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Abstract—Monitoring the land covers in complex landscapes is
of great significance for the sustainable development of mine geo-
environments. As most existing remote sensing scene datasets are
composed of RGB images, there is a lack of multimodal datasets for
complex landscapes with mining land covers (MLCs) at a fine-scale.
In this study, a new dataset was created by the China University of
Geosciences (CUG), Wuhan (named CUG-MLCs) using ZiYuan-3
imagery-based multispectral and topographic data. Moreover, the
characteristics of multisize objects, irregular or blurred edges, and
spectral-spatial-topographic heterogeneity and variability limited
the classification accuracy. Therefore, an edge enhanced channel
attention-based graph convolution network (ECA-GCN) was pro-
posed and tested. The proposed ECA-GCN includes three key
modules. 1) Multiscale and shallow feature fusion, used to fuse
the multiscale convolutional features and shallow features, which
helps present the MLC features with various scales; 2) edge en-
hanced channel attention, used to further select effective channels
after a spatial edge feature enhancement, which helps identify
irregular or blurred MLCs; and 3) edge detection-based GCN,
used for edge feature-based adjacency matrix and feature maps
from (2) to construct GCN, which can obtain edge node relation
and global contextual information. This framework improved the
representation of complex landscape characteristics. The proposed
ECA-GCN achieved an overall accuracy of 66.60% ± 1.39%,
averaged accuracy of 36.25% ± 1.50%, and Kappa of 55.91% ±
2.05%, thus, outperforming other models. In general, the proposed
dataset and model were positive for the fine classification of complex
landscapes.

Index Terms—Attention mechanism, feature fusion, graph
convolution network (GCN), remote sensing, scene classification,
Ziyuan-3.
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I. INTRODUCTION

S INCE the Industrial Revolution, greenhouse gas emissions
were associated with numerous issues [1], [2], [3]. Achiev-

ing carbon peaks [4] and carbon neutralization [5], [6] can
effectively prevent the increase in greenhouse effects and mit-
igate the risk of climate change [7]. Technologies related to
carbon neutralization have become a research hotspot in China
and other major economic countries.

The mining areas are special, artificial, or semi-artificial ter-
restrial ecosystems, whose core is the mining operation area [8].
Mining areas and surrounding farmland, woodland, and other
mining land cover constitute a complex geological environment.
In these regions, plenty of geological and environmental issues
may occur due to mining activities [9], [10], [11], [12], [13].
The consequences of the inflicted soil and vegetation damage
are usually irreversible; therefore, it is important to restore and
protect the environment in mining areas.

Land cover classification is a hot topic in the sphere of remote
sensing due to various issues and challenges [14], [15], [16],
[17], [18], [19]. Furthermore, monitoring land cover types in
mining areas is important for ecological, environmental, and
social development [20].

Pixel-oriented [21] and object-oriented [22], [23] methods
have achieved impressive performances in MLC classification
tasks; however, they have little semantic meaning. To obtain a
semantic-level understanding of the meaning and the content of
remote sensing images [24], we performed scene classification
in complex landscapes. Although there are multiple available
datasets such as the UC Merced Land-Use dataset [25], WHU-
RS19 dataset [26], and SIRI-WHU dataset [27], the existing
remote sensing scene datasets are basically composed of red,
green, and blue bands (i.e., RGB images). Only a few datasets,
such as SAT-4 airborne [31] and SAT-6 airborne datasets [31] are
composed of RGB and near infrared (NIR) images. Table I shows
a comparison of remote sensing scene classification datasets.

With respect to the classification methods of MLCs at the
fine-scale, there are some advances. Complex landscape features
in mining areas, especially the remarkable stereo topographic
features and spectral-spatial variability, severely restrict the
improvement of MLC classification [33], [34], [35], [36].

Previous research on pixel-oriented classification shows that
topographic features are one of the most important features of
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TABLE I
COMPARISON OF REMOTE SENSING SCENE CLASSIFICATION DATASETS

complex landscape areas. For MLC tasks, if we can ensure
high spatial resolution as well as a rich number of images
while introducing NIR and digital elevation model (DEM) data
bands, the classification precision for complex landscapes will
be further improved. Therefore, a multimodal scene dataset for
the classification of MLCs at the fine-scale is necessary.

Nevertheless, the combination of artificial feature calculation
methods and machine learning algorithms (MLAs) [37], [38],
[39] is insufficient to achieve satisfactory classification accuracy.
Compared with traditional MLAs, deep learning methods are
much more accurate and efficient, and have been extensively
used in the remote sensing domain.

For example, Li et al. [33] developed deep belief network-
based models (DBN) for fine classification of MLCs using
ZiYuan-3 (ZY-3) imagery based multispectral and topographic
data. They further developed a multilevel output-based DBN
model [39]. Compared with DBN, a convolution neural net-
work (CNN) can extract spatial features more effectively, and
it performs well in remote sensing classification tasks. For in-
stance, Zhao et al. [40] proposed a dense connection and dilated
convolution-based model to capture more comprehensive spatial
information.

Alternatively, some studies have investigated multiscale fea-
ture fusion strategies. Liu et al. [41] proposed a context-aware
spectral-spatial feature extraction module to capture the mul-
tiscale features of scale invariance. Xia et al. [42] proposed a
multiscale feature fusion network with a series of redesigned

skip pathways. Zhang et al. [43] constructed a three-branch
feature fusion network that uses Dual-Anchor triplet loss and
nonlocal operation. Mei et al. [44] proposed a multilevel features
fusion framework based on sparse representation. Gu et al.
[45] proposed a generative adversarial networks (GANs) struc-
ture with a pyramidal multiscale structure. They achieve good
classification results by multiscale feature fusion, multibranch
fusion, or loss function design. There is a consensus that with the
increase of network depth, features become more and more ab-
stract. However, shallow features are also important for complex
landscapes. Therefore, the integration of multiscale features and
shallow features is worth exploring.

