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A Deformable Spatial Attention Mechanism-Based
Method and a Benchmark for Dock Detection

Yuhong Tu"”, Yan Song

Abstract—Dock is a significant site in the shipbuilding industry.
The detection of docks contributes to many important fields. With
the abundant methods and datasets, the deep learning-based object
detection in remote sensing images has received wide attention.
However, there is no dataset that includes the dock class. This
article first proposes a dock dataset to build a benchmark and
advance dock detection research. Further, object detection of docks
using existing methods cannot yield convincing results due to the
characteristics of docks. To meet the challenges in dock detection, a
novel deformable spatial attention module (DSAM) is proposed to
enhance the feature representation and localization of docks. Based
on the DSAM, a novel network architecture is proposed to perform
accurate and efficient dock detection. The ablation and comparison
experiments reveal that the proposed methods are accurate and
effective, which are superior to the existing methods.

Index Terms—Dataset, deep learning, deformable convolution,
dock, object detection, spatial attention.

I. INTRODUCTION

HIPBUILDING industry plays a key role in the national de-
fense security [1], transportation [2], marine development
[3], and national economy [4] all over the world. Shipyards are
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located near the seashore or water shore, utilized to construct
new ships and repair old ones, exerting a crucial effect in the
shipbuilding industry [5], [6]. The most complex process in
the shipbuilding is carried out on the docks [7]. Therefore, the
dock is the most critical component of a shipyard. From the
perspective of industrial production, different scales of docks
can be utilized to produce ships with various throughputs. So,
it can directly and effectively reflect the production capacity of
each shipyard by detecting the docks. From the perspective of
land resource utilization, timely detection of long-term vacant
docks and timely adjustment of the land use type are conducive
to improving the land resource utilization in coastal areas. From
the perspective of ecological environment, it will release a lot of
waste water, exhaust gas, and dust in welding, painting, and
outfitting during ship construction, which directly affect the
ecological environment of the coastal area around the docks.
The detection of docks contributes to the protection of ecological
environment in the coastal areas.

At present, the manual statistics are employed for detection
of docks in the traditional methods, which are subject to lack of
macroscopic, inefficiency, and mass labor cost. Satellite remote
sensing (RS) can observe objects from a macroscopic per-
spective, which can overcome the disadvantages of traditional
methods. However, to the best of our knowledge, there are few
researches on the detection of docks based on the RS images
(RSIs) worldwide. For instance, Firat et al. [8] proposed an
approach for end-to-end object detection by leveraging large
amount of unlabeled data and a single-layer convolutional sparse
autoencoders, which were evaluated on the dry docks. Combin-
ing multisource optical RSIs and deep learning methods, this
article aims to achieve macroscopic and efficient detection of
docks with low labor cost.

Object detection has been widely applied in RSIs and received
extensive attention in recent years [9]. So far, there have been
several public geospatial object detection datasets for RSIs
available. For instance, the TAS dataset for automotive detection
of aerial images [10], the SZTAKI-INRIA dataset for building
detection [11], the RSOD with four classes [12], [13], the UCAS-
AOD dataset for vehicles and planes [70], the NWPU VHR-10
dataset containing 10 categories [14], [39], the HRSC2016
dataset for ship detection [15], the DOTA dataset [16] including
15 categories and the DIOR benchmark in optical RSIs [18]
containing 20 categories. Especially, the DOTA dataset has
been expanded from DOTAv1.0 to DOTAv1.5 and DOTAv2.0
[17] in recent years. However, there is no dock class in all the
published datasets, which definitely causes a challenge for deep
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learning-based detection of docks. To build a benchmark for
dock detection, a novel dataset for deep learning-based dock
detection is proposed in this article first.

For the traditional object detection of images in natural scenes,
the current deep learning-based methods can be divided into two
main streams. The first is the two-stage method, which detects
objects with the two-stage convolutional neural network (CNN)
methods. The best-known two-stage methods include R-CNN
[19], Fast R-CNN [20], Faster R-CNN [21], Mask R-CNN
[22], R-FCN [23], and Cascade R-CNN [24]. The second refers
to detecting the objects with the single-stage methods which
do not need the proposals generated by an extra network like
the two-stage ones. Therefore, it presents a faster and simpler
architecture [25]. The best-known single-stage methods include
YOLO series [26], [27], [28], [29], [30], SSD [31], RetinaNet
[32], LADet [33], and so on.

