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Abstract—Integrating superpixel segmentation into convolu-
tional neural networks is known to be effective in enhancing the
accuracy of land-cover classification. However, most of existing
methods accomplish such integration by focusing on the develop-
ment of new network architectures, which suffer from several flaws:
conflicts between general superpixels and semantic labels introduce
noise into the training, especially at object boundaries; absence
of training guidance for superpixels leads to ineffective regional
feature learning; and unnecessary superpixel segmentation in the
testing stage not only increases the computational burden but also
incurs jagged edges. In this study, we propose a novel semantic-
aware region (SARI) loss to guide the effective learning of regional
features with superpixels for accurate land-cover classification. The
key idea of the proposed method is to reduce the feature variance
inside and between homogeneous superpixels while enlarging fea-
ture discrepancy between heterogeneous ones. The SARI loss is
thus designed with three subparts, including superpixel variance
loss, intraclass similarity loss and interclass distance loss. We also
develop semantic superpixels to assist in the network training with
SARI loss while overcoming the limitations of general superpixels.
Extensive experiments on two challenging datasets demonstrate
that the SARI loss can facilitate regional feature learning, achieving
state-of-the-art performance with mIoU scores of around 97.11%
and 73.99% on Gaofen Image dataset and DeepGlobe dataset,
respectively.

Index Terms—Deep learning, land-cover classification, region
loss, remote sensing.

I. INTRODUCTION

LAND-COVER classification of remote sensing images is of
considerable significance to a wide range of applications,

such as precision agriculture [1], [2], urban planning [1], [3],
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and environmental monitoring [4]. With the rapid development
of new sensors and data acquisition technologies, the spatial
resolution of remote sensing images has significantly improved,
opening up new opportunities to obtain fine-level land covers.
However, the huge details contained in a remote sensing im-
age hamper the extraction of useful information relevant to
land-cover classification [5]. Meanwhile, remote sensing images
commonly cover a large spatial extent, where objects from
different areas may have considerable diversities, bringing extra
difficulties to accurate and efficient land-cover classification [6].

Land-cover classification is typically regarded as a problem
of semantic segmentation, with the goal to assign each pixel in
an image with predefined land-cover categories, such as forest
and river. In recent years, the performance of semantic segmen-
tation has been significantly improved through deep learning-
based methods, benefiting from the powerful hierarchical feature
representation ability of convolutional neural networks (Con-
vNets/CNNs). In particular, following the first end-to-end fully
convolutional network (FCN) [7], many FCN models with newly
developed learning tools have been presented to further promote
the performance of semantic segmentation. For example, mul-
tiscale feature fusion modules, such as atrous spatial pyramid
pooling (ASPP) [8] and denseASPP [9], address the problem
of large scale variation of objects in both natural and remote
sensing images, and highly contribute to the improvement of
segmentation accuracy. However, the huge volume of details
and complex object spectrum of remote sensing images bring
more intraclass variances and interclass similarities than natural
images. These factors confuse the general models devised for
natural image semantic segmentation, resulting in unexpected
land-cover classification results. Therefore, numerous methods
have attempted to enhance the network’s ability in intra-class
unification and interclass discrimination for remote sensing
images.

It is widely regarded that visually consistent objects are easy
to classify while visually inconsistent objects (e.g., different
parts of an object with diverse textures) tend to mislead the
network’s recognition. However, the fact is that misclassifica-
tion is also frequently found in the regions with high visual
consistency. Specifically, two image patches that have similar
appearance/texture and belong to the same object or land-cover
category can derive very different convolutional features and
are thus incorrectly segmented into different classes. This phe-
nomenon indicates that CNNs have limitations in preserving
region consistency during feature extraction and propagation.
In addressing this technical hurdle of CNNs, a natural choice
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is to use the superpixel segmentation, which can group visually
similar pixels into regions. Early methods mainly use the super-
pixel segmentation to simplify the pixel-wise classification [10],
[11]. Modern end-to-end CNN-based methods prefer to deploy
superpixel segmentation sub-networks to obtain the similarity
between pixels, and thus, enhance the learning of contextual
information for coherent semantic prediction [12], [13], [14]. In
such a network architecture, superpixel segmentation must be
performed in both training and prediction stages. However, we
argue that superpixel segmentation is not necessary in the pre-
diction stage, as it not only reduces the computation efficiency
but also leads to jagged edges.

In the search for more powerful feature representations that
can improve semantic segmentation, extensive studies focused
on the development of new neural network architectures. Fol-
lowing this trend, superpixel segmentation was widely adopted
and devised as a part of the network structure. However, despite
improvements observed in land-cover classification, the lack of
task-specific loss function for superpixel learning still limits the
performance and efficiency of existing models. Loss functions
guide the network learning during training. Well-designed net-
work structures can bring benefits to the information extraction,
while the loss function determines whether and how the informa-
tion are learned and used. With the aim to address certain issues
that cannot be circumvented by simply changing the structure
of networks, task-specific loss functions have gained interest.
For example, the weighted cross entropy and focal loss [15] are
developed to alleviate the effect of extreme class imbalance on
model training, and the tracing loss [16] and edge-aware (EA)
loss [17] are presented to guide the network in distinguishing the
edge and nonedge pixels. These loss functions are demonstrated
to be highly effective in boosting the performance of a given
model. Unfortunately, most of existing models presented for the
land-cover classification are still trained by the commonly used
cross entropy (CE) loss, which treats each pixel independently
(i.e., calculates loss pixel by pixel). The CE loss is thus inef-
fective in guiding the network to learn the relationship between
neighboring pixels [18].