Some researchers attach importance to the attention mech-
anism. Tong et al. [46] proposed a densely connected convo-
lutional network (DenseNet) with channel attention and label-
smoothing-based cross-entropy loss function. Ouyang et al.
[47] propose multichannel-feature-fusion landform recognition
networks based on channel attention. Chen et al. [48] used global
context spatial attention and DenseNet to obtain multiscale
global scene features. Liu et al. [49] proposed a multidimen-
sional CNN model with improved channel-spatial attention. Guo
et al. [50] proposed a self-attention GAN with similarity loss.

MLCs are characterized by large edge differences. For exam-
ple, a mining catchment has highly irregular edges and a con-
centrator has blurred edges. Therefore, the effective extraction
of edge information will effectively improve the performance
of MLC classification. Ma et al. [51] proposed a foreground
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activation framework with a dual-branch decoder and collabora-
tive probability loss. It distinguishes foreground objects from the
background, achieving similar effects to using edge information.
Yang et al. [52] proposed an architecture with a block shuffle
structure, super-pixel branch and self-boosting method to obtain
precise edge contour. Liang et al. [53] proposed a dual-stream
system structure that combines global visual features with posi-
tional functions to improve feature representation by using edge
node relationships. Zhang et al. [54] proposed an architecture
that uses an edge guidance module to learn edge attention
representation and aggregate it with feature information. Wang
et al. [55] proposed an architecture to extract multigranularity
edge features, and jointly learn the segmentation object mask
and edge detection. Zhang et al. [56] proposed an architecture
that uses soft boundary detection to transform raw data features
and obtain global context information. As mentioned above,
combining edge information to improve attention is a direction
that can be explored.

In recent years, increasingly more attention has been focused
on graph convolution networks (GCN) which utilize the correla-
tion between land cover categories by encoding remote sensing
images to form maps. Compared with CNN, GCN improves
the inapplicability of translation invariance on non-matrix struc-
tured data, and its essence is to extract the spatial features of topo-
logical graphs. Liu et al. [57] proposed a heterogeneous deep
network combining CNN with GCN for pixel and super-pixel
feature fusion. Zhou et al. [58] proposed a depth-wise separable
GCN model in which the feature graph adjacency matrix was
constructed using a Sobel operator.

In addition to the above models, a deep learning model called
transformer has gradually been applied in the field of remote
sensing. The model divides the image into blocks. The context
is captured using the relationship between image blocks. Bazi
et al. [59] applied an attention mechanism to focus on differ-
ent areas of the image and integrate global information. Tang
et al. [60] proposed a transformer that used multilevel features
to mine the potential context information of remote sensing
scenes. However, we believe that in complex landscapes, the
transformer model has limitations for feature modeling and high
computational complexity.

In this study, a new multimodal dataset was constructed by
the China University of Geosciences (CUG), Wuhan (named
CUG-MLCs), using ZY-3 imagery. Moreover, in order to extract
complex landscape features of multisize objects, irregular or
blurred edges, and spectral-spatial-topographic heterogeneity
and variability, we proposed and tested an edge enhanced chan-
nel attention-based graph convolution network (ECA-GCN).
ECA-GCN has the following three key structures:

1) multiscale and shallow feature fusion, which fuses the
multiscale convolutional features and the shallow features,
thus, aiding the presentation of MLC features with various
scales;

2) an edge enhanced channel attention that further selects ef-
fective channels after a spatial edge feature enhancement,
which helps identify irregular or blurred MLCs;

3) an edge detection-based GCN that uses the edge feature-
based adjacency matrix and feature maps from edge

enhanced channel attention to constructing GCN, which
can obtain edge node relation and global contextual infor-
mation. This framework allowed the improvement of the
representation of complex landscape characteristics.

Other parts of the study are as follows: Section II introduces
the CUG-MLCs dataset; Section III introduces the details of
ECA-GCN; Section IV illustrates the experimental settings
and classification results; Section V includes the discussion
regarding the algorithm and dataset; and Section VI includes
the conclusion of the article and the outlook for future work.

II. CUG-MLCS DATASET

This section introduces the content, production process, and
classification system of the CUG-MLCs dataset. Furthermore,
the characteristics of the CUG-MLCs dataset are described.

A. Description of the Proposed CUG-MLCs Dataset

The CUG-MLCs dataset developed for this study contains
6125 images. It is a multimodal dataset meant for MLCs at fine-
scale. It contains five channels, namely DEM, RGB, and NIR
bands. All images have a size of 64 pixels × 64 pixels. The
dataset consists of 20 land covers. The number of samples in
each class of the CUG-MLCs dataset varies from 19 to 2333.
Table II shows the basic information on the CUG-MLCs dataset.
Fig. 1 illustrates example images from the dataset.

The CUG-MLCs dataset is divided into training, validation,
and test sets in a 6:2:2 ratio. The CUG-MLCs dataset
can be downloaded from the following website: https:
//drive.google.com/drive/folders/1cLpdTNLIQxpR5_ytYD-
TqRtiwTP8JDeS?usp = sharing.

B. Remote Sensing Data Acquisition and Preprocessing

The study area is located in Wuhan City, China. The range
of longitude and latitude is: 114°16’ E-114°20’ E and 30°16’
N-30°18’ N. The study area is 109.4 km2 and presents typical
surface mining and agricultural landscape characteristics [61].
Fig. 2 shows the RGB imagery of the study area and division of
scene data.