In comparison with the object detection in natural scenes, that
in RSIs faces more challenges [34] such as rotation, efficiency,
and accuracy, which have been intensively studied. In the past
few years, there are many researches focusing on the two-stage
methods such as adopting the R-CNN architecture to detect
various geospatial objects in RSIs [35], [36], [37], [38], [39].
Cheng et al. [39] proposed a rotation-invariant CNN model for
multiclass geospatial object detection, which merges a novel
rotation-invariant layer to the R-CNN. However, the methods
based on R-CNN are time consuming. To further improve the
accuracy and efficiency of object detection in RSIs, the faster
R-CNN-based object detection methods for RSIs are developed
and applied [40], [41], [42], [43], [44], [45]. For example,
Li et al. [43] proposed a rotation-insensitive region proposal
network (RPN) network by introducing a multiangle anchor
frame into the RPN in the Faster R-CNN framework, which can
effectively address the rotational variations of geospatial objects.
Tang et al. [44] developed a hyperregion proposal network
for vehicle detection and used hard negative sample mining to
further improve the accuracy. The most of the above methods are
based on the horizontal bounding boxes (HBBs). With the DOTA
and DIOR benchmarks released, the object detection methods
in RSIs have gradually developed toward the oriented bounding
boxes (OBBs) based ones [46], [47], [48], [49], [50], [51], [52],
[53], [54], [55], the baselines of which are not restricted to the
two-stage methods. Notwithstanding the OBBs can match the
real forms of geospatial objects, it only can be implemented
smoothly with more extra parameters, such as the orientation of
objects, requiring more samples for training. Due to the limited
number of dock samples in the proposed dock dataset, this article
focuses on the detection of docks based on HBBs. Therefore, the
relatively traditional Faster R-CNN is adapted as the baseline in
the article because of its universality, stability, and reliability for
object detection in RSIs with HBBs annotation.

With the rapid development of deep learning-based methods,
attention mechanism has arguably become one of the most
important concepts [56]. Attention not only indicates where to
focus, but also improves the representation of interests [57]. The
attention in object detection can be categorized into two types:
spatial attention and channel attention. The spatial attention
allows networks to learn the positions that should be focused
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on from the spatial-wise [56]. For instance, Mnih et al. [58] pre-
sented a spatial attention model as a single RNN, which takes a
glimpse window as its input and selects the next location to focus
on using the internal state of the network, and generates control
signals in a dynamic environment. The channel attention allows
networks to learn the focuses from the channel-wise [56]. For
example, Hu et al. [59] proposed a squeeze-and-excitation (SE)
network that adaptively recalibrates the channel-wise feature
responses by explicitly modeling the interdependencies among
different channels. In the SE network, the channel-wise attention
can be obtained based on the global average-pooled features. To
comprehensively consider the spatial-wise and channel-wise,
Chen et al. [60] proposed a novel spatial and channel-wise
attention CNN which merges spatial and channel attentions in a
CNN. Woo et al. [57] developed a convolutional block attention
module (CBAM), comprising the concatenated channel and spa-
tial attention modules (SAMSs), which improves the performance
while keeping the overhead small. Unlike CBAM, the BAM [61]
arranges the channel and SAMs in parallel, which can learn what
and where to focus or suppress efficiently through two separate
pathways and can refine the intermediate features effectively.

Located in shipyards, the docks are utilized for ship construc-
tion and repair. Due to the long period of ship construction, the
materials stacked on the same dock often change, the manifesta-
tions of docks appear differently over time. Moreover, the docks
exhibit flexible orientations and various spatial distributions.
Accordingly, the detection of docks in RSIs is more challeng-
ing. Nowadays, the mainstream object detection baseline is
the backbone combined with feature pyramid network (FPN)
[62], which can enable the multilevel features to the subsequent
architecture. However, the faster R-CNN with FPN fails to
consider the orientations and the features of real dock forms
within the HBBs, as they are usually mixed with the features
of background in HBBs. Meanwhile, the HBBs tend to overlap
each other in the case of dense distribution, so that the network
recognizes multiple docks as one. In addition, the docks are
easily confused with other geospatial objects in the shipyard,
even the background.

