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Abstract—Frequent and accurate object detection based on re-
mote sensing images can effectively monitor dynamic objects on the
earth’s surface. While the detection transformer (DETR) offers
a simple encoder–decoder structure and a direct set prediction
approach to object detection, it falls short in complex remote sens-
ing scenes where entity information and relative positions between
objects are critical to target reasoning. Notably, the DETR model’s
feedforward neural network (FFN) relies on weighted summation
for target reasoning, disregarding interactive feature information,
which is a major factor affecting detection effectiveness. To address
these shortcomings, in this article, we propose a DETR-based
detection model called (CI_DETR), which uses capsule inference
to improve remote sensing object detection. Our approach adds a
multilevel feature fusion module to the DETR network, allowing
the network to learn how to spatially alter features at different
levels, preserving only beneficial information for combination. In
addition, we introduce a capsule reasoning module to mine entity
information during inference and more effectively model the hi-
erarchical correlation of internal knowledge representation in the
neural network, consistent with the thinking model of the human
brain. Lastly, we employ a sausage model to measure the similarities
and differences of capsules, projecting them onto a curved surface
for nonlinear function approximation and maximum preservation
of the local responsiveness of capsule entities. Our experiments on
public datasets confirm the superior detection performance of our
proposed algorithm relative to many current detectors.

Index Terms—CapsNet, object detection, remote sensing image,
transformer.

I. INTRODUCTION

OBJECT detection plays a critical role in remote sens-
ing processing technology. Its applications [1], [2], [3],

[4], [5] have been employed in various fields, including mili-
tary investigations, environmental monitoring, dangerous target
tracking, urban traffic management, and geographic information
services.

A wide variety of object recognition [6], [7], tracking [8],
[9], [10], and detection [3], [4], [11] algorithms have been
put forward by the computer vision community in the past
decades, and their performance has been rather spectacular. In
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deep learning-based object detection, selecting the appropriate
candidate bounding box/anchor from the global scene is crucial.
Furthermore, the characteristics of the respective candidate must
be extracted using convolutional neural network [6], [12], [13],
[14]. Next, they are fed into a classifier to determine whether
the bounding box contains an object and to detect the type of
object [15]. On that basis, the position and categorization of
objects are determined. The candidate bounding box/anchor of
the object needs to be chosen from the global scene, followed by
the extraction of the convolutional neural network [6], [12], [13],
[14] characteristics of the respective candidate. Subsequently,
they are fed to a classier to determine whether the bounding
box includes the object as well as detect the object types [15].
Accordingly, the position and categorization of objects are de-
termined.

Traditional natural images are typically taken from a
low-angle perspective and depict a clear scene with a prominent
subject. However, earth observation images are captured using
satellite or aerial photography from a top-down perspective. This
creates challenges due to the varying number, scale, orientation,
and geometric distortion of geospatial objects, resulting in an
exponentially increased number of potential bounding boxes to
be searched [16], [17]. Furthermore, geographical objects are
typically dispersed in a heterogeneous manner and combined
with cluttered backgrounds. As a result, the conventional
convolutional method with a narrow receptive field cannot
comprehend the global context of a geographic image. [18],
[19]. As a result, achieving frequent and reliable recognition of
geographical items from earth observation remains a significant
challenge.

Over the past few years, significant advancements have been
made in transformer-based object detection methods [20], [21].
By adopting self-attention layers for long-distance dependency
modeling, this method replaces the convolutional layers locality
modeling and represents the global interaction between hetero-
geneously distributed objects [22]. It also exhibits significant
abilities to distinguish their types and locations from clut-
tered backgrounds [23], [24]. The transformer-based method is
capable of reformulating the detection problem as a paradigm
in terms of disorder set prediction and matching, which can
thus be capable of automatically matching the prediction (type
and bounding box) with its ground truth as well as reducing
the demands of hand-designed region-proposal/ anchors [20],
inconsistent with the conventional object detection manner em-
ploying pairwise prediction and ground truth denied by the
region-proposal/anchors for training. Accordingly, this method
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has the potential to be employed for geospatial object detection
in earth observation images.

Matching entity information to features and relative position
information between entities is critical for target reasoning in the
detection of remote sensing targets, particularly for detecting
multi-scale and dense objects. However, in the transformer-
based object detection method (such as DETR), the feedforward
neural network (FFN) only achieves target information inference
through weighted summation and does not consider the inter-
active information between features, which becomes a major
factor affecting the detection effect. In contrast, multi-scale and
dense objects are easier to detect by humans as neuroscience
suggests that anything humans see converges in various ways
into a continuous attractor, which may manifest as a curve, a
surface, or a hypersurface [25]. In accordance with the above
assumption, coverage learning can be performed on samples
through continuous topological geometry in high-dimensional
spaces [26]. In addition, starting from the thinking model of the
human brain, Hinton et al. [27] built capsules to describe entities
and their attributes and better model the hierarchical relationship
and the transfer method of internal knowledge representation
in the network using the dynamic routing information transfer
method. For object detection tasks, the design of such a hyper-
surface will significantly affect the detection effect.