ZY-3 satellite imagery was selected as the data source and the
images used are from scenes obtained with different cameras on
June 20, 2012. Multispectral images were obtained using some
preprocessing methods.

A DEM with a resolution of 10 m was generated using the
stereo image pair data. Subsequently, the DEM was resampled
to 2.1 m to match the following multispectral image.

Combining the generated DEM data and the rational poly-
nomial coefficients, orthorectification was conducted on the
panchromatic and multispectral data. Next, based on corrected
panchromatic images, geometric registration of multispectral
data was performed using a quadratic polynomial function. The
resampling error was controlled within 0.5 pixels using the cubic
convolution method. Finally, the Gram–Schmidt method was
used to fuse the registered panchromatic and multispectral data.
A fused multispectral image with a resolution of 2.1 m was
obtained.

https://drive.google.com/drive/folders/1cLpdTNLIQxpR5_ytYD-TqRtiwTP8JDeS?usp
https://drive.google.com/drive/folders/1cLpdTNLIQxpR5_ytYD-TqRtiwTP8JDeS?usp
https://drive.google.com/drive/folders/1cLpdTNLIQxpR5_ytYD-TqRtiwTP8JDeS?usp
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Fig. 1. Example images of various land covers in the CUG-MLCs dataset.

Fig. 2. RGB imagery of the study area and division of scene data.
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TABLE II
BASIC INFORMATION OF CUG-MLCS DATASET

C. Visual Interpretation, Cropping, and Classification System

Manual visual interpretation and image clipping were per-
formed on the preprocessed data to form the final CUG-MLCs
dataset. In manual visual interpretation, the representative and
significant land cover types investigated in this study were
selected. In the clipping process, the image was sequentially
clipped from the upper left corner of the image. The image size
was 64 pixels × 64 pixels. Finally, a total of 6125 images were
divided. Table III shows the description of the MLC classifica-
tion system and the number of images.

D. CUG-MLCs Dataset Size

Take stope and asphaltroad as examples (as shown in Fig. 3,
the pictures on the right are the ground truth of the corresponding
area after manual visual interpretation). In a complex landscape,
images with different sizes in the same area contain multiple
categories. For example, pictures labeled as a stope. Although
images with the size of 48 × 48, the number of categories is
small, but the proportion of stope is small. Larger size images
such as 128 × 128, 224 × 224, 256 × 256, although stope
account for a large proportion, there are too many categories.
This may make feature extraction difficult. While pictures are
labeled as asphaltroad, the category and proportion of 48 × 48
and 64× 64 size pictures are similar. Larger size images face the
same problems as stope pictures. Therefore, based on qualitative
and quantitative considerations, we choose 64× 64 as the image
size.

E. CUG-MLCs Dataset Characteristics

1) Complex landscapes: There are numerous types of land
covers including mining areas with heterogeneous ter-
rain and agricultural development landscapes at different
phenological stages. There is a large difference in the
number of different classes, which has the nature of the
class-imbalance.

2) Multimodal: The CUG-MLCs dataset contains DEM,
RGB, and NIR bands. DEM data can effectively improve
the classification performance of MLCs.

3) Size of objects: The size of MLCs varies widely. Some
images have large background information, which, if not
handled, can affect the classification accuracy.

4) Edges of objects: The edge of MLCs is irregular or blurred.
The effective use of edge node information will help to
improve the classification accuracy at the fine scale.

III. METHODS

The network structure of the ECA-GCN is shown in Fig. 4. It
contains the following four parts.

1) Multiscale and shallow feature fusion: The size of land
cover types in different mining areas varies greatly, and
there is much background information; therefore, we ex-
tracted multiscale information using a multiscale convo-
lution kernel to focus on multiscale feature representation.
With the increase in network layers, the deep features will
inevitably lead to the loss of some features. This may affect
the accuracy of small-sized objects. Therefore, we added
the branch of shallow features to fuse the deep features
with the shallow features.

2) Edge enhanced channel attention: The importance of mul-
tiscale features differs from that of shallow features; thus,
after obtaining the characteristics of (1), we added the
channel attention module. In addition, to further highlight
the importance of local edge information, we enhanced
edge information in the attention module. Edge-dependent
design highlighted the importance of local image details.

3) Edge detection-based graph convolution network: We
used the Canny operator to detect edges. After processing,
it was used as the adjacency matrix of the GCN. After
propagating through each layer of the GCN, all features
were fused. GCN received the features from the above
modules, and used the edge node relationship to further
capture the global context information.

4) Classification: After GCN, we stacked three convolu-
tional pooling structures to reduce channel dimensions
and feature map size. Layer-by-layer dimension reduction
ensures the preservation of representative features. Ulti-
mately, the classification result is output through 1 × 1
convolution.
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TABLE III
DESCRIPTION OF MLC CLASSIFICATION SYSTEM AND THE NUMBER OF IMAGES

A. Multiscale and Shallow Feature Fusion

The deep learning method exhibits improved feature extrac-
tion as well as classification performance when compared to
traditional machine learning methods, and is characterized by
increased robustness and easy migration. CNN is an important
part of a deep learning method, and its strong representational
learning ability has attracted wide attention.

The land cover classification network of the mining area
accepts RGB + NIR + DEM images as input. With increas-
ing convolution layers, convolution layers can retrieve features
from fine to rough. Nevertheless, classical CNN usually extracts
features by stacking the same convolution layers. Furthermore,
convolution kernels of different sizes acquire multiscale features
from different scales, effectively expanding the information
flow, which is helpful for the recognition of small-sized objects.
To avoid losing significant image detail information with the
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Fig. 3. Display of images and labels of different sizes in the same area (take stope and asphaltroad as examples).

increase in depth, we added a shallow feature extraction branch
to obtain multiscale information on deep and shallow feature
fusion.

