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Local and Global Spatial Information for Land Cover
Semisupervised Classification of Complex

Polarimetric SAR Data
Mohsen Ghanbari , Linlin Xu , Member, IEEE, and David A. Clausi , Senior Member, IEEE

Abstract—Each of the three satellites constituting the
RADARSAT Constellation Mission (RCM) provides compact
polarimetric synthetic aperture radar (CP SAR) data. The complex
CP data have similar properties to the complex quad polarimetric
(QP) data provided by prior RADARSAT missions. In this article,
a land cover classification method using spatial information is
designed based on the statistical characteristics of the complex
CP and QP SAR data. First, the local spatial dependency among
pixels is captured by superpixels. Second, a graph is constructed
on the superpixels to model the global spatial dependency among
superpixels. The land cover classification image with land cover
type labels is then estimated by propagating labels from the few
labeled superpixels to the unlabeled superpixels. Classification
of two RCM complex CP and QP scenes demonstrates that the
proposed method, with few labeled pixels, provides much higher
classification accuracy than methods that do not exploit global
spatial dependency.

Index Terms—Compact polarimetry, graph-based learning,
land cover classification, multilook complex, semisupervised,
superpixel.

I. INTRODUCTION

THE RADARSAT Constellation Mission (RCM) satellites,
as the successors to the RADARSAT 1-2 satellites, were

launched in June 2019. These satellites provide data in a variety
of acquisition modes that are suitable for different applications
such as maritime surveillance, ecosystem modeling, and disaster
management. In addition to the RADARSAT 1-2 dual-polarized
(DP) and quad polarimetric (QP) synthetic aperture radar (SAR)
modes, RCM also has a compact polarimetric (CP) SAR mode.
A CP SAR is a dual-polarized SAR that coherently captures
the received backscatter, and, in this manner, the phase dif-
ference information between the two received linear polariza-
tions is maintained [1]. Therefore, using CP is advantageous
over using only intensity images: like- and cross-polarized
two-dimensional mappings of radar brightness. A simple yet
robust implementation of compact polarimetry is to radiate a
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circular polarization in transmit and receive two orthogonal
linear polarization on receive. This mode has been implemented
on the RCM.

Land cover classification is an important task in monitoring
the Earth’s surface. The high-resolution RCM complex SAR
data can be used for land cover classification [2]. QP SAR
data have the full information acquired by a polarimetric SAR;
however, the typical swaths covered by a QP SAR are relatively
small. Therefore, CP SAR is an attractive alternative since, as
demonstrated by many studies [3], [4], [5], [6], CP classifications
are comparable to those from a QP SAR, and the RCM CP scenes
can be acquired in wide swaths (∼350 km), which are more
suitable for studying larger Earth regions. Many studies on land
cover classification using SAR data are dedicated to QP SAR
data [7], [8], [9], [10], and there has been very limited work on
CP land cover classification [11], [12]. In this article, we propose
a land cover classification method that models the “local” (using
a superpixel-based approach) and “global” (using a graph-based
formulation) spatial dependency information in the QP and CP
SAR data types.

Using superpixels [13] is advocated in computer vision al-
gorithms since compared with the rigid pixel representation of
images, a superpixel representation utilizes the “local” spatial
dependency between adjacent pixels and, by forming pixel
groups, greatly reduces the number of image primitives [14],
[15], [16]. A superpixel segmentation algorithm is expected
to preserve the image boundaries by generating homogeneous
superpixels that contain only one surface object type [16].
Moreover, the superpixel segmentation should be adaptive, in
that it should capture the important local details without having
to utilize many superpixels in homogeneous regions [17], i.e.,
unnecessarily segmenting homogeneous regions into too many
superpixels. Our proposed segmentation algorithm utilizes sta-
tistical properties of QP and CP SAR data calculated based on
superpixels.

Coherent acquisition of the backscatter in a CP SAR allows
for constructing the Stokes vector, or equivalently, the 2 × 2
complex coherence matrix. As demonstrated in the previous
work [18], [19], both the CP 2 × 2 complex coherence and
the QP 3 × 3 covariance matrices have a complex Wishart
distribution. Based on this characteristic of the QP covariance
and CP coherence matrices, Yu et al. [20] and Ghanbari et al. [19]
proposed QP SAR and CP SAR extensions of an unsupervised
segmentation algorithm called Iterative Region Growing

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2793-982X
https://orcid.org/0000-0002-3488-5199
https://orcid.org/0000-0002-6383-0875
mailto:mohsen.ghanbari@uwaterloo.ca
mailto:linlinxu618@gmail.com
mailto:linlinxu618@gmail.com
mailto:dclausi@uwaterloo.ca


GHANBARI et al.: LGS INFORMATION FOR LAND COVER SEMISUPERVISED CLASSIFICATION OF COMPLEX POLARIMETRIC SAR DATA 3893

with Semantics (IRGS). IRGS is a region-based approach
combined with a Markov random field (MRF) spatial context
model where the data likelihood (the unary potential) and
the labeling (the pairwise potential) terms are uniquely
defined [21].

Full polarimetric IRGS (PolarIRGS) [20] and compact po-
larimetric IRGS (CP-IRGS) [19] utilize the statistical properties
of the complex QP and CP data types in both the unary and
pairwise potentials of IRGS. IRGS is region-based, in that the
statistical properties of regions are used, and, as a result, it is less
sensitive to speckle noise and incidence-angle-induced spatial
nonstationarities in SAR images [22]. The nonstationarities in
SAR images are defined as the variation in the backscatter
values for the same radar target in near and far ranges. In
other words, mainly due to the incidence effect, the statistics
for a particular class (open water for instance) vary across the
scene. Another advantage of IRGS is that it uses edge strength
in its formulation to assist in determining when adjacent su-
perpixels should be merged [21]. These characteristics make
PolarIRGS and CP-IRGS algorithms effective for superpixel
segmentation. PolarIRGS and CP-IRGS model local spatial de-
pendency using edge strength and information from neighboring
superpixels.