To make up the above deficiencies, a novel deformable spatial
attention module (DSAM) is proposed based on the CBAM
[57] and the deformable convolution [63], [64]. In the proposed
DSAM, the extra deformable convolution layers are merged with
the traditional SAM to learn the irregular location offsets which
can match the real dock forms. Based on the location offsets,
the network can focus on the informative features of the real
dock forms. Therefore, with the DSAM, the dock features can
be better represented and the overlap with omission caused by
the HBBs annotation in the case of dense distribution can be
relieved. Further, a novel network architecture is proposed based
on the DSAM and the faster R-CNN with FPN to improve
the accuracy in the detection of docks, which enhances the
localization and feature representation of docks. Finally, the
effectiveness of proposed methods is proved experimentally, and
the accuracy is confirmed to be better than that of the existing
methods.

The rest of this article is organized as follows. In Section II,
the dock dataset is introduced and analyzed. In Section III,
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Fig. 1. Dock dataset statistics. (a) Image size statistics. (b) Instance size statistics. (c) Dock density statistics.
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Fig. 2. Correlation coefficients within all instances. (a) Red-Green. (b) Green-Blue. (c) Blue-Red.

the DSAM and a novel network architecture are proposed. In
Section IV, the comprehensive experiments are conducted to
verify the accuracy and efficiency of the proposed methods.
Finally, Section V concludes this article.

II. DOCK DATASET

First, a novel dock dataset including 1480 images and 4704
docks is proposed in this article. Due to the limited docks, there
are RSIs in the dataset for the same dock from different times
and sources. The dataset is collected from Google Earth (Google
Inc.), map world (MW) [73], and ZY-3 [74]. The sources of the
RSIs include 315 ZY-3 images, 575 Google Earth images, and
590 MW images and the corresponding resolutions are 2 m, 0.5
m, and 0.5 m, respectively.

In the dock dataset, all the RSIs that include three RGB visible
bands cover the complete area of each shipyard, and the docks
are labeled by HBBs in the format of VOC annotation [65]. Some
typical RSIs labeled by HBBs in the dock dataset are given in
Table I, in which the docks are labeled by the green HBBs.
Further, the image size, the instance size (HBB size), and the
dock density are illustrated in Fig. 1 while the ranges of data are
given in Table II.

Due to the long period of ship construction, the same dock
observed by different RSIs represents differently, such as being
stacked by materials or just being vacant. Moreover, differ-
ent scales of docks feature with variable characteristics. For
instance, there are normally large guide rails and gantry
cranes in the large-scale docks, which manifest their distinctly

interpretable characteristics. Nevertheless, the characteristics of
diminutive docks are indistinctive because of the limited scale.
Different locations of shipyards make the docks located inland
or adjacent to the water, so the orientations of docks are unfixed.
Therefore, it can be concluded that the docks are abundant in
intraclass diversity. In addition, docks are densely distributed
in some cases as shown in shipyard 5. The above discussion
confirms that detection of docks is more challenging than that
of other objects.

Due to the unique representation forms of docks in RSIs, the
correlation coefficients between each band of a dock instance
are calculated to further reflect the characteristics of the docks
(see Fig. 2). It can be calculated with the flattened pixel vectors
of different bands obtained by flattening the dock instance
pixels within HBBs in images. The distributions of correla-
tion coefficients which are larger than 0.9 and 0.8 are given
in Table III.

Table III reveals the correlations between each band are
high. A novel SAM and a novel network architecture for dock
detection are proposed in the next section, which can overcome
the above challenges to improve the detection accuracy.

III. METHODOLOGY

With the capability to address the multiscale feature repre-
sentation, the FPN [62] has been merged into the mainstream
network structure in recent years. Not only the FPN, but also the
attention mechanisms enable the network to focus more on the
significant features in images, which also enhance the feature
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TABLE I
SOME SAMPLES IN THE DOCK DATASET

Index GE MW ZY-3

representation capability of the network. The CBAM [57] is one Although the extra network structures enhance the expression
of the most popular attention mechanisms, which consists of the  of features, the existing methods are not well adapted for the
channel attention module (CAM) and the SAM to comprehen-  dock detection because of the dock characteristics. Specifically,
sively focus on the significant features from spatial-wise and the CBAM is usually merged with the backbone to enhance the
channel-wise. feature representation for regions of interest. And, the SAM



3734

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Conv

Input Feature

Deformable Spatial Attention Module

Offset field  Offsets

(X
—_ e

Deformable Spatial
Attention Map

Output Feature

Element-wise

Sigmoid multiply
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TABLE II
RANGES OF DATA IN THE DOCK DATASET

Range type Min size (pixels) Max size (pixels)
Image size 104*200 8019*8639
Instance size 38*8 985*1066
TABLE III