The multiscale feature extraction part of the multiscale and
shallow feature fusion module comprised four branches. The
first branch used a 1 × 1 convolution kernel. The second branch
used a 3 × 3 convolution kernel, padding was set to 1 to ensure
that the size of the feature map was unchanged. The third branch
used a 5× 5 convolution kernel, with padding set to 2. The fourth
branch used two 3×3 convolution kernels. After the convolution
layer, a BN layer and the ReLU activation function were added.
Finally, a 2 × 2 MaxPool is used to reduce dimension. The
shallow feature extraction part of the multiscale and shallow
feature fusion module consists of a 1 × 1 convolution and
MaxPool. The 1 × 1 convolution is used to normalize the
number of feature channels, and the MaxPool was used for
feature dimensionality reduction. Ultimately, we fuse the deep
and shallow features through the channel-stacking operation to

obtain the module output. The structure of the multiscale and
shallow feature fusion module is shown in Fig. 5.

Here, we stack three multiscale and shallow feature fusion
modules as our feature extraction structure. This is mainly be-
cause of the size of the input image of 64 pixels× 64 pixels. After
pooling-induced dimension reduction, the size of the feature
map decreases. To maintain the size of the feature map mod-
erate and consider the network depth, we choose to stack three
modules.

B. Edge Enhanced Channel Attention

SENet [62] is a brand-new image recognition structure pub-
lished in 2017. Through learning the correlation between char-
acteristic channels, SENet strengthens the channels with strong
presentation ability and weakens the secondary channels. It
alleviates the loss caused by different channel representation
capabilities.
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Fig. 4. ECA-GCN network structure.

Fig. 5. Multiscale and shallow feature fusion module.

A convolutional block attention module (CBAM) [63] is
proposed based on SE attention. The spatial attention module is
added after the channel attention module. The attention weight
is derived from the channel and spatial dimensions. In this way,
it can learn the importance of features and spatial positions,
respectively.

The fusion module combines multiscale and shallow features.
We screen channels with strong presentation ability by adjusting
the weights of channels. To adjust in time, we add an edge
enhancement channel attention mechanism after each multiscale
and shallow feature fusion module. The improved edge enhanced
channel attention is shown in Fig. 6.
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Fig. 6. Edge enhanced channel attention module.

SE attention includes two stages which are squeezing and
excitation. In the squeeze phase, the input feature map size is
C × H × W, where C represents the number of channels, and
H and W represent the height and width of the feature map,
respectively. We used the AdaptiveAvgPool to compress each
feature map into a single value; thus, the feature map becomes
a C × 1 × 1 vector, where the output of the squeeze phase can
be calculated as follows:

zc = Fsq (uc) =
1

W ×H

W∑
i = 1

H∑
j = 1

uc (i, j) . (1)

In the excitation stage, to effectively use the local descriptors
obtained following the squeeze, we ensure that the channel-wise
dependencies are fully captured. Two nonlinear fully connected
layers are used. The ReLU activation function is added after
the first fully connected layer. After the second fully connected
layer, Sigmoid is added. The output of the exception stage can
be calculated as follows:

sc = Fex (z,W ) = σ (g (z,W )) = σ (W2δ (W1z)) . (2)

Next, we assigned corresponding weights to each channel and
obtained the final output through channel wise multiplexing

Fscale (uc, sc) = sc · uc. (3)

The edge enhancement mechanism used the Canny operator to
extract the edge information from each channel feature map. The
edge enhancement matrix is formed through superposition and
normalization. The edge information of the original feature map
is enhanced through matrix multiplication. Then, the squeeze
and excitation phases commenced. Refer to Section III-C for
the calculation process of the Canny operator.

C. Edge Detection-Based GCN

GCN utilizes the graph structure and aggregates node infor-
mation from the neighborhoods [64]. Therefore, GCN performs
well in modeling long-range spatial relations [65].

The formula of graph convolution used in this article is defined
as follows:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W

)
(4)

where σ(·) denotes an activation function and Ã represents the
adjacency matrix, D̃ii =

∑
j Ãij .W is a layer-specific trainable

weight matrix and H(l) ∈ RN×D is the matrix of activations in

the lth layer. The edge detection-based GCN uses the Canny op-
erator to extract the edge information and construct the graphic
structure, allowing it to achieve a better feature representation.

The key of GCNs is to generate the adjacency matrix to input
tensor H ∈ RN×D. In the complex landscape, the road presents
a linear structure in the image; although the proportion is small,
the edge is relatively regular. The miningcatchment occupies a
small area in the image and has no stable shape. We believe
that for the type of multi size MLCs with irregular edges, edge
nodes contain more efficient information. The edge nodes can
highlight the characteristics of multiscale feature types from
the background information, thus, indicating the efficiency of
building edges between these nodes. The edge detection-based
GCN is shown in Fig. 7.

1) Graph Construction: The Canny operator is a commonly
used edge detection filter. The calculation process can be divided
into four stages:

a) Image filtering: First, the Canny operator uses a blur
filter to eliminate noise from the input image. Here we use a
Gaussian filter, and the Gaussian kernel size is set to 3 × 3

G (x, y) =
1

2πσ2
e−

x2+y2

2σ2 (5)

where σ represents the parameter of the Gaussian filter, which
controls the blurring degree of the image (set to 1).

b) Image gradient calculation: The amplitude and direc-
tion of the image gradient should be calculated. We use the Sobel
filter with a kernel size of 3 × 3 decomposed into two filters.
The first kernel is used to extract the horizontal gradient and
the second kernel is used to extract the vertical gradient. The
gradient size G can be calculated as follows:

G =
√

G2
x +G2

y. (6)

The template of the Sobel operator gradient calculation oper-
ator is as follows:

Gx=

⎡
⎣ −1 0 1

−2 0 2
−1 0 1

⎤
⎦ (7)

Gy=

⎡
⎣ 1 2 1

0 0 0
−1 −2 −1

⎤
⎦ . (8)
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Fig. 7. Edge detection-based GCN.