The superpixels are then used in a graph-based classification
approach. Considering each superpixel as a vertex, a fully-
connected undirected graph is constructed on the superpixels
to model the “global” spatial dependency between superpixels.
Once the graph is constructed, learning involves assigning la-
bels to the superpixels. Given a few labeled superpixels, graph
learning is performed in a semisupervised manner [23] where the
information from labeled as well as unlabeled superpixels is used
to predict the labels of unlabeled superpixels. The advantage of
this method is that a very limited number of labeled superpixels,
which are spatially distributed over the scene, are needed as the
labeled data [24].

A semisupervised graph learning is based on the assump-
tion that the vertices connected by a high-similarity edge are
likely to have the same label [25]. In essence, the labels of
labeled data propagate to the unlabeled data according to the
adjacency information of the graph vertices [26]. Inspired by the
recent work on hyperspectral classification by Sellars et al. [24]
and Jia et al. [27], in this article, we propose semisupervised
fully-connected graph learning based on label propagation [26]
for complex QP and CP SAR data. The adjacency relationship
between the superpixels is measured by a metric that consists of
two components: 1) spatial and 2) backscatter difference. While
the spatial difference is based on the spatial distance between
superpixel centroids, the backscatter distance is measured by a
distance measure between complex matrices [28].

In summary, we have designed, implemented, and tested a
scene classification approach that models the local and global
spatial (LGS) dependency in a unified framework using complex
QP and CP via superpixels and a graph-based approach. The
novel approach involves semisupervised fully-connected graph
learning to classify superpixels by modeling the global depen-
dency among all scene superpixels. The graph-based approach
uniquely characterizes superpixel differences by spatial distance
and statistical properties of complex matrices.

II. BACKGROUND

Recently, the incorporation of spatial dependency among
pixels in image classification methods has drawn increasing
attention [27], [29], [30]. In general, studies have incorporated
spatial dependency information in classification in two main cat-
egories: 1) using derived features for classification and 2) design-
ing a classification method that inherently incorporates spatial
dependency. In the first category, “hand-crafted” texture features
based on gray-level co-occurrence matrices (GLCM) [31], [32]
and Gabor filters [33] are extracted and used in classification.
To overcome the difficulties in effective feature representation,
deep convolutional neural networks (CNNs) inherently learn
features [30], [34], [35].

In the second category, the spatial dependency effect is em-
bodied in the classification method [27], [36], [37]. Remote
sensing image classification methods inherently incorporating
the spatial dependency effect are based on either pixels or super-
pixels. In a pixel-based classification method [38], a hypergraph
constructed on image pixels with spatial and spectral hyperedges
was used in a semisupervised method for image classification.
In more recent studies, image classification based on superpixels
has attracted significant interest. In a study by Lv et al. [37], to
overcome the high computation demand of CNNs, a superpixel
CNN classification was proposed. They compared various su-
perpixel segmentation methods while using different-scale deep
CNN features. Recently, a graph was constructed on superpixels
generated from a hyperspectral image using the entropy rate
segmentation method [27]. Then, an adaptive version of the
dynamic label propagation method [39] was designed to pass
labels from labeled to unlabeled superpixels.

The advantage of capturing spatial dependency in QP SAR
data was demonstrated by Frey et al. [40] using the Potts model
in a Bayesian classification scheme. They showed that to im-
prove the classification results, incorporating spatial dependency
information has more impact than enhancing the statistical
modeling of complex QP data. Yang et al. [9] employed a
sequence of polarimetric responses with different orientations
called dynamic texture to model spatial dependency. Recently,
semisupervised classification of QP SAR data has been used by
many researchers to exploit both labeled and unlabeled data in-
formation to obtain accurate classifications using limited labeled
samples. Hou et al. developed a graph-based semi-supervised
classification that incorporates the spatial consistency of labels.
The classifier was proposed to deal with the impurity of QP
SAR pixels—containing more than one land cover type—and
inaccurate labeled data [41].

A multiattribute graph model was developed by Liu et al. [42]
for QP SAR land cover classification. In their method, after
the spatial dependency effect was modeled as a term in their
objective function, a weight for each graph and the label
of unlabeled pixels were optimized. Following the idea of
increasing the diversity of classification, Wang et al. [43]
proposed a tritraining-based algorithm where three groups
of QP-derived features were used to train three different
classifiers. In recent semisupervised classification studies,
CNNs were employed to model the spatial dependency effect
in the classification framework [44], [45]. A CNN classification
network incorporates two semantic priors to preserve the spatial
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consistency and boundaries [44]. Active learning has also been
integrated into a CNN-based architecture [45] to select the
most informative training data for annotation based on the
CNNs output. Also, an MRF model was applied to the output
probability maps of the CNN to encourage spatial consistency.

A few methods also aimed to integrate superpixel-driven
information into the deep neural networks [46], [47]. Other QP
semisupervised classification methods based on CNNs either
perform on a pixel-level basis or lack an effective model for
the spatial dependency effect [48], [49]. Recently, a multiscale
graph constructed on superpixels was proposed to overcome the
limitations of pixel-based classification techniques [50].

From this discussion, we recognize the following shortcom-
ings based on observations drawn from the research literature.

1) Using CP SAR data as a source of data for the classification
of land cover types has yet to be studied using spatial
dependency information. Although there has been a great
amount of work on land cover classification using QP data,
there is a limited number of CP land cover classification
studies.