The current capsule networks face limitations that restrict
their extensive use on complex datasets. Firstly, dynamic routing
has been found to be computationally expensive, and having
many layers can result in a significant increase in training
and inference time, making it infeasible for large and complex
datasets. Secondly, the focus of the squash activation function,
and its variants, is mainly on preserving the vector orientation,
while capsule activation is primarily aimed at creating a function
of capsule-scale activation.

Drawing inspiration from human brain neuroscience, we pro-
pose a novel Transformers object-detection model that com-
bines capsule inference and multi-scale feature enhancement
(CI_DETR). CI_DETR comprehensively adopts the multi-scale
features generated by the backbone network, which contain both
semantic and spatial information, to detect targets of varying
scales. To overcome the limitation of FFN in not accounting
for mutual information between features and to approximate the
thinking model of the human brain, we simulate the layering and
transfer of internal knowledge representation in the network to
build a capsule inference module. We combine capsule construc-
tion and information routing to reason about target types and
locations.To enhance the nonlinear expressiveness of capsule
inference, we introduce non-linear sausage metrics to replace
squash activation. This new approach approximates non-linear
mapping with arbitrary precision and enables the capsules to
represent entities with low correlation. In summary, our pro-
posed CI_DETR model addresses the limitations of dynamic
routing and squash activation and enhances the multi-scale
feature detection of complex datasets through capsule.

The novelties of our work are presented in threefolds.
1) The present study focuses on developing a brain-inspired

object detection framework for remote sensing images,
thereby effectively detecting objects with the considera-
tion of the targets unique characteristics in images.

2) To more accurately simulate the layering and transmis-
sion of internal knowledge representation in the human
brain, we have developed a capsule reasoning module that
integrates capsule construction and information routing.
This module enables the reasoning about target categories
and locations by incorporating relative position informa-
tion and category associations of the target during the
reasoning process. By doing so, the capsule reasoning
module is capable of capturing global information and
enhancing object detection performance. In essence, our
capsule reasoning module is intended to closely emulate
the way the human brain processes information and rep-
resents knowledge, ultimately leading to improved object
detection performance.

3) Numerous experiments are performed to confirm the ef-
fectiveness of the proposed method in relative to the
current research.

The rest of this article is organized as follows. In Section II, we
briefly show the works related to object detection, DETR with
an end-to-end objective, and capsule network. In Section III, we
display the model architecture of the proposed capsule-inference
object detection algorithm. In Section IV, we focus on discussing
the performance of the proposed method and also compare it
with that of state-of-the-art object detection methods on DIOR
and HRRSD datasets. Finally, Section V concludes this article.

II. RELATED WORK

As displayed in the present section, we show a brief intro-
duction to object detection networks, DETR with an end-to-end
objective, and capsule networks. The above research has signif-
icantly contributed to the proposed method.

A. Object Detection

The object detection task refers to the determination of an
object and the identification of its location in the image or
video. Benefiting from deep neural networks, numerous object
detection methods have obtained obvious progress over the past
few years. Faster R-CNN [28] represents an end-to-end detection
method which can replace selective searching with a novel
region proposal network. SSD [29] can predict several bounding
boxes at various scales and aspect ratios from several feature
layers. RetinaNet [30] employs a focus loss function to solve
the type imbalance problem of single-stage detectors. FCOS [31]
refers to an anchorless object detector introducing centrality to
further enhance detection performance. Other object detection
algorithms [32], [33], [34] employ one or several points to
represent an object, thus ensuring the balance between speed and
accuracy. Detection TRansformer(DETR) [20] is a recently sug-
gested end-to-end object detection system that adopts Hungarian
matching for label assignment. Although it achieves equivalent
performance to Faster R-CNN, its detection performance on
small objects is inferior, and it has a low convergence rate.

B. End-to-End DETR

The DEtection TRansformer (DETR) [20] introduces the
first technique with an end-to-end optimization target for set
prediction, in contrast to the aforementioned widely used object
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detectors. It specifically uses a bipartite matching method to
formulate the loss function. Encoder–decoder transformer [35]
is the structure used by DETR [20], which is based on CNN. The
paper proposes processing flattened deep features from the CNN
backbone with a Transformer encoder component. The decoder
part, which is non-autoregressive, uses the encoder outputs and
previously learned object query vectors to predict category labels
and bounding boxes as the detection result. The cross-attention
module in the decoder plays a crucial role in attending to
various areas in the image for different object queries. For those
not familiar with transformers, we recommend referring to the
appendix. Thanks to the ability of the self-attention compo-
nent to learn the removal of repeated detections, specifically
with the Hungarian loss incentivizing one target per object in
DETR, the attention mechanism eliminates the need for NMS
post-processing.