The gradient direction calculation formula is as follows:

θ = arctan

(
Gy

Gx

)
. (9)

c) Nonmaximum suppression (NMS): Edge refinement is
performed using the NMS method, ensuring that each edge is a
single pixel in width. This step needs to lead to the detection of 8
neighborhoods. If a pixel has the maximum intensity compared
to its neighbor, it is the local maximum, and the pixel is retained.
First, we create the kernel NMS0◦ in 0° direction with a size of
3 × 3 and constructed the direction matrix R(θ)

NMS0◦ =

⎡
⎣ 0 0 0

0 1 −1
0 0 0

⎤
⎦ (10)

R (θ) =

[
cos θ − sin θ
sin θ cos θ

]
. (11)

d) Checking and connecting edges: Using the double
threshold method to select the edge points after NMS. Pixel
whose gradient amplitude is lower than the low threshold is
selected as nonedge points. Pixels whose gradient amplitude
is higher than the high threshold are selected as edge points.
Pixel whose gradient amplitude is lower than the high threshold
and higher than the low threshold are selected as candidate edge
points. When the candidate edge point is directly connected with
the edge points, it is considered a part of the edge; otherwise this
point will be discarded.

Therefore, the adjacency matrix of graph convolution can be
calculated by the following:

Ã = Softmax (F (i)) (12)

where F represents the Canny operator, and i represents the
original image.

2) Graph Convolution: After using the Canny operator to
generate the adjacency matrix, the fully connected graph was
generated and then the extracted multiscale features after edge
enhanced channel attention were inputted into the GCN. Finally,
we inputted the designed classifier and obtained the classifi-
cation results. The GCN should not be too deep; generally,
two to three layers were used. The GCN proposed in this

article uses a three-layer graph convolution. Compared with
the standard convolution, GCN can expand the receptive field,
obtain long-distance dependence relationships, and efficiently
exchange information in a larger range. Therefore, GCN has
better feature expression ability.

D. Classification

To effectively utilize the representative features, we carefully
designed the classification structure. The classification module
accepts feature maps from GCN. We use a 3 × 3 convolution
to reduce the number of channels while maintaining the feature
map constant. Further, we reduce the size of the feature map
by using maximum pooling, with each convolution layer being
followed by the BN layer and ReLU activation function. To
reduce the size of the signature map to 1, we stacked three
convolution pooling structures. Ultimately, a 1 × 1 convolution
layer was used to classify of land cover in mining areas.

IV. RESULTS

A. Experimental Settings

1) Machine Configuration: The experiment was under the
Centos7 system. The scene classification algorithms were im-
plemented by using the PyTorch framework. The hardware
configuration had 128 GB, the GPU was RTX2080ti with 11 GB
of memory, and the CPU was Inter Xeon(R) E5-2620 v4.

2) Parameter Optimization: At the beginning of the exper-
iment, the images were normalized. Using the accuracy of the
verification set to adjust parameters. We set the learning rate to
0.0001. The number of training samples in each batch was 64 or
32 for different algorithms. Each experimental training iteration
was 200 times. We used Cross Entropy as the loss function. Each
experiment was performed 5 times to obtain the average value.
In addition, the model with the best validation accuracy was the
optimal model and was saved. Fig. A1 shows the optimization
of the parameters of the selected algorithm.

3) Model Comparison: We conducted a comparative ex-
periment between the proposed ECA-GCN and other scene
classification models. Four classical CNN models VGGNet-16,
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ResNet-18, ResNet-101 and DenseNet-121 were used to con-
duct experiments on the CUG-MLCs dataset to provide bench-
mark results for subsequent studies. Based on classical networks,
two attention mechanisms SE and CBAM, were used to add
the above four convolutional neural network models to form an
attention network for experiments. For the VGGNet-16 network,
SE and CBAM modules were respectively added before the first
full connection layer. For ResNet-18 and ResNet-101 networks,
the CBAM module was added to the last residual block, and
the SE module was added to the residual block located after the
second BN layer. For the DenseNet-121 network, SE and CBAM
modules will be added before the last full connection layer.

Data fusion is the current research hotspot in the field of
remote sensing. Therefore, based on the classical CNN, dual-
stream and three-stream fusion network experiments were car-
ried out. For the dual-stream network, the first branch inputted
a multispectral image, while the second branch inputted DEM.
For the three-stream network, the first branch inputted RGB, the
second branch inputted NIRRG, and the third branch inputted
DEM. Among them, VGGNet-16, ResNet-18, ResNet-101, and
DenseNet-121 were respectively used as backbone networks
for each branch, and the fusion mode of the feature cascade
was used for model building. Among them, the VGGNet-16
network performs data fusion before the last full connection
layer, ResNet-18 and ResNet-101 networks perform data fusion
after the first convolution layer, and the DenseNet-121 network
performs data fusion before the last full connection layer. Fur-
thermore, we selected some recent models such as ShuffleNet V2
[66], EfficientNet [67], CAD [46], MF2CNet [68], PDCNet [40],
GCSANet [48], and EMTCAL [57] to compare the effectiveness
of our proposed model.

We calculated the overall accuracy (OA), average accuracy
(AA), and Kappa values of the test set.