On the basis of the aforementioned observation, we are
motivated to study a different aspect of the network design
for superpixel-enhanced land-cover classification, that is, the
semantic-aware region (SARI) loss guidance. Our goal is to
reduce regional representation variance in semantic patches
under the training guidance of SARI loss. To define the semantic
patches, we derive semantic superpixels from training images
with the assistance of corresponding semantic annotations
instead of adding an extra superpixel learning branch. In this
way, compared with general superpixels, semantic ones fit closer
to the boundaries of ground objects with higher internal semantic
uniformity, and are thus more compatible with the semantic
segmentation for improving local prediction coherence. In the
training stage, the semantic superpixels serve as supervision
signals that guide a model to reduce the representation variance
of features in each superpixel. The aim is to enhance the regional
representation coherence and obtain consistent classification
prediction for visually similar pixels that belong to the same
object or category. Such strategy of strengthening regional

consistency via a task-specific loss function frees the model
from the reliance on additional superpixels at the testing phase,
and therefore improves the accuracy and efficiency of the
inference. Apart from serving as local consistency constraints,
semantic superpixels can further benefit long-range information
learning from the following two aspects:

1) Improving feature similarity between superpixels that
share the same categories (homogeneous superpixels);

2) Enlarging feature discrepancy between superpixels that
fall into different classes (heterogeneous superpixels).

Supported by the intra- and intersuperpixel constraints, the
proposed SARI loss can teach a model with a comprehensive
consideration of both regional and long-range relationships for
high inference coherence in land-cover classification.

The main contributions of this study are summarized as
follows:

1) We propose a SARI loss based on tailored semantic su-
perpixels to improve the local classification consistency
by reducing the representation variance in each super-
pixel, and further enhance the long-range consistency
and discrimination between semantic regions by imposing
intersuperpixel constraints.

2) We implement the proposed method with a superpixel-
supervised encode–decoder network (SPSNet) that effec-
tively aggregates multiscale features to exert the power of
the SARI loss in guiding the learning of representative and
semantically consistent features in land-cover classifica-
tion.

3) Under the guidance of SARI loss, the SPSNet achieves
state-of-the-art performance on two challenging land-
cover classification benchmarks, Gaofen Image dataset
(GID) [5] and DeepGlobe dataset [19], with mIoU scores
of around 97.11% and 73.99%, respectively.

II. RELATED WORK

A. Land-Cover Classification

The goal of land-cover classification is to assign land-
cover categories to each pixel in a remote sensing image. Ini-
tially, land-cover classifiers are dominated by traditional super-
vised machine learning methods, including parametric classi-
fiers (e.g., maximum-likelihood classifiers [20]), nonparametric
classifiers (e.g., decision trees [21], support vector machines
(SVMs) [22], and artificial neural networks (ANNs) [23]), and
ensemble methods (e.g., random forests [24] and boosting [25]).
Traditional classifiers mainly utilize the low-level spectral, tex-
tural and/or shape features extracted from local pixels to interpret
land-cover types in a remote sensing image [11]. In addition,
the Markov random fields (MRFs) and conditional random
fields (CRFs) are also used to refine classification results [11].
However, traditional methods relying on low-level cues have
difficulties in capturing the contextual information and spatial
relationship of ground objects [26], and thus, their performance
is severely limited [27].

Recently, deep learning has made progress in semantic seg-
mentation (i.e., pixel-wise classification) tasks, and many deep
CNNs have reported impressive results on natural image parsing.
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Compared with traditional handcrafted feature-based methods,
CNNs are more capable of hierarchical feature abstraction and
high-level semantic information extraction. In particular, the
development of the first end-to-end FCN brings semantic seg-
mentation into a new era. Compared with traditional methods,
the FCN can generate pixel-wise semantic labeling in an end-
to-end manner, without the utilization of additional classifiers.
However, the initial version of the FCN suffers from two prob-
lems, namely, the unbalanced segmentation quality for multi-
scale objects (due to the fixed receptive field) and significant
detail loss (due to down-sampling). As a result, many learning
techniques have been continuously developed to tackle the afore-
mentioned two problems. For example, U-Net [28] introduces
the encoder–decoder structure with skip connections to merge
low-level details and high-level semantic information, and thus,
multiscale features expressed in multiple convolution layers are
fused to improve the multiscale object segmentation. For large
objects, better segmentation is achieved by using dilated convo-
lution that enlarges the receptive field in DeepLabv1 [29] and
dilated residual network (DRN) [30]. Later, the spatial pyramid
pooling (SPP) module [31] was proposed to provide multiple
effective receptive fields, and embedding its variants into the
encoder–decoder framework becomes a common solution for
multiscale context capturing [32], [33]. For refining boundary
details during segmentation, the discriminative feature network
(DFN) [34] combines boundary detection subnetworks with
semantic segmentation to amplify the distinction of features and
EaNet [17] distinguishes the edge and nonedge pixels under the
guidance of an edge-aware (EA) loss.

Along with the rapid development of deep learning-based
methods for semantic segmentation of natural images, interest is
growing in designing deep models for land-cover classification
of remote sensing images. However, the complex spectrum and
irregular boundaries of ground objects in remote sensing images
pose a considerable challenge to the robust learning of ground
objects for land-cover classification [35]. Contextual informa-
tion refers to the relationship between pixels and objects [36],
which serves as a significant cue for correct recognition of
ground objects and coherent labeling of land-cover categories.
Many methods attempted to excavate the rich contextual infor-
mation to build relationships between pixels with local and long-
range dependencies [37]. For instance, Zhao et al. [26] applied
the object-based CRF to strengthen the contextual information
of the raw semantic predictions acquired by a CNN. ScasNet [38]
aggregates global-to-local contexts captured by the CNN in
a self-cascaded manner. The ERN [39] introduces the spatial
boundary context to alleviate the ambiguity resulting from the
interclass similarity and shadows. RA-FCN [37] utilizes spatial
and channel relation modules to learn and reason the global
relationships between similar objects. To enrich contextual in-
formation in HRNet [40], Zhang et al. [41] modeled the long-
range spatial correlations among the low-resolution features by
using a spatial reasoning module and aggregated local contexts
based on high-resolution features via an adaptive spatial pooling
module. For the same purpose, HRCNet [42] obtains global
contextual information through a light-weight dual attention

module and fuses the multiscale contextual information by a
feature enhancement pyramid structure.