In parallel with our research, various DETR versions have
been put out to enhance the effectiveness and precision of its
training. According to Deformable DETR [21], the idea of de-
formable convolution and attention modules should be combined
in order to construct a sparse attention mechanism on multi-level
feature maps. When DETR is tailored for downstream tasks,
UP-DETR [36] uses an unsupervised pre-training job called
random query patch detection in order to boost its performance.
Compared to these work, we improve the defect of missing
relative position information in the process of DETR detection
head presence detection reasoning, and enhance the performance
of DETR in remote sensing target detection.

C. Object Detection in Remote Sensing Images

Based on the fast advancement of the aforementioned al-
gorithms, other approaches for object recognition in remote-
sensing images have been presented ([37], [38], [39], [40], [41],
[42], [43], [44], [45], [46]). In order to accomplish rotation-
invariant detection, several research projects concentrate on
identifying arbitrarily oriented objects using horizontal bound-
ing box annotations. For instance, Cheng et al. ([37]) sug-
gested a CNN that is rotation-invariant (RICNN), including a
new rotation-invariant layer. To address the issue of substantial
disparities in target scales, a great deal of research focuses on
optimizing feature pyramid networks in order to extract effective
multiscale features. The ABNet ([38]) detection approach, for
instance, creates an adaptive feature pyramid network to adap-
tively fuse multilevel scale features in the feature pyramid net-
work using channel attention and spatial attention processes. To
solve the difficulty that comparable objects have different forms
and it is difficult to effectively extract common characteristics
for unified representation, several research works have improved
anchor frame parameter optimization. For instance, FFA ([39])
and DRBox([40]) employ anchor boxes of various sizes, aspect
ratios, and angles to increase the algorithm’s capacity to gener-
alize to object shapes.

D. Capsule Network

The CapsNet Network [27], a representative of bionics, pro-
posed by Hinton is specially designed for CNN-based feature

extraction and has aroused wide attention from artificial intel-
ligence researchers. The transmission and operation logic of
the capsule network is more consistent with the way neurons
in the human brain work. Capsules have a diverse range of
capabilities and can exhibit various properties. For example,
different areas of the human brain are responsible for different
tasks. As our understanding of the human brain deepens and
continues to accumulate through neuroscience study, we can
understand capsules as groups of neurons whose activity vectors
represent the instantiated parameters of an entity with a specific
type.

The CapsNet Network (CapsuleNet) is an innovative ap-
proach for implementing the capsule concept. Through the
introduction of the dynamic routing algorithm and the squash
activation function, CapsuleNet applies vector-output capsules
as its fundamental unit rather than scalar-output features

squash (sj) =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖ (1)

where sj denotes an activation capsule. Nevertheless, Capsu-
leNet shows a room for development. Besides, the number of
parameters of CapsuleNet is shown to be much larger when
compared with that of comparable performance CNN-based
models. In addition, the dynamic routing is an iterative process.

The result of the above analysis suggests that the CapsuleNet
has high performance in the mining of entity information, the in-
teraction between entities, as well as the reasoning of the target.
In the task of object detection, how to detect implicitly defined
entities in a limited conditional domain and draw the entity’s
feature information (e.g., the entity’s location, type, pose infor-
mation, etc.) in real-time is of critical significance. Thus, capsule
networks are expected to be vital in object detection tasks.

III. METHODOLOGY

Fig. 1 displays the overall framework of the CI_DETR
method, following the main encoder–decoder architecture of
DETR. Unlike DETR, CI_DETR first adopts a backbone net-
work with feature pyramid network (FPN [47]) for extracting
multiscale features from images. Next, a multilevel feature fu-
sion method is adopted for enhancing the small-scale feature in-
formation to address the issue of the poor detection performance
of DETR for small objects. After enhancing the features, we pass
them through the Transformers encoder and decoder to obtain
the feature representation for each object. To address the limi-
tation of DETR’s FFN, which does not consider the interaction
between features, we replace it with a capsule reasoning module
based on super sausage metrics. This module uses dynamic
routing information transmission and feature correlations to
achieve object representation and label prediction. Additionally,
we introduce a hyper-sausage measurement model with strong
non-linear ability to create a more flexible hypersurface that
improves the model’s expression ability for objects.