B. Results of Accuracy Assessment

Table IV shows the evaluation indicators of the CUG-MLCs
dataset. Among all models, the proposed model achieved an OA
of 66.60%, AA of 36.25%, and Kappa of 55.91%, the best perfor-
mance among the analyzed datasets on all evaluation indicators.
The results show the effectiveness of our proposed multiscale
and shallow feature fusion module, edge enhancement channel
attention module, and GCN.

1) RGB: Among the four classical convolutional neural net-
works, VGGNet-16 showed the best classification effect. It
achieves an OA of 57.65%, AA of 21.15%, and Kappa of
43.46%. VGGNet performed better on the CUG-MLCs dataset
than ResNet and DenseNet. This might be due to the obvious
imbalances between the categories of this dataset. In the mining
area scenario, the shallow features have a greater impact on the
classification of land cover categories in the mining area than
deep features. Therefore, when designing the network, consid-
ering the deep and shallow features will effectively improve the
classification accuracy. Fig. A2 shows the confusion matrix.

2) NIRRG: Among the four classical CNNs, VGGNet-16
showed the best classification effect. It achieved an OA of

60.74%, AA of 26.52%, and Kappa of 48.53%. Compared with
the RGB band, the OA and Kappa increased by 3.09% and
5.07%, respectively. We hypothesize this is because the NIR
band has advantages in reflecting the difference of infrared
characteristics reflected or radiated by vegetation and other
ground objects.

3) Five Channels: The classical CNN with the same network
structure only changes the input data from 3-band to 5-band. Ac-
cording to our observations, the OA of VGGNet-16, ResNet-18,
ResNet-101, and DenseNet-121 increased by 4.00%, 10.59%,
6.58%, and 6.83%, respectively. It can be concluded that the
network with the same structure can effectively improve the
model accuracy by adding data sources, that is, adding NIR and
DEM bands to their RGB basis.

The dynamic selection of feature information was achieved
through the attention mechanism. The SE module focuses on the
relationship between different channels and aids the model in au-
tomatically learning the importance of different channel charac-
teristics. After the channel attention module, the CBAM module
was connected to the spatial attention module to achieve the dual
mechanism of channel attention and spatial attention. At this
point, the CBAM module was no longer using a single maximum
pooling or average pooling, but rather the addition or stacking of
maximum pooling and average pooling. Among them, the chan-
nel attention modules were added and the spatial attention mod-
ules were stacked. Two attention mechanisms were added to the
four networks and compared with the source network. Compared
with VGGNet-16, VGGNet-16-SE, and VGGNet-16-CBAM led
to no significant accuracy improvement. Alternatively, the OA
of ResNet-18-SE and ResNet-18-CBAM increased by 1.69%
and 2.61%, while the Kappa increased by 1.59% and 3.08%,
respectively, when compared to ResNet-18. Compared with
ResNet-101, the OA of ResNet-101-SE and ResNet-101-CBAM
increased by 1.2% and 1.32%, while Kappa increased by 1.25%
and 1.09%, respectively. Compared with DenseNet-121, the OA
of DenseNet-121-SE and DenseNet-121-CBAM increased by
0.99% and 0.7%, respectively, while their Kappa increased by
1.18% and 0.43%, respectively. This indicates that except for the
VGGNet-16, the classification accuracy of other networks was
improved after adding the SE and CBAM modules, with the most
significant improvements in accuracy being associated with the
ResNet-18 network. Alternatively, the accuracy of VGGNet-16
has not been improved. We hypothesize that the model was
already in the over fitting state before adding attention; therefore,
adding these parameters exacerbated the over fitting problem,
resulting in no improvement in performance.

The dual-stream network uses different branches to extract
the characteristics of different bands and obtain difference in-
formation. Feature fusion was used to realize feature comple-
mentation, with each branch of the four dual-stream networks
using a network with the same structure for feature extraction.
Compared with the network in which only RGB band images
were inputted, the accuracy of the dual-stream VGGNet-16 has
not been significantly improved. Alternatively, the OA of dual-
stream ResNet-18 increased by 10.39% and Kappa increased
by 14.51%. The OA of dual-stream ResNet-101 increased by
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TABLE IV
QUANTITATIVE COMPARISON OF DIFFERENT NETWORKS USING CUG-MLCS DATASETS

6.71%, and Kappa increased by 11.63%. The OA of dual-stream
DenseNet-121 increased by 6.64% and Kappa increased by
9.63%. Compared with the single branch network of input five
bands, the OA of VGGNet-16 was 4.96% higher than that of
the dual-stream VGGNet-16. The OA of ResNet-18 was 0.2%
higher than that of dual-stream ResNet-18. The OA of dual-
stream ResNet-101 was 0.13% higher than that of ResNet-101.
The OA of DenseNet-121 was 0.19% higher than that of the dual-
stream DenseNet-121. The fusion strategy of the dual-stream
network we used was simple channel superposition. It can be
seen that the effect of directly inputting 5-band images is better
than that of double branches. This may be because different data
bands have different importance for land cover classification in
the mining area. The fusion method of channel superposition is
equivalent to giving the same weight to the features extracted

by the two branches, which makes the classification effect not
ideal.

Identical to the dual-stream network, the three-stream net-
work uses different branches to extract differential information.
Compared with the network in which only RGB band images
were inputted, the accuracy of the three-stream VGGNet-16 was
not significantly improved. The OA of three-stream ResNet-18
increased by 7.18% and Kappa increased by 7.77%. The OA
of three-stream ResNet-101 increased by 4.89%, and Kappa
increased by 8.35%. The OA of three-stream DenseNet-121
increased by 3.33% and Kappa increased by 4.64%. Compared
with the dual-stream network, the accuracy of the three-stream
network has not been improved. We hypothesize that this is
because the three-stream network has a large number of low-
efficiency redundancy characteristics. Thus, to extract more
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representative features, inefficient features can be removed, or
efficient features can be enhanced.