2) Research using dependency among superpixels in SAR
images in a graph-based approach is limited. We are not
aware of published methods that learn the global depen-
dency using superpixel-based graphs for the purpose of
SAR land cover classification.

3) Superpixel segmentation methods used in the land cover
classification studies are generic and do not account for
the statistical properties of QP SAR data.

We implement a method that is able to address these short-
comings, which are as follows.

1) We design and implement a land cover classification
method for CP complex data that is also applicable to
complex QP.

2) This method utilizes the local spatial information via
superpixels. A graph-learning method is then developed
to effectively model the global spatial dependency among
the superpixels.

3) The statistical properties of QP and CP SAR data are used
to perform the superpixel segmentation.

In the following, the fundamental properties of SLC CP and
QP SAR data are described.

A. Fundamental Properties of Complex SAR Data

In an SLC CP SAR dataset, the data measurement is a 2 × 1
complex vector E that corresponds to the backscattered field.
The radar scattering matrix S relates the incident field to the
backscattered field [51]

Er =

[
EHC

EV C

]
= Sût =

[
SHH SHV

SV H SV V

]
ût (1)

where ût is the unit Jones vector related to the incident field
(transmit) and Er is the backscattered field (receive). EHC and
EV C are the CP measurements where the transmit field has cir-
cular polarization and on receive, the polarizations are horizontal
and vertical, respectively. It is defined here that Er is shown
by ECP in the CP case to be distinguished from the QP case.

The measurement in the case of an SLC QP SAR dataset is the
scattering matrixS in (1) that can be represented as a vector using
the lexicographic basis set as ΩQP = [SHH

√
2SHV SV V ]

when the reciprocity assumption, SHV = SV H , holds.
By multiplying ECP and ΩQP by their Hermitian conju-

gates, the Hermitian positive semidefinite complex CP coher-
ence (CCP) and QP covariance (CQP) matrices are derived,
respectively [51], [52]

CCP =
1

nl

nl∑
i=1

ECPi
E†

CPi
=

[
〈|EHC |2〉 〈EHCE

∗
V C〉

〈EV CE
∗
HC〉 〈|EV C |2〉

]

(2)

CQP =
1

nl

nl∑
i=1

ΩQPi
Ω†

QPi

=

⎡
⎢⎣ 〈|SHH |2〉 √

2〈SHHS∗
HV 〉 〈SHHS∗

V V 〉√
2〈SHV S

∗
HH〉 2〈|SHV |2〉

√
2〈SHV S

∗
V V 〉

〈SV V S
∗
HH〉 √

2〈SV V S
∗
HV 〉 〈|SV V |2〉

⎤
⎥⎦

(3)

where 〈· · · 〉 shows temporal or spatial averaging, † indicates
Hermitian conjugate, ∗ is complex conjugate, and nl is the
number of looks used for averaging. As demonstrated in pre-
vious studies [18], [19], assuming the ECP and ΩQP mea-
surement data are complex Gaussian distributed, the matrices∑nl

i=1 ECPi
E∗T

CPi
and

∑nl

i=1 ΩQPi
Ω†

QPi
are both complex Wishart

distributed. In other words, the 2 × 2 CP coherence matrix and
the 3 × 3 QP covariance matrix are both positive semidefinite
and both follow the complex Wishart distribution [18], [19].
Therefore, in terms of statistical properties, the main difference
between these two is the size of these matrices. The similar
statistical properties of the complex CP and QP data allow us
to design a unified classification method. Using both data types
to evaluate the proposed method allows for a better assessment
of the robustness and generalization capability of the proposed
semisupervised method.

III. PROPOSED METHOD

A. Overview

The proposed land cover classification method mainly con-
sists of two components. First, using the multilook complex
QP/CP data, the PolarIRGS/CP-IRGS algorithm generates the
superpixels on the scene. In this manner, the local spatial depen-
dency among pixels as well as the strong edges in the image is
preserved. Second, a fully-connected undirected graph is con-
structed on the superpixels. Each vertex in the graph corresponds
to a superpixel for which three different features are derived:
1) the mean complex matrix (calculated using the superpixel’s
pixels), 2) the weighted superpixel-based mean complex matrix
(calculated using the mean complex matrices of a superpixel
and its neighboring superpixels), and 3) the superpixel spatial
centroid. The affinity matrix, where each element represents
the similarity between the corresponding superpixels, is then
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Fig. 1. General block diagram of the proposed land cover classification method.

constructed using these three features. The affinity matrix com-
prises the global dependency information between all pairs of
superpixels across the complex data.

A few pixels that are spatially distributed all over the image
were manually labeled and, then, the superpixels containing the
labeled pixels were assigned the same label. The spatial distri-
bution of the labeled superpixels is important since the semisu-
pervised method propagates labels from labeled to unlabeled su-
perpixels. Using the labeled superpixels and the affinity matrix,
the graph-based method estimates the labels of all superpixels—
including the labeled and unlabeled ones—generating the land
cover classification map of the SAR scene. The block diagram
of the proposed land cover classification method is shown in
Fig. 1. The PolarIRGS and CP-IRGS superpixel generation
algorithms are described next. Then, the details of the calculation
of the graph affinity matrix and the graph-based approach are
explained.

B. Superpixel Generation Using PolarIRGS and CP-IRGS

To generate homogeneous superpixels, we apply PolarIRGS
and CP-IRGS segmentation algorithms. PolarIRGS and CP-
IRGS, as the extensions of the IRGS algorithm for QP and CP
SAR data, were inherently developed for the application of unsu-
pervised image segmentation [19], [20]. In the historic names of
IRGS algorithms [19], [20], [21], a “region” is used to describe
a group of pixels that belong to a class. The term “superpixel”
is also used to refer to a group of pixels; however, a superpixel
does not have a class label. Many different superpixel generation
algorithms have also been proposed in the literature [16], [53],
[54]. The simple linear iterative clustering (SLIC) algorithm is a
well-referenced superpixel generation method [53]. Compared
to SLIC, PolarIRGS and CP-IRGS algorithms have the following
three main advantages.