A. Multilevel Feature Fusion

DETR’s large input feature maps can increase the complexity
of model training, while small input feature maps may omit
target information. Thus, we propose a multi-level feature fusion
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Fig. 1. Workflow of the proposed CI_DETR object detection network.

Fig. 2. Realization principle of target detection based on capsule reasoning module in CI_DETR model.

method that integrates and refines features at all FPN levels to
balance semantic features. This approach utilizes the benefits
of multi-scale feature information and avoids over-burdening
model training. The mask-guided module structure, modeled
after the Balanced FPN concept in Libra RCNN [48], compre-
hensively utilizes information from all FPN scale features and
achieves balanced feature learning through scale rescaling and
feature enrichment.

Step 1. Rescaling: To facilitate subsequent feature aggrega-
tion, P5 feature is selected as the standard, and the multiscale
features of FPN are scaled to the same size through upsampling
and max pooling operations. To fuse the effective information on
the feature layers of different levels, the averaging operation is
adopted to perform feature fusion. The fused normalized feature
F scale is expressed by the following:

FScale =
1

5

7∑
i=3

P̂i (2)

where P̂i is the feature generated by feature Pi after feature
rescaling.

Step 2. Enriching: To make the integrated features more
discriminative, Gaussian nonlocal attention [49] is adopted to
refine the feature F scale. Feature refinement can be denoted as

U = NL
(
FScale

)
= NL

(
1

5

7∑
i=3

P̂i

)
(3)

where U represents the refined features, and NL(·) represents
the Gaussian nonlocal attention module. The Gaussian nonlocal

attention module can introduce global context information to
enhance the expressive power of feature U .

B. Capsule Reasoning

In the DETR model, the FFN only reasons target infor-
mation through weighted summation, without considering the
interaction between features, which has a significant impact on
detection effectiveness. To address this issue, we replace the
FFN with a capsule inference module during inference on the
DETR results. Figure 2 presents the schematic diagram of the
capsule inference module for object detection. To construct the
basic capsule for Transformer output, we capture the capsule
and its corresponding feature dimension information. Instead
of a computationally expensive dynamic routing, we adopt
self-attention routing to provide an information feed-forward
mechanism, which presents object entity attributes more accu-
rately and completely. The Capsule reasoning detects objects
(categories and bounding boxes) or ’no object’ classes. Finally,
the CI_DETR trains the model by utilizing the Hungarian match-
ing algorithm between the labeled and predicted object box. The
specific implementation process is illustrated below:

Step 1: We adopt the ResNet backbone network to extract
image features and positional encoding, generating a batch of
serialized data for CI_DETR. In the encoder stage, attention
mechanism extracts features from the serialized data. In the
decoder stage, N random initialization vectors are input, and
each object query focuses on a different position of the image.
After decoding, N vectors are generated, each corresponding to
a detected target.
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Algorithm 1: Attention Routing using Scalar Product.

Input parameters capsule P l
n from layer l;

Output the Digicaps: Vj ;
1: Affining transformation for all P l

n:
2:

P̂ l
(nl,nl+1,dl+1) = PTl

n ×W l
(nl,nl+1,dl,dl+1)

3: Calculating self-attention weights:
4:

Al
(nl,nl,nl+1) =

P̂ l
(nl,nl+1,dl+1)×P̂

Tl
(nl,nl+1,dl+1)√

dl

5: Adopting softmax for Calculating Weights C:
6:

Cl
(nl,nl+1,dl+1) =

exp
(∑

nl Al
(nl,nl,nL+1)

)
∑

nl+1 exp
(∑

nl Al
(nl,nl,nl+1)

)
7: For all capsule j in l + 1:
8:

sl+1
n = P̂ l

(nl,nl+1,dl+1) ×
(
Cl

(nl,nl+1) +Bl
(nl,nl+1)

)
9: Compressing the capsule length to between 0 and 1:

10:

Vj (x1···xm)← sausage
(
sl+1
n

)
11: return Vj ;

Step 2: The feature representation obtained above is converted
into a capsule to obtain the initial capsule P l

wi,hi,nidi
, in which

wi, hi, di, and ni suggest the spatial width axis, spatial height
axis, capsule dimension axis, and capsule atoms axis, respec-
tively. di is adopted to represent the pose, texture, orientation,
etc., of the capsule.

Step 3: Self-attention routing. Dynamic routing generated dig-
ital capsules lack long-range dependency information between
target features, which reduces system robustness. To address
this, we replace dynamic routing and squash activation functions
with self-attention routing and sausage activation. The batch
dot product method transforms dynamic routing to self-attention
routing. This enables digital capsules to gather local surrounding
information on object features and long-range model dependen-
cies to obtain global information. See Algorithm 1 for specific
calculation details.