DISTRIBUTION OF CORRELATION COEFFICIENTS

Bands correlation
coefficient

Red-Green
Green-Blue
Blue-Red

>0.9 >0.8

90%
97%
69%

99%
99%
93%

in CBAM enables the network to focus on the informative
parts from the spatial-wise. Nevertheless, the receptive field
of conventional convolution in SAM is commonly a square
area, which leads the network to focus on the part mismatched
the real dock forms. Moreover, the orientations of docks vary
widely within HBBs. Consequently, the SAM cannot enable
the network to focus on the features of real dock forms well
within limited square areas, which unduly merges the features
of dock and background together. On the other hand, the CAM in
CBAM enables the network to focus on the informative channels
among the multi channels of the features from the channel-wise.
And yet, the correlations between each visible band of the
docks are strong based on the results in Table III. Excessive
channel attention brings more parameters to the model, which
may result in overfitting and reducing the final accuracy in test
set. Thus, this article only focuses on the spatial attention which
can improve the detection accuracy of the docks. Further, the
network structure combined with attention module is critical.
Owing to the multiblock structure of the backbone, the sizes of
the feature maps are different. Therefore, where to merge the

attention module in the network will directly affect the ability
of the network to localize and detect docks.

To address the above issues and improve the feature expres-
sion and the location accuracy of docks, a novel DSAM and a
novel network structure are proposed in this article. Inspired by
the deformable convolution [63], [64], the DSAM (see Fig. 3)
is proposed, in which the traditional convolution of SAM is
replaced with the deformable convolution. The deformable con-
volution is able to learn the irregular offsets with additional
convolutional layers, which enables the network to focus on the
features of irregular dock forms. The principle of DSAM can be
expressed as

F ppg = AvgPool (F) 0
F rax = MaxPool (F)
Fpsa= o ( éVCXN ([FAvg;FMaxD) (2)
NxN
b ()= D wa (Pt put Apa)x A (3)
n=1

In (1), F represents the input feature of DSAM, F g and
Fnax are the output of the sibling average pooling and max
pooling, respectively. Then, the two outputs are aggregated and
input to the deformable convolution layer, which is calculated in
(2). The o represents the sigmoid function while N represents the
sampling kernel size. F'pga is the deformable spatial attention
map, which represents the spatial-wise weighting feature map.
The deformable convolution operation can be calculated by (3),
where Ap,, and Am,, are the learnable offset and modulation
scalar for the nth location, respectively. The value range of Am,,
is [0, 1], while Ap,, is a real number with unconstrained range.
The w,, and p,, denote the weight and prespecified offset for
the nth location, respectively. The sampling is on the irregular
and offset locations z(p + p,, + Ap,,) which values are usually
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Fig. 4. Schematic diagram of the proposed network architecture.

fractional and can be calculated by the bilinear interpolation.
Finally, Fpsa and F' are element-wise multiplied to produce
the spatially weighted feature (the output feature in Fig. 3) which
is input to the subsequent structures.

In the DSAM, multichannel information can be first com-
pressed by the sibling channel-wise operations. Then, the
aggregated feature [F'niax, F'avgl is input to the deformable
convolution layer to obtain the irregular directional offsets.
Finally, the deformable spatial attention map is obtained to
weight the input feature from the spatial-wise. With the DSAM,
the network can learn to focus on the features in the irreg-
ular forms that approximately resemble the forms of docks.
Therefore, the characteristics of docks can be better represented
based on the DSAM, which are not restricted by the traditional
convolutional reception field of squares.

Based on the proposed DSAM and the ResNet50 with FPN, a
novel feature extraction network architecture is proposed, which
is illustrated in Fig. 4. Because the ResNet50 is a bottom-up
structure and the FPN is a top-down structure, the DSAM should
be merged into the two structures, respectively. Concerned with
the precise localization and feature representation, the DSAM is
added into the ResNet50 where before the Resblockl and after
the Resblock4. Because the feature map which is the output
of the Conv layerl contains low-level semantic information
and extensive location information, we add DSAM between the
Conv layerl and Resblock1 to mainly enhance the localization
of docks. Further, the capability of features representation and
classification of network should also be taken into account. The
C5 feature contains extensive high-level semantic information.
Hence, the DSAM is added after the Resblock4 to mainly
enhance the feature representation of docks. With the addition of

Feature map in FPN

TABLE IV
RESULTS OF DIFFERENT NETWORK ARCHITECTURES (FR REPRESENTS THE
FASTER R-CNN [21], BACKBONE IS IN PARENTHESES)