1) The PolarIRGS and CP-IRGS were designed based on the
statistical properties of complex QP and CP data, and as
such, they are more suitable for these data types.

2) The IRGS-based algorithms explicitly incorporate the
concept of edge strength to better preserve the edges when
generating superpixels.

3) IRGS-based algorithms merge oversegmented initial su-
perpixels to perform segmentation.

This allows the adjacent small superpixels to be merged
and create a minimal number of homogeneous superpixels that
match the nature of the local region.

Here, a short description of the PolarIRGS and CP-IRGS
segmentation methods is provided. Assuming S is the image
and s ∈ S is an image pixel. Also, let x = {xs|s ∈ S} represent
the image data and y = {ys|ys ∈ M, s ∈ S} is a label config-
uration on the image with discrete-valued random variables ys
having a value from the label set M = {1, . . .,m}. The purpose
of image segmentation is to find the optimum label configuration
y∗ from the set of possible label configurations Y. IRGS is
superpixel-based and uses a region adjacency graph (RAG) [55],
G = (V, E), where V and E denote the image superpixels as
vertices and arcs that are the boundaries of adjacent superpixels.
Thus, a superpixel v ∈ V in the image contains a set of image
pixels denoted by Sv . The optimization problem in PolarIRGS
and CP-IRGS is solved by minimizing two energy terms [19],
[20], [21]

y∗ = argmin
y∈Y

{
−

m∑
i=1

∑
Sv∈vi

∑
s∈Sv

{
ln|Ci|+ tr

(
C−1

i Cs

)}

+ β

m−1∑
i=1

m∑
j=i+1

∑
s∈∂vij

g(∇s)

⎫⎬
⎭ (4)

where Cs is the complex QP or CP matrix of the pixel s, Ci

is the mean complex matrix over all the pixels that are labeled
i from the set M, g(∇s) is called the edge penalty term [21],
vi is a subset of all superpixels with label i, and ∂vij indicates
all the boundary pixels from superpixels labeled i and j where
these superpixels are adjacent to each other.

The edge penalty function g(∇s) is a monotonically decreas-
ing function that is smaller for a strong edge than when the
edge between two superpixels assigned to different classes is
weak. In this manner, two neighboring superpixels are assigned
the same labels in segmentation only when the edge between
two superpixels is weak [21]. The parameter β controls the
smoothness of the segmentation with the greater values of β
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leading to smoother segmentation results. This parameter, in
particular, allows us to control the level of oversegmentation of
superpixels.

A main advantage of the IRGS algorithm is incorporating
a greedy superpixel merging method in each iteration of the
optimization. This increases the algorithm’s speed in moving
toward the optimized segmentation. Starting from an overseg-
mentation, a superpixel merging process is executed in each
iteration. For each pair of neighboring superpixels with like
labels, (4) is calculated. Adjacent superpixels with like labels
that reduce the energy the most are merged [21].

C. Semisupervised Graph-Based Classification Method

The output of the PolarIRGS and CP-IRGS segmentation is
a label configuration with labels from the set M. To use this
segmentation, we assign a unique label to each superpixel in
the segmentation map. In this manner, each superpixel in the
segmentation is assigned a unique label. Then, an undirected
graph is constructed with each superpixel as a vertex in the
graph. The graph is uniquely shown by the corresponding affinity
matrix A ∈ RN×N (also called weight/similarity matrix) that is
N ×N where N is the number of vertices/superpixels and each
element in the matrix indicates the similarity between a pair of
superpixels in the graph. The affinity matrix in the proposed
method is defined as

Aij = Al
ijA

c
ij (5)

where Al
ij is related to the similarity of the superpixels i and j

in terms of their location in the image

Al
ij = exp

(
−∥∥�Li − �Lj

∥∥2
2

σ2
l

)
(6)

where �Li is a vector of two scalars corresponding to the mean x
and y coordinates for all the pixels in the ith superpixel. Also,
‖ · ‖ represents the l2-norm distance, and σl is the width of the
RBF kernel. Ac

ij is the term corresponding to the similarity of
superpixels based on the meanCm and the weighted superpixel-
based mean Cw complex matrices

Ac
ij = exp

(
(γ − 1)DMH(C

w
i ,C

w
j )− γDMH(C

m
i ,Cm

j )

σ2
c

)
(7)

where DMH(C1,C2) represents the statistical dissimilarity be-
tween the complex matrices C1 and C2 calculated by the
maximum value of Hotelling–Lawley traces [56]

DMH(C1,C2) = max{tr(C−1
1 C2), tr(C−1

2 C1)}. (8)

This metric has been demonstrated to be more effective in the ap-
plication of change detection as compared to the likelihood ratio
test [56] and other similar metrics such as symmetric Wishart
distance and Kullback–Leibler divergence [57]. In (7), Cm

i is
the mean complex matrix over all the pixels in the superpixel i
and Cw

i is defined as

Cw
i =

K∑
k=1

wkC
m
k (9)

which calculates a weighted average of the K neighboring su-
perpixels of the superpixel i. The weight from the kth superpixel
is defined as

wk =
exp (−DMH(C

w
i ,C

w
k )/h)∑K

k=1 exp (−DMH(Cw
i ,C

w
k )/h)

(10)

whereh is a scale parameter. γ ∈ [0, 1] in (7) is a scale parameter
that balances the effect from the mean complex matrices as
against the weighted superpixel-based mean complex matrix.
σc indicates the width of the RBF kernel.