B. Superpixel-Enhanced Semantic Segmentation

Superpixels are oversegmentation of images, which are gener-
ated by simply utilizing low-level image features to group pixels
into perceptually meaningful regions [43], [44]. By combining
the advantages of perceptual uniformity [45] and contour adher-
ence [46], superpixels offer a more natural representation than
individual image pixels [47]. The merits of superpixels have
been extensively explored in diverse vision tasks, such as object
detection [48], object tracking [49], optical flow estimation [50],
and 3-D reconstruction [51].

In the semantic segmentation, many early methods directly
replaced pixel-wise classification with a superpixel-based one to
simplify and accelerate the classification [10], [11]. For instance,
for superpixel-wise classification, the zoom-out network [52]
first groups the generated superpixels into regions at different
levels, and then, extracts multiscale features from local to global
zoom-out regions. This approach avoids complex and expensive
pixel-wise inference. Gadde et al. [53] adopted a bilateral incep-
tion (BI) module to perform convolution over superpixels and
implements a direct long-range edge-aware inference between
superpixels. The BI module provides an efficient integration
of superpixels into semantic segmentation, and is thus widely
adopted for a convenient superpixel-wise semantic segmenta-
tion, like in SEAL [54] and SSN [44].

Recently, the efficiency and accuracy of semantic segmen-
tation has been significantly promoted by deep learning. The
modern FCNs can realize an efficient end-to-end pixel-wise
semantic prediction without using superpixels as the basic seg-
mentation units. However, the local nature of the convolution
of deep neural networks causes difficulties in capturing con-
textual information across large regions, leading to unexpected
segmentation results (e.g., fragmented segmentation inside an
object and blurry boundary). In remedying this deficiency of
deep neural networks, superpixel segmentation has an unpar-
alleled merit of semantic consistency preservation for visu-
ally consistent image regions. Thus, superpixel segmentation
is often combined with deep neural networks for enhanced
semantic segmentation. For instance, SDNF [12] uses an extra
network branch to generate superpixels, which are then used to
refine edges and enhance the classification consistency within
classes. Inspired by SEAL [54], SDNF additionally designs a
loss function to simultaneously guide the training of superpixel
segmentation and superpixel-enhanced semantic segmentation.
However, their loss function only pays attention to the pixels
inside each superpixel and on the boundaries. Xu et al. [13]
refined segmentation edges by using superpixels fine-tuned from
pretrained models and adopted the logit consistency module to
guarantee the classification consistency. Ouyang and Li [14]
appended a graph convolutional neural subnetwork (GCN) to
a CNN to construct object-level relationships between super-
pixels, bringing richer contextual information and finer edge
details. In these methods, superpixels are used in subnetworks



4142 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 1. Feature comparison between congeneric pixels with visual consistency but different predictions. In the similarity maps in column (e), the warmer the
color, the more similar are the features. Column (e) reveals the feature difference between the pixels of interest, which provides an observation on that why
misclassification happens. Columns (f)–(h) indicate that superpixels can group visually similar pixels into regions and have the potential to improve the land-cover
classification results.

and play an indispensable role in the testing stage. Thus, both
the generation and exploitation of superpixels in the prediction
phase reduce the inference efficiency, and the poorly performed
superpixels possibly create jagged edges in predictions dur-
ing edge refinement. Meanwhile, given that limited semantic
information is considered during superpixel segmentation, the
superpixels obtained from complex remote sensing images using
these methods are often unsatisfactory and adversely affect both
the training and the testing stage. To overcome such weakness,
we propose the high-quality semantic superpixels and adopt
them only in the loss function to effectively guide the network
training rather than in a subnetwork. As a result, our network
is freed from reliance on superpixels in the prediction stage,
accelerating the inference and preventing classification noises
caused by low-quality superpixels.

III. METHODOLOGY

A. Our Observation and Motivation

In land-cover classification, most of existing methods mainly
focus on tackling segmentation fragments caused by texture
diversity of large ground objects [26], [36], [38], or reducing
the misclassification resulting from the confusing appearance of
different categories [12], [36], [37]. However, misclassification
is also frequently observed in visually consistent regions that are
intuitively easy to interpret, as illustrated in Fig. 1.

As shown by the cross marks in the first row of Fig. 1(c),
pixels 1 and 2 are inside a region with a highly consistent texture
reflecting water category, but pixel 2 is incorrectly predicted
as a built-up area by a commonly used semantic segmentation
network, i.e., DeepLabv3+ [33]. Similar cases can also be found
in the third row of Fig. 1(c), where pixel 3 is also exceptionally
misclassified. To explore the reason for the misclassifications,
we select two reference images with good prediction results, as
shown in the second and fourth rows of Fig. 1. We visualize

the feature maps (segmentation feature maps) derived from the
final convolution layer for all the input images, as shown in
Fig. 1(d). We then generate the feature similarity maps for the
pixels of interest, as shown in Fig. 1(e), by computing a cosine
similarity between the pixels of interest (pixels 1, 2, 3, and 4)
and each pixel in the feature maps of the corresponding reference
image. The computation of cosine similarity can be seen in [9].
In the similarity maps, the warmer the color, the higher the
feature similarity. For example, in the first row of Fig. 1(e),
the warm color in the bottom of the similarity map indicates that
the feature on pixel 1 has a high similarity with those extracted
from the pixels of the built-up area. However, in the second
row of Fig. 1(e), the similarity map shows a warmer color in
the bottom part than that in the first row, indicating a greater
similarity to the features extracted from the built-up area. As a
result, the network is confused by the extracted features, leading
to unstable prediction. From the similarity map in the fourth row
of Fig. 1(e), the situation for pixel 4 is similar to that of pixel
2. The extracted feature on pixel 4 has a very high similarity
with those extracted from the farmland and is thus incorrectly
predicted as farmland.