Network architecture mAP

FR (Proposed architecture) 71.02

FR (Without intermediate DSAM) 68.23
FR (ResNet50 with FPN, baseline) 66.03
FR (ResNet101 with FPN) 65.89

FR (Xception [71]) 60.26

FR (MobileNet [72]) 59.72
R-FCN [23] (ResNet50) 63.47

DSAMEs, the localization and features representation for docks
of ResNet50 can be improved without excessive expansion. On
the other hand, the FPN is the extra structure with ResNet50,
which input features are the outputs of ResNet50. And, we
set C2, C3, C4 and the output of the top DSAM in ResNet50
as the input to FPN. In the structure of FPN, the inner block
(conv2d 1x1 in Fig. 4) unifies the dimensions of the input
features to 256 dimensions. Moreover, there is an upsample
layer between each FPN layer, which expands the spatial size
of feature map. During upsampling, the spatial attention is
significant for preserving high-level semantic information while
accurately locating docks. Thus, the DSAM is added after each
inner block in FPN to further reinforce the localization and
feature representation of docks. With the addition of DSAM
in the ResNet50 with FPN, the backbone can focus on the
informative parts matched real dock forms and reinforce the
dock futures representation during the feature extraction stage.
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TABLE V
RESULTS OF ABLATION EXPERIMENTS

Baseline Baseline + Different settings

DSAM v v
CAM Faster R-CNN v v
SAM v v

mAP 66.03 71.02 67.11 68.45 69.13 66.78

FPS 10 8 8 7 6
Param. 41.35M 41.41M 41.39M 41.36M 41.39M 41.45M

TABLE VI

RESULTS OF DIFFERENT KERNEL SIZE IN DSAM

Kernel Size Param. mAP
7*7 41.41M 71.02
5*5 41.37M 68.61
3*3 41.36M 66.88

The bold value highlight the optimal detection result.

Finally, the multiscale features P2-P6 are input to the RPN and
the subsequent processes are the same with the faster R-CNN.

IV. EXPERIMENTS AND RESULTS

The proposed dock dataset and methods are used to conduct
experiments. The experiments are performed on one RTX3070
with 8G memory by PyTorch in Ubuntu. We use 70% of the
dataset as training set and 30% as test set. To thoroughly
evaluate the effectiveness of the proposed methods, we first
perform extensive ablation experiments. Meanwhile, we verify
the proposed methods outperform the existing methods. Further,
we analyze the effect of kernel size hyperparameter on the
final detection results. Finally, we compare the predicted results
with the ground truth boxes in the test set. In particular, the
mAP in the following results is calculated according to the
evaluation indicator in the MS coco dataset [67], which is
under the intersection over union of 0.5. And the pretrained
weights [68] trained by MillionAID [69] are used in this
article.

A. Comparison and Ablation Experiments

To verify the effectiveness of the proposed network archi-
tecture, experiments with different network architectures are
conducted firstly. As analyzed in Section III, the localiza-
tion and feature representation of docks should be concerned
comprehensively. Thus, the top and bottom DSAMs in all
ResNet50 and FPN are definitely required. We compare the
cases with or without DSAM in the two intermediate layer of
the FPN, and the results of other existing methods are given
in Table I'V.

With the results in Table IV, the optimal detection result can be
obtained by the proposed network architecture, which is superior
to the existing methods. Further, it is proved that the DSAM
can further reinforce the feature representation and localization
of docks during upsampling in FPN. The spatial attention is
significant for preserving high-level semantic information with

accurately locating docks, which will directly affect the final
detection results. Therefore, the proposed network architecture
is reasonable, which focuses on the informative dock area dur-
ing the whole bottom-up and then top-down feature extraction
process based on the DSAM.

To further verify the effectiveness and superiority of the
proposed methods, more ablation experiments are conducted
based on the proposed network architecture. Different network
architectures are compared in Table V, where also demonstrates
the frames per second (FPS) and the parameters number of whole
network (Param.).

As given in Table V, the mAP of the proposed architecture
(only with DSAM) is optimal, which is greater 1.9% than the
baseline with CBAM (CAM+SAM) and improves 4.9% than
the baseline. However, the combination of DSAM and CAM
(MCBAM) performs the worst in all improved architectures. It
demonstrates excessive channel-wise attention yields negative
results instead. As analyzed in Fig. 2, there are high correla-
tions between the visible bands of the docks. In the MCBAM,
the DSAM will be influenced by the excessive channel-wise
attention. As a result, the DSAM cannot perform its original
function and the detection accuracy is worse than the DSAM
alone. The proposed DSAM focuses on the features within the
approximate forms of the real docks, which comprehensively
enhance the features representation and localization for docks
from the spatial-wise. Hence, the proposed network architecture
achieves the best accuracy.