A complete affinity matrix, that is equivalent to a fully-
connected graph, models the global spatial dependency effect
between all pairs of superpixels in the image. Then, a semisu-
pervised classification method based on label propagation [26]
is performed. First, the superpixels containing labeled pixels
are assigned labels. Then, from a conceptual perspective, the
semisupervised method propagates the labels from the labeled
superpixels to the unlabeled ones.

Assume Z ∈ RN×T is the initial label information, where
T is the number of land cover types. Each row of the matrix
Z corresponds to a superpixel: If the superpixel i is labeled j,
the element Zij = 1, otherwise, for all j, Zij = 0. For all the
unlabeled superpixels, Zij = 0 for all j. The label propagation
is performed based on the assumption that the classification
matrix F ∈ RN×T in each iteration is a function of the spatial
dependency information between superpixels and the initial
label information [26]

F(i+ 1) = αB−1/2AB−1/2F(i) + (1− α)Z (11)

where F(i) indicates the classification matrix in iteration i, B ∈
RN×N is a diagonal matrix with its ii-element equal to the sum
of the ith row of A, and the parameter α ∈ [0, 1] balances the
relative effect from the global spatial dependency information
and the initial labeling information. The classification matrix F
converges to a closed-form solution F∗ as follows [26]:

F∗ =
μ

μ+ 1

(
I− 1

μ+ 1
B−1/2AB−1/2

)−1

Z (12)

where I is the N ×N identity matrix and μ is a weight
parameter, with α = 1

μ+1 . The final land cover labels of the
superpixels are then calculated as fi = argmaxj F

∗
ij , in which

fi, the label of superpixel i, corresponds to the maximum value
of the elements in the row j of the matrix F∗.

IV. DATASETS AND RESULTS

In this section, the RCM SLC datasets used in the experiments
are described. The preprocessing of the datasets is then explained
followed by the experimental setup to evaluate the proposed
method and analyze the effects of local as well as global spatial
dependency in the land cover classification method.
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Fig. 2. (a) Google Earth and (b) RH images of the RCM CP dataset. The magnified areas indicate the two subscenes used in the experiments. Subscenes 1 and 2
are, respectively, the upper and lower images in the first and last columns.

Fig. 3. (a) Google Earth and (b) HH images of the RCM QP dataset. The magnified areas indicate the two subscenes used in the experiments. Subscenes 1 and
2 are, respectively, the upper and lower images in the first and last columns.

A. RCM Datasets

Two RCM SLC datasets were used in the experiments. The
first dataset is a very high-resolution SLC CP dataset that was
acquired over Winnipeg city in Manitoba, Canada, on February
2, 2020. The sampled pixel and line spacing for the dataset
are 1.39 and 2.16 m, respectively. The CP scene has a size of
14066× 9734 pixels. The second dataset is an SLC full QP data
acquired over the Québec City in Québec, Canada, on December
29, 2019. The sampled pixel and line spacing for the SLC QP

dataset are 3.13 m and 3.31 m, respectively. The size of the QP
scene is 8007 × 2935.

To evaluate the performance of the proposed method, two
subscenes were acquired from each SLC scene. Figs. 2 and
3 show the Google Earth and intensity images of the CP and
QP scenes, respectively. Each of the subscenes from the CP
scene, indicated in Fig. 2, consists of four land cover types that
are visually identified. The size of Subscene 1 of CP data is
1622 × 1272 pixels and includes low-rise residential (LRR),
high-rise residential (HRR), vegetation (VEG), and asphalt
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(ASP) land cover classes. Subscene 2 of CP data has a size
of 1000 × 1200 with LRR, HRR, VEG, and train (TRA) land
cover types.

The two subscenes taken from the QP scene, shown in Fig. 3,
have 700 × 500 pixels, for Subscene 1, and 500 × 700 pixels,
for Subscene 2. Subscene 1 from the QP scene consists of
six classes: river (RIV), LRR, HRR, VEG1, VEG2, and shore
(SHR). Subscene 2 includes all the classes in Subscene 1 except
the class HRR. Visual analysis of the Google Earth images and
the SAR intensity images shown in Fig. 3(a) show that two types
of “vegetation” were seen in the QP images: VEG1 and VEG2.
VEG1 is the label of forested areas where the volume scattering
of the incident SAR signal on the forest contributes to high
pixel value in the intensity images shown in Fig. 3(b). VEG2
is the label of the agricultural areas in the scene where a notable
amount of the SAR signal power scatters away, and therefore,
the pixel values are low in these areas in the intensity images.

The total area covered by the datasets can also be calculated
from the image size and the pixel and line spacing numbers.
The total area covered by CP subscene 1 and subscene 2 are
approximately 6.2 and 3.6 km2, respectively. Also, the QP
subscenes, which have equal size, both cover 3.6 km2. Next,
the experimental setup including the preprocessing of the SLC
datasets, the parameter setting of the proposed method, and the
compared methods are described.

B. Experimental Setup

The RCM SLC CP dataset contains two files that represent the
complex elements EH and EV in (1). Also, the SLC QP dataset
includes three files corresponding to the complex elements of the
scattering matrix in (1). The complex CP coherence (CCP) and
the complex QP covariance (CQP) were, respectively, derived
based on (2) and (3) with the number of looks, nl = 1. Box-car
averaging with a window size of 5 × 5 was then performed
only on the complex CP data. The averaging was found un-
necessary for the complex QP data for both segmentation and
classification—since the pixel and line spacing for the QP scene
are larger than those for the CP scene, to fully preserve the
boundaries in segmentation and classification, the averaging was
not performed in the case of QP data.