Algorithm 1 illuminates how the data stream flows in a digital
capsule. where P̂ l

(nl,nl+1,dl+1) includes all predictions of lth

capsules. In fact, each nl capsule, through of the weight matrix,
can predict the properties of all nl+1 capsules. The term

√
dl

stabilizes training and contributes to keeping a balance between
coupling coefficients and log priors. Bl

(nl,nl+1) represents the
log priors matrix including all weights discriminatively learned
at the same time as all the other weights. In addition, Cl

(nl,nl+1)
refers to the matrix including all coupling coefficients yielded
by the self-attention algorithm. sausage(·) indicates sausage

metrics, which is adopted for replacing the squash activation
function to calculate the probability value of each attribute of
each target capsule in the target as the foundation for judging
the target category.

Step 4: Get digital capsule Vj , the Capsule reasoning can
predict the normalized center coordinates, height as well as the
width of the box w.r.t. the input image, and the linear layer can
predict the class label based on a Softmax function. Because
we are capable of predicting a fixed-size set of bounding boxes,
which is often much larger than the actual number of objects of
interest in an image, an additional particular class label � can
be employed to indicate that no object can be identified within a
slot. In addition, the class makes a similar role to the background
class in the standard object detection approaches.

Step 5: Auxiliary decoding losses: We apply auxiliary losses
[50] during training to help output the correct number of ob-
jects of each class. We add prediction Capsule reasoning and
Hungarian loss after each decoder layer. All prediction Capsule
reasonings share the same parameters.

C. Nonlinear Sausage Metrics

Dynamic routing represents an unsupervised algorithm to find
a centroidlike output capsule of the prediction capsules. As
a result, the squash activation function and its variant 2 [51]
concentrate on preserving a capsules orientation

squash variant (sj) =

(
1− 1

exp (‖sj‖)
)

sj
‖sj‖ . (4)

In this study, we focus on capsule-wise operations without
preserving orientation. Capsule activation performs an affine
transformation on capsules and applies an element-wise acti-
vation function. Capsules on the same channel share parameters
for the affine transformation, mapping them to the same fea-
ture space. This operation is parameter-efficient, but it cannot
preserve vector orientation. However, it is compatible with
parameterizing the routing process through attention routing,
as capsule activation applies a non-linear transformation to a
linear combination of the prediction capsules.

To address these issues, we were inspired by the non-linear
sausage measure [52]. We replace the CapsNet squash activation
function with the sausage measure, which can approximate
non-linear mapping with arbitrary precision and has locally
responsive properties.

We determine the similarity between information within a
capsule and the difference between information across cap-
sules using the distribution probabilities of upper-level cap-
sules routed from lower-level ones. A topological product on
a hypersphere of radius "r" expands the vector indicated by the
capsule into a sausage area that employs nonlinear activations
to determine the capsule’s local responsiveness. Sausage refers
to a one-dimensional manifold containing geometry based on
covering learning. Fig. 3 illustrates the sausage measurement
concept’s schematic design. We can mine the submanifold dis-
tribution by using convolutional networks to extract low-level
features and combining them with the manifold distribution of
classes to produce raw data. The sausage’s parameters are then
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Fig. 3. Schematic diagram of sausage metric model [52].

initialized to determine the Euclidean distance. By employing
the non-linear sausage measure, we enhance the capsules’ rep-
resentation and can accommodate low-correlation entities.

Covering learning of complicated dispersed data may be
accomplished using the superposition of sausage units. The
following depicts the specific implementation.

Step 1: Determine the vector differences between the expected
vector and the manifold yielded by the two sausage cores as
follows:

s = min (x− q1, x− q2, ‖x− (λq1 + (1− λ) q2)‖) (5)

where x represents the input vector, q1 and q2 are the two
endpoints of the super sausage, respectively. ‖ · ‖ indicates a
distance metric, which is the Euclidean distance. λ represents the
projected length of q1x on the vector −−→q1q2, which is expressed
as follows:

λ =

⎧⎪⎨
⎪⎩
1, k (q2 − q1) < 0

‖k‖ , ‖k‖
‖q2q1‖ < 1, k (q2 − q1) � 0

0, ‖k‖
‖q2q1‖ � 1, k (q2 − q1) > 0

(6)

where k refers to the projection vector of q1x on the vector−−→q1q2, calculated as follows:

k =
(x− q1) (q2 − q1)

‖q2 − q1‖
(7)

where d = ‖x− (q1 + (1− λ)q2)‖ is the distance from the
input x to the vector −−→q1q2. If d

r > 1, the corresponding sample
is outside the hypersausage geometry and can be considered to
be a negative sample. Otherwise, the corresponding sample is
inside the hypersausage geometry and functions as a positive
sample, in which d indicates the distance between the sample
point and the vector. Besides, the feature points with the same
shape are consistent with the same distance calculation method.

