the five
feature layers into the following five combinations:

1) (0, 1, 2, 3, 4);
2) (1, 2, 3, 4);
3) (2, 3, 4);
4) (3, 4);
5) (4).
Input each of these combinations into the SSCF to explore

whether high-level features combined and low-level features
positively impact the change detection task. The results are used
to select the optimal combination of feature layers.

Table II shows the results of the ablation experiments. It can
be found that more the number of feature layers, the more

TABLE II
COMPARATIVE STUDY OF ABLATION EXPERIMENTS

TABLE III
RESULTS OF THE ABLATION EXPERIMENTS OF THE PROPOSED METHOD WITH

OTHER FUSION MODULES ON THE LEVIR-CD DATASET, WITH THE HIGHEST

SCORES MARKED IN BOLD AND ALL SCORES DESCRIBED IN PERCENTAGES

Fig. 5. Comparison of feature visualization graphs for different network fusion
modules in the LEVID-CD dataset. “T1” and “T2” denote T1 time phase and
T2 time phase, respectively. “GT” is meant as ground truth.

the semantic features are enhanced and the higher the main
evaluation metric F1 score. However, since the bottom layer
features are more inclined to focus on small targets and detailed
information, which account for a relatively small proportion in
the ratio change detection, especially the layer 0 features contain
very little effective information compared with other layers, the
F1 score of combination in Table II is not significantly improved
compared with that of combination b. On the contrary, the
computational resources consumed are substantially higher than
that of combination b in the same experimental environment. The
F1 score and MIoU are improved by (1.04%, 1.53%), (1.09%,
1.51%), and (1.19%, 1.68%) for combination b compared to
combination c, combination d, and combination e, respectively.
There is no significant improvement in the computational re-
sources consumed, so in the proposed network SSCFNet, we
select combination b as the input to the SSCF.

2) Ablation Experiment for SSCF Module: To demonstrate
the effectiveness of the SSCF module, we implemented PSPNet,
CCNet, and DeeplabV3+ in the change detection (CD) task to
facilitate the comparison of the fusion modules.

As shown in Table III, the results of the models contain-
ing different fusion modules were evaluated separately on the
LEVIR-CD dataset. It can be observed that the proposed method
in this article achieves the best results on both MIoU and F1 score
evaluation metrics compared to other models.

The visual results of some representative examples in this
ablation study reinforce the findings presented in Table III.



4008 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 6. Qualitative comparison results of change detection in the LEVIR-CD, WHU, size-varying, and SYSU-CD datasets. (a) t1 time phase images.
(b) t2 time phase images. (c) Ground truth. (d) FC-Siam-Conc. (e) FC-Siam-Diff. (f) DTCDSCN. (g) SNUNet. (h) DSIFN. (i) MFP-Net. (j) Ours (ResNet50).
(k) Ours (ResNeXt50). (l) Ours (ResNet101). The changed area is white and the unchanged area is black.

Fig. 5 provides a visual representation of the feature visual-
ization diagrams of each model’s fusion module. Our proposed
method outperforms the other models in processing details and
detecting large-area targets more completely, demonstrating the
effectiveness of the SSCF.

3) Ablation Experiment for Group Convolution and Multi-
loss: To explore the effect of group convolution and multiloss,
a set of ablation experiments was set up to gradually combine the
group convolution and multiloss strategies and compared them
with the CD task.

As shown in Table IV, we evaluated the results of different
combinations on the F1 score and MIoU metrics for the CD
task on the LEVIR-CD dataset. When only group convolution
is combined with the proposed SSCFNet for the CD task,
performance gains in F1 score and MIoU can be observed

TABLE IV
RESULTS OF ABLATION EXPERIMENTS FOR EACH COMPOSITION ON THE

LEVIR-CD DATASET

(0.44% and 0.84%), due to the sparse relationship between
the filters and the fact that dividing the groups can have some
regularization effect on the model afterward. When only the
multiloss is combined with the proposed SSCFNet for the CD
task, performance gains in F1 score and MIoU can be observed
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TABLE V
QUANTITATIVE COMPARISON OF CHANGE DETECTION METHODS ON THE LEVIR-CD, WHU, SEASON-VARYING, AND SYSU-CD DATASETS, WITH THE HIGHEST

SCORE FOR EACH EVALUATION METRIC IS MARKED IN BOLD BLACK, AND ALL SCORES ARE EXPRESSED AS PERCENTAGES

(0.30% and 0.31%). Finally, when both group convolution and
multiloss are combined into SSCFNet, he achieves the best
accuracy for the LEVIR-CD dataset (94.89% and 90.30%).
These results show that combining group convolution and
multiloss can improve the model’s performance.