Each of the superpixel segmentation methods PolarIRGS [20]
and CP-IRGS [19] produces an image where each pixel is
assigned to a particular class with an unknown label. To start
these unsupervised methods, the number of segmentation classes
needs to be set. In this article, CP-IRGS and PolarIRGS were
performed with 10 segmentation classes. The number 10 for
segmentation classes was found to perform well for all cases.
Previous works [6], [58] have shown that the segmentation
results were not particularly sensitive to minor variations of
the segmentation input parameters. After the segmentation, each
superpixel in the segmentation image, regardless of its segmenta-
tion class, is given a unique label. Then, the graph is constructed
on the superpixels.

To set the values of the parameters of the proposed LGS
method including h (10), σl (6), σc (7), γ (7), and μ (12), a
coarse-to-fine search method was performed. Using this search
method first, in a coarse grid of discretized set of values for each

parameter and, then, in a fine grid, provides the parameter values
that lead to the desired classification results for any test complex
SAR scene. The impact of each parameter value should be
analyzed to set the range of discretized values for each parameter
in the search method.

The two components of the affinity matrix elements in (5),
naming Al

ij and Ac
ij , should have comparable values so that

the effect from both spatial and backscatter differences between
superpixel pairs is balanced. The parameters σl and σc have
a significant impact on the values of affinity matrix elements.
To incorporate the effect from both spatial and backscatter
information, the width of the spatial RBF kernel σl is set to
a large value to balance the large values of l2-norm distance
between superpixels far apart from each other across the scene.
Incorporating the similarity of the superpixels apart from each
other helps information to properly propagate across the scene.
Also, as shown in previous work [24], with a complex land
cover structure, information from neighboring superpixels (here
modeled by the weighted complex matrix,Cw

i ) should be limited
by choosing a high value for the parameter γ to incorporate more
information from within each superpixel (here modeled by the
mean complex matrix, Cm

i ). In general, the classification results
were not considerably sensitive to the values of the parameters
γ, h, and μ.

The following parameter values were found after performing
the coarse-to-fine search. The parameter h was set to 10. The
parameters σl and σc were set to 1000 and 1, respectively. The
large value ofσl relative toσc is due to the large values of l2-norm
distance between superpixels across the image. The parameter γ
was set to 0.9 allowing for more impact fromCm

i (the superpixel
itself) than that ofCw

i (the neighboring superpixels). Finally, the
parameter μ was also set to 0.1. All these values were kept the
same for all experiments.

To evaluate the performance of the land cover classification
method, the user’s accuracy values of the classes, the overall
accuracy (OA), and the Kappa (κ) coefficient were used. For
comparison, these values were also calculated for four other
methods: 1) support vector machine (SVM) [59], 2) random
forest (RF) [60], 3) superpixel-based SVM (SSVM), and 4)
superpixel-based RF (SRF). The latter two methods, SSVM and
SRF, exploit the superpixels for the classification. In particular,
the mean value of the feature vectors for all pixels in each
superpixel was calculated and used for estimating the label of
the superpixel. The input to the proposed method is the complex
data that were used to extract several features as the input to the
compared methods including SVM, RF, SSVM, and SRF. In the
case of CP data, all the Stokes-derived features, and in the case
of QP data, the features extracted from the QP covariance matrix
(CQP) including the original SAR features (full QP coherency
matrix elements), SAR discriminators (SPAN and dependency
coefficients), and various decomposition parameters were used
in the experiments [6].

For each class, around 50 training pixels and a minimum
of 30 test pixels (usually a much higher number) that were
independently collected were used for all the classification meth-
ods. The number of train and test samples for each land cover
type in the QP and CP SAR subscenes is provided in Tables I
and II. For the four compared methods, a hyperparameter tuning
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TABLE I
NUMBER OF TRAIN AND TEST PIXELS FOR THE TWO SUBSCENES OF CP SAR

DATA

TABLE II
NUMBER OF TRAIN AND TEST PIXELS FOR THE TWO SUBSCENES OF QP SAR

DATA

step was performed separately for each experiment. The values
of hyperparameters c and γ in SVM and the hyperparameters
number of estimators ne and maximum depth md in RF were
calculated using a grid search strategy. In particular, in each
experiment where the methods RF, SVM, SRF, and SSVM were
performed, a grid search in c ∈ [2−6, 214] and γ ∈ [2−9, 211]
(increment factor of one for the power of two) orne ∈ [50, 2000]
(increment factor of 50) and md ∈ [1, 110] (increment factor of
2) was executed to select the hyperparameter values that provide
the highest κ when half of the training pixels were used for
training and the remaining half for testing.

C. Results of CP Data

The RH images, superpixel segmentation boundaries overlaid
on the RH images, and the classification images of the pro-
posed method along with the SRF and SSVM are presented in
Fig. 4. The quantitative results for the CP subscenes are shown
in Tables III and IV. In the first CP subscene, the proposed
LGS method provides slightly better OA and κ values than the
compared methods, as demonstrated in Table III. This is because,
as seen in the first subscene (the first row in Fig. 4), the land
cover types have distinguishable radar backscatter. Although
the SRF and SSVM methods provide higher class accuracy
values for HRR and ASP classes than the proposed method, class
accuracy values for LRR and VEG classes and higher using the
proposed method than those using SRF and SSVM methods. The
pixel-based RF and SVM classifiers, which do not exploit the

local spatial dependency effect of superpixels, perform poorly
in land cover classification.

In the second subscene, the OA and κ values for the proposed
method, in this case, are noticeably higher than the compared
methods, as given in Table IV. The class TRA has a similar radar
backscatter to that of HRR and LRR classes, as given in Fig. 4(f).
The proposed method incorporates the global spatial information
among superpixels and prevents the misclassifications of LRR
and HRR classes to TRA class, which happen in the case of SRF
and SSVM methods [see Fig. 4(h)–(j)]. The pixel-based RF, in
this case, assigns all the pixels to only VEG and TRA classes
failing to correctly classify this subscene.