Step 2: Compute the measured output y of each sausage,
which can be determined

y =
s

‖s‖ · exp
(
− s2

2γ2

)
(8)

where y ∈ [0, 1] denotes the predicted i neuron output, r ex-
presses the radius of the hypersausage metric. The first term s

‖s‖
indicates the location of the lower capsule in relation to the upper
capsule. The second term exp(− s2

2γ2 ) represents the likelihood
of the characteristic indicated by the upper Capsule’s presence.

IV. EXPERIMENTS

The proposed method’s feasibility is confirmed through de-
tailed and comprehensive experiments on two public remote
sensing detection datasets. This section describes the datasets,
evaluation metrics, and training details.

A. Dataset Description

The DIOR dataset [53] refers to a large, diverse, and object
detection dataset that is available publicly in the earth obser-
vation community. It exhibits the characteristics as follows.
1) The dataset is large-scale in terms of the object types, object
instance numbers, and total number of images. It comprises
23 463 images and 192 472 instances including 20 object classes.
2) The dataset contains a large range of object sizes, including
different sizes among similar targets and different sizes among
different types of objects. 3) The dataset also has changed in
the appearance of objects due to various imaging conditions,
weather conditions, seasons, as well as image qualities. 4) The
dataset contains high-class intersimilarity and diversity within
classes. To ensure that similar distributions of test data and
training-validation (train-val) data, the training set selects 11 725
remote sensing images (i.e., 50% of the dataset). In addition, the
test set contains the remaining 11 738 images. The train-val
data comprise two parts, including the validation (Val) set and
training (train) set.

The HRRSD dataset [54] is a public dataset for multiclass
object detection in optical remote sensing images, including 13
types of typical man-made objects including ships (SP), bridges
(BG), ground runways (GTF), and storage tanks (ST). Target.
In the DOIR-R dataset, there are 21 761 pictures and 55 740
instances, and the number of images accounts for 0.25, 0.25,
and 0.5 in the training, verification, and testing set separately.

B. Evaluation Metrics

The mean average precision (mAP) acts as the evaluation met-
ric for the proposed method, similar to most of object detection
methods. The definition of mAP is

mAP =
1

K

K∑
n=1

∫
(Pn (Rn)) dRn (9)

where Rn refers to the recall for a given class n,
Pn(Rn)represents the precision since Rn indicates the recall of
this class. K represents the classes’ total number. The precision
and recall are written as follows:

R =
TP

TP + FN
(10)

P =
TP

TP + FP
(11)

where TP, FN, and FP suggest the numbers of true positives,
false negatives, and false positives, respectively.

C. Implementation Details

The ResNet50 [6] model pretrained on ImageNet [7] becomes
the backbone network in the current work. We train all models
on the training set. Later, the models are tested on the testing set.
The subimages are resized to 800× 800 pixels at the training and
validation stages. With 1 image per GPU, the models are trained
on 4 GPUs. The proposed model is trained on the training set for
50 epochs with the AdamW optimizer [55]. The initial learning
rate is determined to be 10-5 regarding the backbone and 10-4
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TABLE I
MEAN AVERAGE PRECISION (MAP) SCORES OF VARIOUS METHODS, IN WHICH BC DENOTES THE BASKETBALL COURT, ESA REPRESENTS THE EXPRESSWAY

SERVICE AREA, ETS SUGGESTS THE EXPRESSWAY TOLL STATION, AND GTF DENOTES THE GROUND TRACK FIELD; IN ADDITION, THE ENTRIES WITH THE BEST

APS FOR EACH OBJECT CATEGORY ARE SHOWN TO BE BOLD FACED

TABLE II
COMPARISON WITH REPRESENTATIVE DETECTORS ON HRRSD DATASET; BEST RESULTS ARE SHOWN IN BOLD

regarding the rest. The learning rate declines by 0.1 factor at the
40th epoch. Besides, the weight decay is defined as 10−4, and the
dropout rate is defined as 0. The feed-forward network hidden
dimension is 1024, the attention feature channel reaches 256, and
the attention head is 8. Moreover, a set of learned points are used
to be the anchor points by default. Additionally, the number of
encoder layers and decoder layers is 6, which is similar to DETR.
Data augmentations and tradeoff hyperparameters in detection
loss are the same as DETR.