F. Experimental Comparison and Analysis

To evaluate the superiority of the proposed SSCFNet network,
we conducted a quantitative and qualitative comparison with
six existing methods, including FC-Siam-Diff, FC-Siam-Conc,
DTCDSCN, SNUNet, DSIFN, and MFPNet, on four datasets:
LEVIR-CD, WHU, season-varying, and SYSU-CD. To more
fully demonstrate the performance of our proposed method,
we compared it with other methods using different backbones,
such as ResNet50, ResNeXt50, and ResNet101, in the same
experimental environment.

1) Quantitative Comparison: We first performed a quantita-
tive comparison with the other six state-of-the-art methods in
terms of Precision, Recall, F1 score, and MIoU, with higher
F1 scores indicating better detection. Table V shows the quan-
titative comparison of the four datasets LEVIR-CD, WHU,
season-varying, and SYSU-CD. It can be seen that the proposed
network SSCFNet is better than the current state-of-the-art
models in terms of F1 score and MIoU. Such results illustrate
the effectiveness of fusing shallow features with deep features.
To further verify the efficiency of our proposed method, a

TABLE VI
COMPARISON STUDY OF MODEL EFFICIENCY

comparison was conducted with six other models, and the results
are presented in Table VI. The scores of each model were
evaluated using various metrics and compared against DSIFN
and MFP-Net, which demonstrated comparable performance in
Table V. Our method outperformed these two models while
requiring a smaller number of parameters and less computa-
tional resources. Thus, our approach not only achieves better
experimental results, but also offers efficiency advantages in
terms of model size and computational complexity. In backbone
ResNet101, which has the largest number of parameters, the
number of parameters and computation of our method are re-
duced by 4.4% and 31.96%, respectively, compared to DSIFN,
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and by 43.93% and 56.53%, respectively, compared to MFP-Net.
Therefore, our proposed network SSCFNet is the best.

2) Qualitative Comparison: Qualitative comparison results
of change detection between the proposed method and other
state-of-the-art methods are shown in Fig. 6. It is clear from
the figure that our method has significant advantages over other
methods in detail processing for small target detection. For large
area change detection, the proposed method outperforms other
methods in terms of detection continuity, accuracy, and is closer
to the ground truth. Therefore, in terms of visual effects, our
proposed method, SSCFNet, is superior to the best methods
currently available.

V. DISCUSSION

Our proposed remote sensing image change detection model,
SSCFNet, effectively utilizes semantic feature information ex-
tracted from different levels of the backbone network. The
model performed best in both quantitative and qualitative evalu-
ations across four public remote sensing image change detection
datasets. However, our model still has some areas for improve-
ment. First, the loss function we currently use is relatively
simple, and we plan to design a more unique loss function in
future work to further improve detection accuracy for remote
sensing image change detection problems. Second, our method
currently only uses visual feature information, which may be
relatively limited, so we will consider adding prior knowledge
for multimodal related work in future work.

VI. CONCLUSION

This article proposes a novel remote sensing image change
detection model, SSCFNet. To effectively utilize the differ-
ent semantic feature information extracted from the lower and
deeper layers of the backbone network, the SSCF is proposed.
The SSCF can recombine the output features of each layer of
the backbone network to achieve the effect of semantic fea-
ture enhancement, then add different attention mechanisms into
each combination to obtain features with richer representational
power. Finally, the obtained semantic features are cross-fused
to enhance the global context information ability. To make the
cross-fusion of the newly constructed semantic feature blocks
more adequate, we introduce a multiloss strategy to assist the op-
timization. Extensive experiments on four public remote sensing
image change detection datasets verify that our method achieves
the best results in both quantitative and qualitative evaluations.

In future work, we intend to make improvements in the
following two aspects: 1) we will consider adding a priori
information to the proposed method to improve the accuracy
of the model even further; 2) we will prepare to extend the
method to semisupervised, weakly supervised, or unsupervised,
considering that the labels of remote sensing change detection
datasets are difficult to obtain.
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