Compared with the CNN-based segmentation, the superpixel
segmentation relying on only low-level features is more capable
of grouping visually similar pixels into regions, as depicted
in Fig. 1(f)–(h). In particular, from the overlapped results in
Fig. 1(g) and (h), if the feature consistency can be preserved
for pixels inside a superpixel (visually consistent region), such
as pixels 1 and 2, and also 3 and 4, the prediction correctness
likewise improves. Previous works have tried to incorporate
superpixels into semantic segmentation networks to enhance
their regional feature learning ability. However, Fig. 1(h) shows
that the boundaries of superpixels and ground-truth classes may
have a misalignment, which can mislead the network training.
More importantly, the commonly used CE loss is unable to
provide the essential training guidance for learning superpixels.
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The CE loss is defined as follows:

LCE(y, ŷ) = − 1

N

N∑
n=1

C∑
c=1

yn,clogŷn,c (1)

where N denotes the number of pixels and C is the number
of classes, y ∈ {0, 1} and ŷ ∈ [0, 1] represent the ground-truth
label and prediction probability, respectively. If the nth pixel
belongs to the cth class, then yn,c equals to 1 and otherwise
0. ŷn,c is the probability of predicting the nth pixel as the cth
category.

The aforementioned formulation clearly shows that the CE
loss is designed and computed upon individual pixels without
considering the relations between pixels inside a region (e.g., in-
side a superpixel). The relations between object regions are
ignored. The CE loss encourages a high prediction score of the
ground-truth category for every pixel, implying that it separately
teaches the network to learn features for each individual pixel,
which lacks training guidance for the extraction of contextual
information [18]. In the absence of contextual constraints, net-
works are likely to encode very detailed but insignificant high-
frequency signals into high-dimensional feature space, causing
the locally similar appearances to produce very different feature
representations [55]. In Fig. 1, the features generated from the
pixels of interest provide such evidence.

According to the aforementioned analysis, to fully combine
the merits of superpixel segmentation and pixel-wise semantic
segmentation, it is essential to develop a specific region-level
loss to guide the exploitation of rich contextual information
implied in superpixels. According to Fig. 4, if the generated
superpixels are semantic-aware (each superpixel belongs to one
known class), then at least three kinds of contextual constraints
can be excavated from the segmentation feature maps:

1) pixels inside a superpixel should have similar feature
representation to guarantee the intra-class consistency in
a local region;

2) superpixels belonging to the same class should have sim-
ilar feature representations to guarantee the intraclass
consistency across a large region;

3) superpixels belonging to different classes should have di-
verse global feature representations to preserve interclass
discrimination.

With these considerations, we are ready to develop an SARI
loss function that can reduce the feature variance between pixels
inside a superpixel, or between superpixels of a same class,
while increasing the feature distance between those of different
classes. Moreover, to assist in training with SARI loss, the
superpixels can be generated for only the training images and
their semantics can be obtained from ground-truth labels. In the
following, we detail the generation of semantic superpixels and
the formulation of SARI loss.

B. Semantic Superpixel Pregeneration

As mentioned in Section II-B, existing methods deploy an
extra superpixel segmentation subnetwork for generating super-
pixels directly from the input images. As a result, the superpixel
segmentation has to be repeatedly performed during training

Fig. 2. Pregeneration of semantic superpixels. The ground-truth label is
embedded as a new channel into the original image, and then, segmented
into semantic superpixels by the LSC algorithm [45]. The generated semantic
superpixels have high interior visual and semantic consistency, and a strong
adherence to category boundaries.

and testing, bringing a heavy computation burden. Moreover, the
generated superpixels only rely on low-level visual cues without
considering the semantics offered by ground-truth labels, which
incurs the following two problems:

1) the superpixel boundary can deviate far from the object
class boundary;

2) adjacent objects of different classes with similar appear-
ances are probably mixed in one superpixel.

These contradictions between superpixel segmentation and
semantic segmentation can mislead the training of semantic
segmentation networks, resulting in incoherent predictions.

To address the aforementioned problems, we propose to
pregenerate semantic superpixels from training images with
the assistance of corresponding semantic annotations, instead
of redundantly producing low-quality general superpixels with
an extra subnetwork. The generated semantic superpixels can
maintain high consistency with the semantic labels, and are
thus more compatible with the semantic segmentation task for
improving the network training. Fig. 2 shows the pregeneration
of semantic superpixels.

As shown in Fig. 2, given a pair of training image and its
ground-truth label, we first append the latter to its corresponding
image as a new channel to integrate semantic information. Then,
the enhanced images are segmented into semantic superpixels
by the classic LSC [45] algorithm. Specifically, to better separate
different categories, the class difference in the ground-truth
labels is magnified by resampling the labels to values ranging
0–255 with unified intervals before insertion into the images.
For the same purpose, the resampled one-hot encoding labels
can serve as an alternative scheme, and the encoding presents
a superiority of an identical Euclidean distance between any
two classes. However, the one-hot encoding introduces excessive
dimensions into the image and significantly impairs the visual
consistency of the generated superpixels. Thus, this study adopts
the one-dimension resampled labels to enhance the semantic
information. Some examples of semantic superpixels are illus-
trated in Fig. 3.

Compared with the general superpixels in Fig. 3(c), the
semantic superpixels displayed in Fig. 3(b) manifest a high
interior semantic and visual coherence, and a strong adherence
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Fig. 3. Comparison between semantic superpixels and general superpixels.
Semantic superpixels in (b) present higher interior semantic consistency and
stronger adherence to object boundaries than the general superpixels in (c).

to category boundaries. To effectively unify the superpixel su-
pervision with semantic segmentation tasks, it is essential to
generate high-quality superpixels that can satisfactorily assist in
the training of a general semantic segmentation network with
our SARI loss.

C. SARI Loss

In this section, we elaborate our proposed SARI loss that
fully exploits the contextual constraints inside and between the
semantic superpixels without introducing extra computational
burden in the testing stage. Fig. 4 summarizes the principles
of the SARI loss, which imposes additional constraints on the
learned feature maps with three parts: a superpixel variance
loss Lvar, an intraclass similarity loss Lintra and an interclass
distance loss Linter. Lvar strengthens region consistency by re-
ducing feature variance between pixels inside each semantic
superpixel, while Lintra and Linter further use the long-range
relationship between superpixels. Specifically, Lintra encourages
the superpixels within the same class to have similar average
features, andLinter enlarges the discrepancy between the average
features of superpixels from different classes.