D. Comparison with State-of-the-Art Methods

Results on DIOR: In the present study, we compared the
experimental findings to various typical deep learning-based ap-
proaches that are often adopted for object recognition in natural
images and remote sensing images to quantitatively assess the
proposed method’s detection performance. The chosen methods
contain one-stage and two-stage methods. To be specific, the
compared methods contain Faster RCNN [28], SSD [29], RFB-
Net [56], RetinaNet [47], YOLOv3 [57], YOLOv3-ASFF [58],
EifficentDet [59], FRPNet [60], CSFF [61], and CF2PN[62].
In order to make fair comparisons, this study maintains all
the experimental settings the same as those presented in the
corresponding papers. For SSD, RFBNet, FRPNet, CF2PN, and
Faster RCNN, we use VGG16 as their backbone networks. Re-
garding YOLOv3 and YOLOv3-ASFF, their backbone networks
use the Darknet-53 framework. For FRPNet and CSFF, they use

ResNet-101 as the backbone network, respectively. RetainNet
uses ResNet-50 as the backbone network. For EifficientDet, we
use EifficienNet-B4 as the backbone network.

Table I presents the APs of all methods of various types,
and Fig. 4 lists the precision-recall (PR) curves of various
types. Based on Table I, the proposed method is significantly
better when compared with the other methods and exhibits the
highest mAP of 69.45%. According to Table I, the mAP value
of Faster RCNN is the lowest, while the AP value for vehicles is
merely 11.39%. The reason is that Faster RCNN only adopts a
single-layer feature map for performing regression positioning
on the target, such that it cannot express multiscale information
and exhibits poor detection results for small and large targets.
The mAP values of SSD, RFBNet, RetinaNet, and YOLOv3
could all reach over 57% due to that they all employ multiscale
feature layers for predicting and obtaining perceptual fields of
varying sizes by various scale feature layers, thereby enhancing
the accuracy of detection. In addition, the performance of SSD is
lower than that of the above algorithm. This is because the SSD
algorithm neither uses the surrounding context information to
assist small target detection nor does it incorporate the feature
fusion mechanism of the FPN. Compared with SSD, RFBNet
enhances the diversity of features through a multilayer receptive
field fusion mechanism and uses the surrounding context infor-
mation to assist small target detection. Moreover, the experiment
proves that the RFB module enhances the multiscale expression
ability. However, RFBNet lacks a multiscale feature fusion
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Fig. 4. Precision-recall (PR) curves of different methods. (a) Airplane. (b) Airport. (c) Baseball Field. (d) Basketball Court. (e) Bridge. (f) Chimney. (g) Dam.
(h) Expressway Service Area. (i) Expressway Toll Station. (j) Golf Field. (k) Ground Track Field. (l) Harbor. (m) Overpass. (n) Ship. (o) Stadium. (p) Storage
Tank. (q) Tennis Court. (r) Train Station. (s) Vehicle. (t) Windmill.

module and does not consider the problem of scale imbalance,
which makes its performance inferior to that of our proposed
algorithm.

Compared with the Faster RCNN and SSD methods, Retain-
Net and YOLOv3 use a feature pyramid structure to improve
their multiscale expression capabilities, but the feature fusion
mechanism they use still does not consider the semantic differ-
ences of features at varying scales and neglects the semantic
information of other feature layers. These shortcomings cause

their performance to be inferior to that of our algorithm. Based
on experiments that our method performs better than YOLOv3
and RetainNet by 5.74% and 13.9%, which verifies the ef-
fectiveness of the proposed multiscale feature adaptive fusion
strategy.

According to the experimental findings, the detection results
of YOLOv3-ASFF and EifficentDet are better than those of
RetainNet and YOLOv3, which use the classic feature pyramid.
The reason is that the first three detection networks superimpose
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TABLE III
ABLATION STUDY ON THE COMPONENTS OF THE SCALE-AWARE PYRAMID NETWORK

and combine the multiscale features obtained by the basic net-
work to obtain new multilevel and multiscale features to achieve
the advantages of the strong-aggregation shallow-information
positioning ability and deep information classification ability.
The advantage of this structure is that it can overcome the
weakness where each feature map in the classic feature pyramid
structure is mostly composed of single-level features, which
causes poor FPN feature expression results.

Although the above methods show promising results, they
overlook the issue of scale imbalance, where the number of small
targets significantly exceeds that of large targets. Consequently,
the weights assigned to small-scale targets during training are
weaker than those of large-scale targets. Notably, our proposed
approach showcases stronger small-scale target detection ability
relative to the above three methods, thanks to the following
three strategies. Nonetheless, to tackle the problem of scale
imbalance, we prioritize employing specialized measures in our
approach. Our experimental results demonstrate the superiority
of the proposed method in detecting small-scale targets com-
pared to the above three methods. 1) It adopted the long-distance
dependence modeling of the self-attention layer for replacing the
locality modeling of the convolutional layer, which can show the
global interaction between heterogeneously distributed objects,
and show significant advantages at distinguishing their types
and locations from the clutter background. 2) Capsule-inference
module can explore the object entity information, and utilize the
bidirectional attention routing for forward information delivery
and backward information feedback.