B. Hyperparameter Experiments

The effectiveness of the proposed methods has been proved by
the above experiments. Further, the comparison experiments of
detailed hyperparameter are performed. Because of the different
kernel size of the deformable convolution layer in DSAM, the
receptive fields of the attention parts are diverse, which will
affect the detection accuracy. The detection result is better when
the network matches the real form of the docks more precisely.
Thus, the kernel size of DSAM is a significant hyperparameter.
In ResNet50, the bottom feature spatial dimension is large with
a narrow channel dimension and contains abundant location
information, while the top feature spatial dimension is small
with a wide channel dimension and contains abundant high-level
semantic information. We empirically set the kernel size of the
top and the bottom DSAM in ResNet50 as 3 and 7. Further,
considering the top-down structure of FPN and all the channel
sizes of the input features are the same, the kernel sizes in FPN
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TABLE VII
GROUND TRUTH BOUNDING BOXES AND THE PREDICTION RESULTS

Index Dock density GT box

Prediction

2 2
3 2
4 8
5 9

are set the same empirically. We compare the effect of different
kernel size of DSAM in FPN to the results which are given in
Table VI.

As given in Table VI, the optimal result can be obtained when
the kernel size is set to 7. Due to the sizes of docks, small
kernel size limits the feature representation and the localization
of docks, which cannot match the real forms of the docks well.

Therefore, the kernel size of 77 is the optimal setting for the
dock detection.

C. Detection Results

Based on the optimal parameters of the trained network, the
test set is employed to compare the prediction results with the
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TABLE VII
(CONTINUED)

Index Dock density GT box

Prediction

“dockdock: 100%,100%100

i

ki

ground truth bounding boxes (GT boxes). A variety of repre-
sentative cases from the test results are exhibited in Table VII,
such as correct detection, missed detection, false detection,
etc.

In Table VII, the detection results can be classified into various
cases. Specifically, the detection results in shipyards 1 and 2 are
correct, which means that the number and the area of docks are
all basically correct. The detection results in shipyard 3 are the
missed detection because two vacant docks are not detected,

which is possibly due to the insufficient distinctive features
in the vacant docks. Further, there are few vacant docks in
the dock dataset, which are not “learned” by the network. In
shipyards 4-7, the detection results are acceptable in the case of
dense distribution, which indicates that the proposed DSAM and
network can detect the docks in dense distribution by focusing
on the characteristics of each dock. The shipyard 8 is subject to
false detection. The material area is incorrectly identified as a
dock because of the similar characteristics of different objects,
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TABLE VIII
SOME PREDICTION RESULTS IN THE CASE OF DENSE DISTRIBUTION (THE GREEN BOXES INDICATE THE CORRECT DETECTIONS. THE BLUE ONES INDICATE THE
FALSE DETECTIONS. THE RED ONES INDICATE THE SYNCRETIC DETECTIONS. THE YELLOW ONES INDICATE THE MISSED DETECTIONS)

Proposed

thod

that is, the two types of objects both contain the materials for
ship construction and gantry cranes. In shipyards 9 and 10, two
adjacent docks are identified as one, which may be caused by
the unobvious boundary information between docks. Moreover,
some typical prediction results in the case of dense distribution
are given in Table VIII. The proposed methods can identify the
docks more accurately than the baseline in the case of dense
distribution because the latter tends to identify the multiple
neighboring docks as one. In summary, the proposed methods
exhibit better detection results than the existing methods, with
the mAP of 71.02%, although there are still some special cases
of missed detections and false detections.

V. CONCLUSION

To perform accurate and efficient dock detection, a novel dock
dataset is proposed first in this article, which includes 1480
images and 4704 docks labeled by HBBs. In order to overcome
the challenges in dock detection, a novel DSAM is proposed to
drive the network to learn features that match the actual form
of the docks. Based on the DSAM, a novel feature extraction
network is proposed. The proposed network comprehensively
focuses on the feature representation and localization of docks,
which merges the DSAM with the backbone together. Further,

the sufficient experiments prove that the proposed methods
are accurate and efficient, which are superior to the existing
methods. The mAP of the proposed methods reaches 71.02%.
Finally, the predicted results are compared with the GT boxes,
which demonstrates that the predicted results are compelling.
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