D. Results of QP Data

In Fig. 5, the results for the two QP subscenes were shown.
As shown in the HH images of the two subscenes [see Fig. 5(a)
and (f)], due to the similar backscatter values for the classes,
the classification task is more challenging in this case than the
CP dataset. Also, as mentioned in the dataset description in
Section IV-A, the QP dataset has a coarser resolution than that
of the CP data. This is the reason for lower accuracy values
in the case of the QP dataset. In subscene 1 of the QP data,
shown in the first row of Fig. 5, the proposed method performed
much better than the methods SRF and SSVM, which is also
supported by the accuracy values in Table V. There are many
misclassified areas using compared methods. These areas
include the misclassification of vegetation to the river across
the scene in the case of the SRF method [see Fig. 5(d)] and
misclassification of residential areas to vegetation types in the
case of the SSVM method [see Fig. 5(e)].

In the second QP subscene, the SRF method provides classi-
fication results as accurate as the proposed method. The other
three methods including the SSVM, RF, and SVM were unable
to perform the classification accurately where each of these
methods misclassifies a whole class (see the user’s accuracy
values in Table VI). Finally, the standard deviation of the es-
timated Kappa values [61] were also calculated and presented
in the classification quantitative results. For both the CP and
QP subscenes, the standard deviation values were close in the
five compared methods with the proposed method having the
smallest value (more reliability of the estimated Kappa) in all
the cases as compared to the other classification methods. Next,
the analyses of the variation of OA values as functions of the
number of training pixels and the number of superpixels are
provided.

V. DISCUSSION

In the previous section, a description of the experiment setup
and classification results to assess the performance of the pro-
posed semisupervised superpixel-based classification method
was provided. Here, the proposed LGS method is discussed
from different aspects: the data used in the experiments, the
type of SAR data as the input to the LGS method, the number of
graph nodes, and the number of training pixels. In the literature,
previous research was conducted mostly based on using sim-
ulating CP from QP data in the experiments and analysis [4],
[6], [11], [12]; however, here the effort was to use real CP
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Fig. 4. Classification results on the CP dataset. (a) and (f) RH intensity, (b) and (g) superpixel segmentation with labeled train superpixels using train pixels, and
the classification images of the (c) and (h) proposed method, (d) and (i) superpixel-based RF, and (e) and (j) superpixel-based SVM for Subscenes 1 and 2 of the
CP data.

TABLE III
CLASSIFICATION PERFORMANCE OF THE FIVE COMPARED METHODS IN TERMS OF CLASS ACCURACY VALUES, THE OVERALL ACCURACY, AND THE κ

COEFFICIENT ON THE SUBSCENE 1 OF THE CP SAR DATA

TABLE IV
CLASSIFICATION PERFORMANCE OF THE FIVE COMPARED METHODS IN TERMS OF CLASS ACCURACY VALUES, THE OVERALL ACCURACY AND THE κ COEFFICIENT

ON THE SUBSCENE 2 OF THE CP SAR DATA

data from the RCM mission. This was performed using two
pairs of RCM complex SAR subscenes. These scenes were
captured from the rural areas and it would be an interesting

future study to apply graph-based approaches for SAR data ac-
quired from other applications such as sea-ice classification and
concentration.
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Fig. 5. Classification results on the QP dataset. (a) and (f) HH intensity, (b) and (g) superpixel segmentation with labeled train superpixels using train pixels, and
the classification images of (c) and (h) proposed method, (d) and (i) superpixel-based RF, and (e) and (j) superpixel-based SVM for Subscenes 1 and 2 of the QP
data.

TABLE V
CLASSIFICATION PERFORMANCE OF THE FIVE COMPARED METHODS IN TERMS OF CLASS ACCURACY VALUES, THE OVERALL ACCURACY, AND THE κ

COEFFICIENT ON THE SUBSCENE 1 OF THE QP SAR DATA

TABLE VI
CLASSIFICATION PERFORMANCE OF THE FIVE COMPARED METHODS IN TERMS OF CLASS ACCURACY VALUES, THE OVERALL ACCURACY, AND THE κ

COEFFICIENT ON THE SUBSCENE 2 OF THE QP SAR DATA
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Fig. 6. Overall accuracy of the proposed method as functions of the number
of superpixels in the superpixel segmentation image. (a) CP—Subscene 1.
(b) CP—Subscene 2. (c) QP—Subscene 1. (d) QP—Subscene 2.

An important characteristic of the proposed method is that it
employs the complex CP coherence and QP covariance matrices,
and in this manner, it preserves the phase information inherent
in the complex SAR data. In comparison, the main body of
previous studies [3], [4], [62], [63] have used the intensity images
and the child parameters derived from CP in their experiments.
From the perspective of using superpixels (instead of pixels),
it was shown in the previous section that the poor performance
of the pixel-based SVM and RF methods noticeably improves
using superpixels. Also, superpixels make the application of the
proposed graph-based method feasible since it is not effective in
terms of computation time to construct a graph with the pixels
as the graph nodes because the number of superpixels is much
less than the number of pixels.

An important parameter that can reduce the exponentially in-
creasing computational cost of the proposed method with larger
graphs is to choose a higher value for the parameterβ, the weight
of the spatial context model, which controls the smoothness of
the segmentation results. By setting a large value of β in (4),
the PolarIRGS and CP-IRGS segmentation methods provide
a smoother segmentation image with fewer superpixels. The
sensitivity of OA as a function of the number of superpixels was
shown in Fig. 6. In this experiment, the β values were reduced
gradually allowing for more superpixels in the segmentation
image. For all the cases, after an increase in OA accuracy, the
values of OA remain relatively steady. This shows that it is
unnecessary to construct the graph using a highly oversegmented
image as with a lower number of superpixels the algorithm
executes much more quickly. Using the spatial resolution and
size of the scenes, as well as the number of superpixels, the
average ground area per superpixel can be calculated. For the
number of superpixels associated with the highest OA accuracy
value for each subscene from Fig. 6, the average ground area
per superpixel was approximately 3191 and 3486 m2 for the CP
and QP subscenes, respectively.