1) Superpixel Variance Loss: Taking advantage of the se-
mantic superpixels that group visually consistent pixels, we
design a superpixel variance loss Lvar to narrow the gap between
features of regionally consistent pixels. This loss is formulated
as follows:

Lvar =

√∑S

s=1

[
1

Ns

∑D

d=1

∑Ns

n=1

(
F d
s,n − F

d
s

)2
]

(2)

where F d
s,n and F

d
s refer to the individual and average feature

values of pixels in the sth semantic superpixel on thedth channel,
respectively. S, Ns, and D denote the number of superpixels,
pixels in the sth superpixel, and channels of the segmentation
feature map F, respectively. Notably, the feature variance of
each channel is calculated independently to avoid feature mixing
across channels.

By minimizing Lvar, the features inside each superpixel are
forced to be similar, which enhances regional feature consistency
and restrains the encoding of useless high-frequency signals

from images into the feature space. In practice, F
d
s is excluded

from the gradient descent during training to prevent gradient
vanishing.

2) Intraclass Similarity Loss: Although regional consistency
enforced by semantic superpixels enhances semantic segmenta-
tion within a superpixel, long-range contextual information is
also indispensable to make accurate predictions for land covers
with complex textures and multiple superpixels. However, the
local nature of convolution hinders the capture of contextual
information across large regions. Moreover, the appearance of
land-cover belonging to the same class can sometimes highly
differ, causing difficulties to extract representative features for
each category.

To address the issue, we propose an intraclass similarity loss
to impose longer-range constraints on features. The intraclass
similarity loss encourages higher feature similarities between
semantic superpixels of the same class. We define this loss
as

Lintra =
1

D

D∑
d=1

C∑
i=1

∑
si

∑
s′i �=si

∣∣∣F d
si
− F

d
s′i

∣∣∣ (3)

where F
d
si

and F
d
s′i

denote average pixel feature values of two
semantic superpixels from the same ith category on the dth
channel. D and C refer to the numbers of segmentation feature
map channels and classification categories, respectively.

By minimizing Lintra, the features of superpixels belonging
to the same class are forced to be similar and thus enhancing
long-range intraclass consistency.

3) Interclass Distance Loss: In addition to intraclass simi-
larity, weak interclass discrimination of different superpixels is
also a major challenge of land-cover classification. Misclassi-
fication can be caused by the common issue that pixels from
different categories have very similar appearances (e.g., forest
and farmland), as mentioned in Section III-A.

To tackle this problem, we design an interclass distance loss
to widen the difference of superpixels from different classes.
This loss is defined as follows:

Linter = −log

⎛
⎝ 1

D

D∑
d=1

C−1∑
i=1

C∑
j=i+1

∑
si

∑
sj

∣∣∣F d
si
− F

d
sj

∣∣∣
⎞
⎠ (4)

where F
d
si

and F
d
sj

represent the feature values of semantic
superpixels that belong to the ith and jth categories on the dth
channel, respectively. Each superpixel feature value is derived
from the average one of pixels inside each superpixel. D and
C are the numbers of feature map channels and classification
categories, respectively.

As revealed in (4), minimizing Linter encourages large
channel-wise feature discrepancies between different classes,
which largely alleviates the confusion of categories with similar
appearances. Moreover, considering the inevitably imperfect
annotations in the training subset, Linter can also mitigate the
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Fig. 4. Components of the SARI loss and their different functions.

Fig. 5. Overall architecture of the SPSNet.

mixing effect of Lvar on incorrectly annotated pixels within a
superpixel.

4) Final Loss Function: Finally, the overall loss function
combines the aforementioned SARI loss (superpixel variance
loss Lvar, intraclass similarity loss Lintra, and interclass dis-
tance loss Linter) with the original CE loss [see (1)] for
classification:

L = LCE + λ1Lvar + λ2Linter + λ3Lintra (5)

where weights λ1, λ2, and λ3 are set to 0.1, 0.1, and 50 in
practice.

Benefiting from both the intra- and intersuperpixel con-
straints, our SARI loss can fully exploit both regional and
long-range relationships for stronger intraclass coherence and
interclass discrimination, and thus, benefit the inference in land-
cover classification.

D. Network Architecture

To verify the effectiveness of the proposed SARI loss for
superpixel supervised land-cover classification, we implement it
with a commonly used semantic segmentation network, which is
similar to the classical DeepLabv3+ [33]. For convenience, we
term the network as superpixel supervised network (SPSNet)
and Fig. 5 shows its network architecture. The basic network
is deployed as an encoder–decoder structure with embedded
skip connections to reuse the low-level encoded features. In the
encoder of many classical networks, e.g., DeepLabv3+, dilated
convolutions are widely adopted to expand the receptive field for
observing large objects. However, the holes in standard dilated
convolutions cause disconnection and impairment of relations
between neighbouring features, which incur misclassification
or “gridding effect” for large objects [56]. The problem is
especially severe in classifying land covers, most of which
usually span large spatial areas (can be considered as extremely
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large objects in general semantic segmentation). To alleviate this
problem, we replace the standard dilated convolution with hybrid
dilated convolution (HDC) [56] in the backbone of SPSNet, as
indicated by the blue lines in Fig. 5.

SPSNet takes an optical remote sensing image as input and
outputs a semantic prediction map describing the pixel-wise
land-cover classification result. In addition, the pregenerated
semantic superpixels are input as a guidance only in the training
stage. The feature maps derived from the last layer of the decoder
(segmentation feature maps) are used for computing the SARI
loss, which then provides guidance for superpixel-enhanced
semantic learning of land-cover categories. By comparison, the
traditional CE loss offers supervision for the final semantic pre-
diction. Compared with existing superpixel-enhanced semantic
segmentation networks, the architecture of SPSNet is free from
the influence of low-quality superpixel segmentation during
training and testing. Moreover, SPSNet has no structures tailored
for the proposed SARI loss, which can be easily applied to other
networks for superpixel-enhanced semantic segmentation.