Compared to the analyzed networks, the ECA-GCN proposed
in this article performed best. Compared with ShuffleNet V2,
the OA of ECA-GCN increased by 15.11% and its Kappa
increased by 23.13%. Compared with EfficientNet, the OA of
ECA-GCN increased by 14.53% and its Kappa increased by
22.48%. Compared with CAD, the OA of ECA-GCN increased
by 7.55%, and its Kappa increased by 10.6%. Compared with
MF2CNet, the OA of ECA-GCN increased by 9.31%, and its
Kappa increased by 13.14%. Compared with PDCNet, the OA
of ECA-GCN increased by 0.87% and its Kappa increased by
1.29%. Compared with GCSANet, the OA of ECA-GCN in-
creased by 7.29% and its Kappa increased by 10.82%. Compared
with EMTCAL, the OA of ECA-GCN increased by 13.74% and
its Kappa increased by 19.07%. We verified the effectiveness of
the GCN network through ablation experiments and concluded
that: Compared with ECA-GCN(without GCN), the OA of ECA-
GCN increased by 7.62%, and its Kappa increased by 10.21%.
This indicates the effectiveness of the ECA-GCN proposed
in this article. We used multiscale and shallow feature fusion
to obtain multiscale information on deep as well as shallow
features and filtered important features using the edge enhanced
channel attention. The GCN was constructed on the relation-
ship of image edge nodes. Finally, the designed classifier was
inputted for classification. ECA-GCN can effectively improve
the classification accuracy of difficult land cover samples of the
mining area, such as concentrator, dump, paddy field, mining
catchment, asphalt road, and dirt road. As shown in Fig. A3,
the accuracy of ECA-GCN in dryland was 91%, the accuracy
for the pond was 87%, and the accuracy of nursery and orchard
was 63%. Competitive classification accuracy was maintained
in the land cover categories of a large number of mining areas.
The accuracy of ECA-GCN in concentrator was 54%, while
the accuracies for dump, paddy field, and rural settlement were
10%, 38%, and 55%, respectively. Our structure effectively
extracts the edge information and improves the classification
effect of a few categories. However, there are some categories,
for which the performance of ECA-GCN remains unsatisfactory.
For example, the greenhouse was wrongly divided into dry land
and rural settlement. Cement road was wrongly classified as
dry land. Urban land was wrongly divided into dry land and
rural settlement. This is due to the small number of samples and
the extremely unbalanced categories. Conversely, these parts
of the mining area represent small land cover areas with vast
background information. Other construction land was wrongly
classified as rural settlements. This is due to the high similarity
of the characteristics of these two types. Although the color
characteristics are relatively different, other characteristics are
relatively consistent, thus, allowing for misclassifications.

In order to further analyze the classification of MLCs under
complex landscapes, we select some test set samples (such
as asphaltroad, miningcatchment, and dump) and output the
classification probability of each category. Refer to Table V for
details, where the red box in the sample image is the general
range of MLCs. In addition to the asphaltroad, the first image

also contains dryland, havewoodland, cementroad, and other
categories; however, the area of the asphaltroad is relatively
small. However, from the classification probability, we can see
that the ECA-GCN can effectively enhance the features of the
asphaltroad and improve classification accuracy. In addition to
the miningcatchment, the second image also contains stope,
dump and other categories. From the perspective of classification
probability and classification results, it is not ideal. This may
be because the miningcatchment is not only small in area, but
also has similar characteristics with other categories (such as
concentrator, fallowland, etc.). We believe that we can try to
add geoscientific prior knowledge to the network in the future
to improve the classification accuracy of difficult-to-distinguish
samples. The third image includes stressvegetation, cementroad,
and other categories in addition to dump. The dump is very
similar to the background, and the edge is very irregular. It can
also be proved from the classification probability that feature
extraction is difficult. However, the classification of the ECA-
GCN is correct, which proves the effectiveness and pertinence
of the algorithm.

V. DISCUSSIONS

This section discusses the ablation experiments of different
modules of the proposed ECA-GCN to verify the effectiveness
of the proposed modules. The limitations of the CUG-MLCs
dataset established in this article are also discussed.

A. Effectiveness of the Multiscale and Shallow Feature Fusion

The earliest multiscale module should be the inception mod-
ule [69]. There are two main methods to improve network
performance, increasing the width and/or depth of the network.
However, the deeper and wider the network, the larger the num-
ber of parameters. When the dataset size is small, the network
is easy to over fit. Alternatively, when the network is deep, it
is easy to cause gradient disappearance and gradient explosion.
This restricts the development of CNNs. The inception module
solves these problems well as there are two main contributors
to the inception: One is to use 1 × 1 convolution to increase
and reduce dimensions; the other is to simultaneously perform
convolution re-polymerization on multiple dimensions. Draw-
ing on this idea, we refer to and design the effectiveness of the
multiscale and shallow feature fusion module described in this
article.

To verify the effectiveness of the multiscale and shallow
feature fusion module, we used single branch, double branch,
and four branch structures to carry out experiments. Wherein
the single branch was composed of two convolution layers with
a size of 3 × 3 and one maximum pooling layer, the first branch
of the double branch consisted of two convolution layers with a
size of 3 × 3 and one maximum pooling layer, while the second
branch consisted of a convolution layer with a size of 1 × 1
convolution layer and one maximum pooling layer. The BN layer
and ReLU activation function were added after each convolution
layer.
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TABLE V
CLASSIFICATION PROBABILITY OF EACH CATEGORY AND RESULT OF SAMPLE IMAGE

TABLE VI
EXPERIMENTS ON DIFFERENT BRANCHES OF MULTISCALE AND SHALLOW FEATURE FUSION MODULE

As shown in Table VI the four-branch structure of the multi-
scale and shallow feature fusion proposed in this article exhibited
the best classification effect, which was characterized by 0.74%
higher OA than that of the single branch and 0.86% higher
OA than that of the double branch. This strongly proves that
convolution kernels of different sizes acquire multiscale features
from different scales, which is helpful for multiscale object
recognition.