Results on HRRSD: With the purpose of further confirming
the effectiveness of the proposed method, this study compares
the performance of the proposed model with the classic detection
model on the HRRSD dataset. Specifically, the compared meth-
ods include YOLOv3, FCOS, FRCNN, RetinaNet, HIE-Det
[63], S2BDet [64], MSE-Net [65], and GLFPN [66]. Table III
presents the findings of the performance comparison. Based on
Table II, the proposed method achieves 88.72% mAP on the
HRRSD dataset. Our method still achieved good results, which
further verifies the superiority of capsule reasoning and sausage
metrics.

E. Ablation Study

This section examines the impact of each module of the
proposed network on performance. The ablation experiments
focus on elucidating the two parts of Capsule reasoning and
Sausage Metrics. To demonstrate the feasibility of the proposed
approach, we train and conduct experiments on the DIOR
dataset. Table III presents several comparisons evaluating the
contributions of each module. First, we evaluate some compo-
nents’ contribution to the baseline recognizer of this study, which

provides a reference. Overall, the techniques enhance accuracy,
resulting in a final baseline mAP score of 69.45%.

1) Feature Fusion With Multiple Levels: We introduce a
feature fusion method with multiple levels to learn balanced
semantic features by integrating and refining features at all
FPN levels. This approach fully utilizes multi-scale feature
information, without increasing the model training burden. The
experimental results show that after introducing the Capsule
Reasoning module, the map value increases by 1.6%, compared
to the baseline.

2) Capsule Reasoning: The reasoning capsule module em-
ploys capsule construction and attention routing to realize target
type and location information reasoning and avoids the limita-
tions of describing the target’s relative position when using the
FFN model directly. This model’s autonomous reasoning ability
enhances target detection performance. The experimental results
show that after introducing the Capsule Reasoning Module, the
map value increases by 4.8% compared to the baseline. This im-
provement stems from constructing capsule entities that achieve
a comprehensive internal target representation and obtaining a
more effective inference method for the target from capsule
entities through the routing information transmission method
between them.

3) Sausage Metrics: A hypersausage metric model is intro-
duced in the capsule inference module to obtain the probability
of the respective attribute of each target capsule appearing in
the target. This metric function exhibits strong nonlinear ability
and can effectively describe the underlying capsules (features).
Besides, the mapping relationship between high-level capsules
(types and positions) enhances the expressiveness of features.
Table III presents the comparative findings of the ablation ex-
periments based on the sausage metric module in the CI_DETR
model. As depicted in Table III, when the squash activation
function in the capsule is replaced with the hypersausage metric
model in this study, the detection accuracy of the model has been
significantly increased.

F. Experimental Results and Analysis

To reveal the performance of the proposed method visually,
this study explains it from two perspectives, qualitative and
quantitative. As shown in the qualitative analysis, this study
visualized the detection results in the DIOR dataset, and the
results are presented in Fig. 5. As depicted in Fig. 5, the proposed
method has better performance under varying scale targets and
different backgrounds; CI_DETR makes a good performance
in detecting not only small, dense objects (e.g., small ships,
oil tanks, vehicles, and airplanes), but also large objects (e.g.,
bridges, basketball courts, ground track fields, and overpasses).
In the DIOR dataset, vehicles are small targets that have a large
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Fig. 5. Detection results of the proposed methods.

sample size, and their scene complexity is higher than that of
other targets. We have enhanced our method by incorporating
the Multi-level Feature Fusion module within the feature pyra-
mid structure. This allows for better extraction of contextual
information surrounding small targets, thereby improving the
overall mining ability of the system. In addition, we have utilized
a capsule inference model that constructs the capsule entity,
resulting in a more comprehensive internal representation of
the target. By leveraging the routing information transmission
method between the capsule entities, our system is able to more
effectively infer information about the target.

V. CONCLUSION

In this paper, we propose a multi-scale feature aggregation
module to improve the detection ability and fusion of small-scale
features in multi-scale targets. Firstly, we incorporate a capsule
reasoning model for entity mining, where the object category and
location are predicted using attention routing. Additionally, we
employ a sausage metric model, which has a strong nonlinear
mapping ability and can effectively predict capsule entities to
describe the mapping relationship between features and type la-
bels. This model’s detection performance is further enhanced by
predicting the probability of the target’s existence. Experimental
results on a public remote sensing dataset demonstrate that our
proposed method outperforms other object detection methods
like RetainNet and EfficientDet.
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