IV. EXPERIMENTS

To validate the effectiveness of the proposed SPSNet and
SARI loss, we conducted extensive experiments on two widely
used remote sensing land-cover datasets, that is, GID [5] and
DeepGlobe Land Cover Classification Challenge Dataset [19].
In the following sections, we detail the experimental settings,
results, and analysis.

A. Dataset and Implementation Details

1) Datasets: The following two widely used remote sensing
land-cover datasets are used.

a) Gaofen Image dataset (GID): The GID [5] is a large-
scale benchmark dataset for land-cover classification evaluation.
GID consists of 150 images with a spatial resolution of 4 m
acquired by Gaofen-2 (GF-2) satellite. Each image contains
6800× 7200 pixels covering 506 km2, and four bands covering
the spectral range of blue, green, red, and near-infrared. The
dataset is well annotated by five categories, namely, built-up,
farmland, forest, meadow, and water. Pixels belonging to other
categories or clutter regions are labeled as background and
excluded for both training and evaluation. Following previous
literature [57], we crop the images into patches of 1024× 1024
pixels without overlaps. After excluding images without valid
annotation, fivefold cross validation is applied for training and
accuracy assessment [57]. In detail, the GID dataset is parti-
tioned into five equally sized subsets, for which five models are
trained on different combinations. For each model, four subsets
are used for training and the remainder is used for evaluation.

b) DeepGlobe dataset: DeepGlobe [19] is an RGB dataset
consisting of 803 high-resolution satellite images. Each image
contains 2448× 2448 pixels labeled with seven land-cover cat-
egories, namely, urban land, agriculture land, rangeland, forest
land, water, barren land, and unknown. The last category is
not considered in the assessment but is learned by our network
during experiments. We adopt the same train/validation/test split

as [58] and [59] with 454, 207, and 142 images for training, val-
idation, and testing, respectively. In the training subset, images
are split into 768× 768 pixels with overlap.

Both GID and DeepGlobe datasets cover large areas with
various geographic distributions. GID and DeepGlobe datasets
collect images from both urban and rural areas, and cover areas
of over 5000 km2 and 1716.9 km2, respectively. The rich ground
object diversities in spectral responses and morphological struc-
tures present challenges in the feature generalization capacity of
networks.

2) Implementation Details: The proposed SPSNet is imple-
mented using the Pytorch framework and all the models are
trained and evaluated with two NVIDIA GTX 2080Ti GPUs,
each with a training batch size of four for both datasets. The
number of input channels is equal to the count of the image
bands, that is, four for the GID and three for the DeepGlobe
dataset. The base learning rate is set to 3e-4, and is then updated
with a cosine annealing policy for each batch following [60].
The learning rate restarts to the base at 5, 15, 35, and 75
epochs. In each restart cycle, the learning rate drops from the
base to 0 following the cosine curve. The models are trained
by 225 and 125 epochs on the GID and DeepGlobe dataset,
respectively, by using the adaptive gradient optimizer AdamW
with a momentum of 0.9 and a weight decay of 5e-4. In the
training stage, commonly used data augmentation techniques,
including random vertical and horizontal flipping and anticlock-
wise rotating, are applied on both datasets. In addition, a random
cropping with 512 × 512 size is applied on the GID dataset.
In the testing stage, the images are cropped into patches with
overlap for inference and the results are spliced by averaging the
predicted probability maps on the overlapped regions. Specif-
ically, the images are cropped into patches of 512 × 512 with
an overlap width of 256 pixels for GID and 768 × 768 and
208 pixels for DeepGlobe. The multi-scale inference is applied
for the GID dataset by averaging probability maps predicted
at multiple scales, including 0.75, 1.0 and 1.25. The test time
augmentation (TTA) of flipping and rotating is applied for
DeepGlobe.

The semantic superpixels are pregenerated by LSC [45] with
OpenCV implementation. Ground-truth labels are appended as a
new channel to the corresponding training images as mentioned
in Section III-B. Empirically, the mean size of the superpixels
is set to 50× 50. Superpixels that are smaller than half of the
mean size are merged into adjacent ones through automatic
postprocessing to control their appropriate number and sizes.
Afterwards, the semantic superpixels are segmented by ground-
truth annotations into semantic patches to ensure interior class
uniformity.

3) Evaluation Metrics: Following the standard evaluation
protocol in the task of land-cover classification, the perfor-
mances of our SPSNet are evaluated by mean intersection over
union (mIoU) and pixel accuracy (PA) on different datasets. The
metrics are formulated as follows:

PA =

∑C
i=1 xii∑C

i=1

∑C
j=1 xij

;
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TABLE I
ABLATION STUDY ON GID DATASET FOR THE DIFFERENT MODULES

mIoU =
1

C

C∑
i=1

xii∑C
j=1 (xij + xji)− xii

, (6)

where C represents the category numbers and xij denotes the
number of pixels that belong to class i while are predicted as
class j. Especially, xii means the number of true positive pixels
of class i.

For the GID dataset, models obtained from the fivefold cross
validation are evaluated by both mIoU and PA metrics, fol-
lowing [57]. For the DeepGlobe dataset, models are assessed
through mIoU on the test subset as that of [58] and [59].

B. Ablation Study

To testify the effectiveness of the proposed SARI loss,
and the necessity of using HDC block, we carry out ab-
lation experiments on the GID dataset. DeepLabv3+ [33]
trained with the standard CE loss is chosen as the baseline
network and the ResNet-101 [61] is the chosen backbone.
Table I lists the quantitative results of applying different network
configurations.