B. Effectiveness of the Edge Enhanced Channel Attention

To verify the effectiveness of the edge enhanced channel
attention, we compared the designed module with the original
SE attention and channel shuffling methods.

Channel shuffle [70] is used to solve the problem of accuracy
loss caused by full constraints between channels induced by
point-by-point convolution in small networks. Channel shuffle
effectively strengthens the information flow between channel
groups and the information representation ability. This in turn
enhances the channel representation capability from another
perspective. Therefore, we used it as a comparison strategy for
experiments.

As shown in Table VII the edge enhanced channel attention
proposed in this article has the best classification effect, showing
a 1.1%, 0.63%, and 1.1% increase in OA when compared to no
enhancement strategy, the use of SE attention, and the use of
channel shuffle. This shows that the feature map is enhanced
by the edge enhancement strategy. Fig. 8 shows the attention
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TABLE VII
EXPERIMENTS OF DIFFERENT ENHANCEMENT STRATEGIES

Fig. 8. Original images and the edge enhanced channel attention maps derived
from Grad-CAM++.

maps of edge enhancement channel attention. We choose three
scenarios: asphaltroad, ruralsettlement, and dump. It can be
seen that the edge enhancement channel attention effectively
captures MLCs while enhancing edge features. Thus, we showed
that the method of edge enhanced channel attention is effective
in strengthening the characteristics of land cover categories in
mining areas with multi size and irregular edges.

C. Limitations of CUG-MLCs Dataset

Our CUG-MLCs dataset has some limitations. As exposed by
the aforementioned experiments, although the proposed ECA-
GCN performs best in OA, AA, and Kappa, the accuracy of all
models is poor. From a dataset perspective, we identified three
reasons that limit the accuracy of the model.

1) Visual Interpretation Deviation: Before the dataset was
established in this article, labels should be given according to a
representative and significant land cover types. Due to the use
of large images, we have divided several areas, set up a team to
interpret by block, and provided manual interpretations, which
are associated with potential errors. Therefore, the accuracy of
land cover types in some mining areas is affected.

2) Dataset Size: Because dataset production is laborious and
time-consuming, we only used one remote sensing image and
the corresponding DEM for dataset construction. This inevitably
leads to a small dataset. However, due to the characteristics of
the mining scene itself, the number of categories is extremely
unbalanced, which also limits the capacity to improve the model
accuracy.

3) Strong Homogeneity: In the mining area scenario, some
categories are highly homogeneous, such as dump and fallow-
land. In the case of consistent visual features, targeted modules

must be designed to effectively improve classification accuracy,
which is part of our future work.

To address the above limitations, we will make the following
improvements:

a) Dataset improvement: We will use ZY-3 images in dif-
ferent time phases and GF-7 images in the study area to expand
the dataset. In addition, there are polymetallic mining areas in
the southeast of Hubei Province and phosphate mining areas in
the west of Hubei Province, which will be integrated into the
scope of our research.

b) Model improvement: We will use a multibranch fu-
sion strategy for experiments, thus, exploring the possibility
of using multisource data to improve the accuracy of MLC
classification. An important strategy to improve class imbal-
ance is data augmentation, in addition to translation, rotation,
and other strategies. As GAN is a hot topic at the moment,
we will consider using GAN to expand the small number of
categories and improve classification accuracy. In order to avoid
excessive computation, the GCN is behind the feature extraction
structure. We will study the influence of GCN location on model
accuracy.

VI. CONCLUSION

Due to the urgent demand for semantic-level understanding
of MLCs at the fine-scale, the study constructed a multimodal
dataset named CUG-MLCs. In view of the multisize and irreg-
ular edge of the MLCs, we proposed an ECA-GCN with the
following key points.

1) Multiscale and shallow feature fusion module, which was
used to extract multiscale information and fuse the multi-
scale convolutional features with the shallow features.

2) Furthermore, the edge enhanced channel attention was
used to select effective channels after a spatial edge feature
enhancement.

3) Lastly, the edge detection-based GCN was used to con-
struct an adjacency matrix that uses edge node relation-
ships and learns the global contextual information.

Our results indicate that the ECA-GCN constructed in this
study achieved an OA of 66.60%, AA of 36.25%, and Kappa
of 55.91% on the CUG-MLCs dataset, and outperformed the
classical CNN and recent networks. Thus, the proposed model is
adequate for the fine classification of complex landscapes. In the
future, on one hand, we will aim to improve the dataset. On the
other hand, we will focus on multimodal and muti-branch feature
learning and fusion, class imbalance learning, and multilabel
scene classification.
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APPENDIX

Fig. A1. Optimization of the parameters of the selected algorithm. VGGNet-16, ResNet-18, ResNet-101, DenseNet-121, EMTCAL, and ECA-GCN were
assessed.

Fig. A2. VGGNet-16, ResNet-18, ResNet-101, DenseNet-121 confusion matrix (image type: RGB and five channels).
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Fig. A3. ShuffleNet V2, EfficientNet, CAD, MF2CNet, PDCNet, GCSANet, EMTCAL, ECA-GCN(without GCN) and ECA-GCN Confusion Matrix (image
type: five channels).
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