As illustrated in Table I, by replacing standard dilated con-
volution with the HDC block, SPSNet yields a mIoU of around
93.88%, outperforming the baseline network (i.e., Deeplabv3+)
by 1.25%. The possible reason is that the use of HDC block mit-
igates the “gridding” problem of dilated convolution, and thus,
prevents the large-area land covers frequently being segmented
into pieces. By applying the superpixel variance loss Lvar, SP-
SNet yields a mIoU score of around 96.40%, surpassing the
SPSNet trained with the CE loss alone by 2.52%. Moreover, the
mIoU floating range also witnesses an apparent decrease when
training SPSNet with Lvar. The results reveal that enhancing
regional feature consistency (inside superpixels) by Lvar boosts
not only the classification performance but also the training
stability. After joining the intraclass similarity loss Lintra, the
performance of SPSNet is further promoted with a mIoU score
of 96.51%, indicating that the Lvar and Lintra can cooperate to
improve the feature learning ability and training stability of
SPSNet. From Table I, incorporating the interclass distance loss
Linter alone with the CE loss obtains a performance gain of 2.19%
in mIoU compared with SPSNet merely trained with the CE
loss. The improvement can be attributed to that by training with
Linter, SPSNet learns to enlarge the feature discrepancy between
semantic superpixels of different classes, which enhances the
interclass discrimination ability, and thereby, reduces the mis-
classification of the confusing land covers. Furthermore, the
complete SARI loss that integrates the Lvar, Lintra, and Linter

Fig. 6. Visualized results on GID dataset. The label includes five categories:
built-up (red), farmland (green), forest (cyan), meadow (yellow), and water
(blue). White pixels represent the background and are excluded in the accuracy
assessment.

achieves a highest mIoU score of 97.11% and a satisfactory
mIoU floating range (0.25%), demonstrating the joint effect of
the three subparts of the SARI loss. Figs. 6 and 7 show the
visualization results for qualitative analysis of the HDC block
and the SARI loss.

Fig. 6 first shows the classification results of the baseline
network, the SPSNet with HDC block alone, and the complete
SPSNet (with both HDC and SARI loss). As mentioned in
Section III-D, in general semantic segmentation models, the
dilated convolution is widely used to extend the network’s
receptive field for observing large objects. However, land-cover
classification is different from the general semantic segmen-
tation, as land covers usually span an extremely large spatial
extent and have very complex geometric structures. In this case,
the holes in standard dilated convolutions can cause a “gridding
effect” that segments a complete land cover region into several
pieces, or severe misclassification that recognizes a land cover
region as a wrong category. The evidence can be found in the
visualization results of the baseline network. For example, the
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Fig. 7. Visualization results from the ablation study of the SARI loss on GID dataset. The label includes five categories: built-up (red), farmland (green), forest
(cyan), meadow (yellow), and water (blue).

first and third rows clearly show the fragmented segmentation
results of the farmland and water category, whereas the second
row has a large area misclassification. Considering the specific
challenge of land-cover classification, we add the HDC block
into the baseline network to overcome the limitations of standard
dilated convolution. From the results in the fourth column of
Fig. 6, applying the HDC block alone can alleviate the “gridding
effect” and the large area misclassification. The reason is that
the HDC block is more capable of building continuous relations
between neighboring features that are disconnected by standard
dilated convolution. Thus, the basic feature learning ability of
the network improves.

However, misclassification can still be found in regions with
complex textures, as highlighted by the rectangles in the fourth
column of Fig. 6. As a land-cover region usually contains mul-
tiple ground objects, which may show different visual appear-
ances. Land-cover regions of different categories contrarily may
have similar visual appearances (e.g., farmland and forest). The
use of only HDC is inadequate to exploit the homogeneity within
a land-cover region and heterogeneity between semantically
different regions. The results in the last column of Fig. 6 con-
vincingly demonstrate the effectiveness of the proposed SARI
loss in improving the classification consistency of different land
covers. By training with the SARI loss, SPSNet can fully utilize
the context constraints within and between superpixels, thereby

enhancing the regional feature learning ability for discriminating
the confusing land covers.

In Fig. 7, the results of SPSNet trained with different sub-parts
of the SARI loss are also visualized to further analyze the effi-
cacy of the method. In the third column, the misclassfication can
be frequently found in the results of basic SPSNet that is trained
without the SARI loss. In the fourth column, by introducing
the superpixel variance loss Lvar and the intraclass similarity
loss Lintra, the segmentation consistency inside different land
cover regions significantly improves, especially for the forest
and meadow as highlighted by the rectangle in the second and
fifth rows. The reason is that in these land cover regions, the
texture contains insignificant high-frequency details. The basic
SPSNet trained with the CE loss tends to encode these details
into high-dimension feature space and generate very different
representations from the surrounding regions, which confuse
the final prediction of the classifier. Applying the superpixel-
enhanced training with Lvar and Lintra can increase the consis-
tency of feature representations inside and between homoge-
neous superpixels, which facilitates the network to correctly
recognize the land covers within a same category. In the fifth
column of Fig. 7, the interclass distance loss Linter alone also
reduces the misclassifications of the basic SPSNet, suggesting
that enlarging the feature discrepancy between heterogeneous
superpixels is another means to improve the discrimination
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TABLE II
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON GID

DATASET

ability of the network. Compared with the classical CE loss,
Lvar, Lintra, and Linter can provide training guidance for the
extraction of different contextual information with semantic
superpixels. As a result, each of these losses brings benefits to
the regional feature learning and thus improves the segmentation
of large-area land covers. However, misclassifications can still
be found in the fourth and fifth columns, indicating that each part
of the SARI loss alone cannot offer enough training guidance for
comprehensively learning the contextual information within ho-
mogeneous superpixels and between heterogeneous superpixels.
The SPSNet trained with the complete SARI loss (combining
all of Lvar, Lintra, and Linter) shows a stronger learning ability
for different land cover categories, which achieves the best
segmentation quality for different input images.

C. Comparison With State-of-the-Art Methods

In this section, the proposed SPSNet was compared with
other state-of-the-art methods on two benchmark land-cover
classification evaluation datasets, GID [5] and DeepGlobe [19].

1) Results on GID Dataset: For a comprehensive evaluation
of the proposed SPSNet, we compare it with several classical
methods on the GID dataset. Moreover, we also trained the
different comparison methods (with available codes) with our
SARI loss to further testify its effectiveness and applicability.
The quantitative results are reported in Table II.

As shown in Table II, all the comparison methods seem to
yield acceptable results in terms of PA but manifest a relatively
unstable performance on the mIoU metric, especially for the
FCN-8s and U-Net. According to the definition, PA reveals
the overall classification precision of pixels regardless of object
classes, and a high PA score can be obtained if large objects that
occupy most image pixels are correctly classified. In contrast,
mIoU presents a more comprehensive performance assessment
for multiclass semantic segmentation by averaging the IoU score
of every class, which reveals both the classification precision
and the recall ratio of target objects. Therefore, in land-cover
classification, mIoU can better reveal the learning ability of a
network than PA. From the comparison results in Table II, our
proposed SPSNet achieves the top performances in terms of

TABLE III
QUANTITATIVE COMPARISON WITH THE STATE-OF-THE-ART METHODS ON

DEEPGLOBE DATASET

both PA and mIoU. SPSNet outperforms the existing methods
by a large margin, which improves the previous state-of-the-art
method (i.e., RSNet) by 3.57% in mIoU. The comparison results
indicate that enhancing the regional feature learning with our
proposed SARI loss is effective in improving the classification
consistency of different land-cover categories. In Table II, results
also demonstrate the effectiveness of SARI loss as it improves
the performances of all the comparison methods. Results of
PSPNet, U-Net, and DeepLabv3+ outperform RSNet in both PA
and mIoU by replacing CE loss with SARI loss. The interclass
and intraclass constraints imposed by SARI loss enhance the
learning ability for different categories and improve perfor-
mances over all classes.

2) Results on DeepGlobe Dataset: We carry out experiments
on the DeepGlobe land cover classification dataset to further
verify the effectiveness of the SPSNet and our SARI loss. A
number of methods with different architectures are chosen for a
comprehensive comparison, which include the following:

1) typical networks designed for general semantic segmen-
tation, including ICNet [63], U-Net [28], PSPNet [32],
FCN [7], SegNet [64], DeepLabv3+ [33], and FPN [65]
with different settings;

2) state-of-the-art networks especially designed for seman-
tic segmentation of high-resolution images, including
GLNet [58] and MagNet [59].

Table III lists the numeric results of different models.
The overall situation in Table III shows that those methods de-

signed for high-resolution images yield better performance than
general semantic segmentation networks. As land covers usually
span large spatial extent with very irregular boundaries, precise
classification requires rich contextual information to preserve
intraclass consistency while spatial details for guaranteeing the
interclass discrimination. Among all the general semantic seg-
mentation methods, the FPN combines contextually rich features
and spatially detailed features to enhance the multilevel feature
learning, which achieves a comparable performance with the
networks designed for high-resolution images. By integrating
the local fine details into global contexts in a more effective
way, GLNet and MagNet further improve the classification
performances of the general segmentation models by maximally
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Fig. 8. Qualitative comparison results on DeepGlobe dataset. The label in-
cludes six categories: urban land (cyan), agriculture land (yellow), rangeland
(magenta), forest land (green), water (blue), and barren land (white).

31.9% in mIoU. However, all these methods mainly focus on
designing new network architectures to strengthen the extraction
and fusion of multi-level features. Most of them are trained
only with the classical CE loss, which lacks training guidance
for effectively learning the local and long-range relationships
between features. Basing on the semantic-aware superpixel
segmentation, our proposed SARI loss can teach a network
to fully exploit the contextual constraints inside or between
superpixels. SARI loss works in a pull-and-push manner, which
pulls regional features within a same class closer (increases
feature similarity) while pushing regional features of different
classes farther (enlarging feature discrepancy). As a result, our
SPSNet trained with the SARI loss yields the top performance
with a mIoU of 73.99%, revealing that SPSNet is more capable
of addressing the challenges specific to land-cover classification
in high-resolution remote sensing images. For a better visual
inspection, we also visualize the classification results of our
SPSNet and two recent state-of-the-art methods in Fig. 8.

In Fig. 8, we select four images with different texture com-
plexity as examples to analyze the regional feature learning
abilities of different networks. In the first row, textures of urban,
range, and barren lands are confusing due to their high complex-
ity. Consequently, GLNet delivers severely fragmented segmen-
tation, while MagNet presents large-area misclassification (such
as rangeland) as highlighted by the red rectangle. In the second
and third rows, land covers (such as forest land and barren land)
in the red rectangles have relatively simple and consistent tex-
ture/appearance. However, GLNet and MagNet still suffer from
segmentation fragments and large-area misclassification. In the
last row, the water region highlighted in the rectangle presents
high visual consistency. It is surprising that GLNet and MagNet
fail to produce coherent labeling results inside such region. By
contrast, under the guidance of the SARI loss, our SPSNet can
distinguish between these land-cover categories more correctly,
and thus, obtains clean segmentation results. These visualized

results further convincingly validate the effectiveness of our
SARI loss.

V. CONCLUSION

This study presents an SARI loss to guide the effective
learning of regional features with semantic superpixels for the
accurate land-cover classification. To exert the power of the
SARI loss, we also develop a SPSNet for land-cover classi-
fication. The quantitative and qualitative results in the abla-
tion experiments show that the SARI loss can offer sufficient
training guidance for the comprehensive learning of the con-
textual information within homogeneous superpixels and be-
tween heterogeneous superpixels, which significantly improves
the segmentation consistency of different land-cover categories.
Specifically, the independent ablation studies for the different
parts of SARI loss verify that the superpixel variance loss Lvar

and the intraclass similarity loss Lintra can improve feature
similarities between superpixels in the same category, while
interclass distance loss Linter can enlarge feature discrepancy
between superpixels of different categories. The comparison
with state-of-the-art methods on two benchmark land-cover
classification datasets (i.e., GID and DeepGlobe) also convinc-
ingly demonstrates that the SARI loss can teach a model to
effectively learn both regional and long-range relationships for
coherent semantic labeling in land-cover classification. In the
future work, we would like to implement SARI loss with more
advanced networks for high-accuracy global-scale land-cover
classification.
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