The CP and QP scenes were acquired from different areas
with different land cover types. Although some land cover types
are similar in both datasets (e.g., residential and vegetation),
depending on the nature of the land cover types that are different
from CP to QP scenes (e.g., asphalt and train in the CP scenes and

Fig. 7. Overall accuracy of the five compared methods as functions of the
number of training pixels per class.

river and shore in the QP scenes), the classification performance
varies for the similar land cover types from CP to QP scenes.
For instance, HRR class in the CP scene has a similar SAR
backscatter to TRA. However, in the QP scenes, HRR has a
similar backscatter to SHR and RIV classes, and therefore, the
classification of the class HRR is more challenging in the QP
scene than in the CP scene. This makes it difficult to draw any
conclusion about comparing classification performance for the
class HRR between the CP and QP scenes. As another example,
the misclassification of the VEG class is due to the presence
of the class ASP in the CP scene; however, there are two types
of VEG in the QP scene and they have a similar appearance to
the class RIV. Thus, the classifier is more challenged when it is
applied to the QP scene than the CP scene.

Furthermore, CP and QP scenes have different resolution
values; as discussed before, the CP scene has a better resolution
than the QP one. This as well can make it difficult to draw a
fair conclusion between these two modes (CP and QP) using
the current SAR datasets. Future work should investigate the
performance of these modes using a pair of CP and QP scenes
that are acquired from the same area—and preferably with the
same resolution.

The number of graph nodes increases with a larger scene.
Although the computation time still increases as the number
of superpixels becomes larger for large scenes, it is not a big
concern due to the following two reasons: 1) the calculation of
the affinity matrix elements needs to be done only once (not
an iterative process) for the whole classification process, 2) the
number of superpixels in an image does not depend on the size of
the image but mainly depends on the homogeneity of the image,
and as such a large homogeneous image will not necessarily
have an exponentially-increased number of superpixels.

Another aspect that is discussed here is to evaluate the perfor-
mance of the LGS method using a very low number of training
pixels. This is important because collecting labeled pixels is not
only costly but can also be inaccurate. To assess the performance
of the proposed method as compared to the other methods with
small numbers of training pixels, the classification OA values
were calculated by choosing the number of training pixels from
the set {2, 5, 10, 20, 30, 40, 50}, and plotted, as presented in
Fig. 7. As expected, in general, the OA values of all the methods
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increase with more number of training pixels. The proposed
method in all datasets provides consistently higher classification
rates compared to the other methods. Also, the accuracy values of
the RF method are mostly higher than those of the SVM method
comparing either pixel-based or superpixel-based versions of
these two classifiers. In all cases, with only five training pixels
per class, the proposed method provides accuracy of ∼ 80%
where the other methods typically need a much higher number
of training pixels to obtain accuracy as high as 80%.

In comparison with the CNN-based methods, although
the proposed method can have the disadvantage of relying
on superpixels (erroneous superpixels may lead to wrong
boundaries) and the need for having labeled pixels in the scene
that is being classified, it provides a simple closed-form solution
and incorporates spatial information globally. Future studies
involve developing different CNN architectures that are defined
on a graph (an example study is a work by [64]) and applied to
complex SAR data input based on their unique statistical
properties. Such studies could be suitable compared to the
proposed LGS method.

VI. CONCLUSION

In this article, a unified complex QP and CP SAR land
cover classification method is proposed. The proposed method
incorporates spatial dependency information on both global
and local scales. The local spatial information is obtained by
using the superpixels generated by the PolarIRGS and CP-IRGS
segmentation methods. A semisupervised graph-based learning
method models the spatial dependency among the superpixels in
a global manner. Two RCM SLC datasets were used to evaluate
the performance of the proposed method.

The effect of local spatial dependency was demonstrated by
comparing the results of the SVM and RF classifiers in pixel-
based (SVM and RF) and superpixel-based methods (SSVM
and SRF), where much higher classification accuracy values
were obtained using superpixel-based methods. The effect of
global spatial dependency was also shown by comparing the
results of the proposed graph-based method and those of the
superpixel-based SVM and RF classifiers, which do not take
advantage of the global-scale spatial information. The results
show that by using global spatial dependency, the proposed
method prevents the misclassifications that happen in the case
of superpixel-based SVM and RF methods. Another important
advantage of the proposed method is that, with a very limited
number of training pixels, the method provides highly-accurate
classification images.

REFERENCES

[1] R. K. Raney, “Hybrid-polarity SAR architecture,” IEEE Trans. Geosci.
Remote Sens., vol. 45, no. 11, pp. 3397–3404, Nov. 2007.

[2] M. Dabboor, S. Iris, and V. Singhroy, “The RADARSAT constellation mis-
sion in support of environmental applications,” in Proc. Multidisciplinary
Digit. Publishing Inst. Proc., 2018, vol. 2, no. 7, Art. no. 323.

[3] F. Charbonneau et al., “Compact polarimetry overview and applications
assessment,” Can. J. Remote Sens., vol. 36, no. S2, pp. S298–S315, 2010.

[4] M. J. Collins, M. Denbina, B. Minchew, C. E. Jones, and B. Holt, “On the
use of simulated airborne compact polarimetric SAR for characterizing
oil–water mixing of the deepwater horizon oil spill,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 8, no. 3, pp. 1062–1077, Mar. 2015.

[5] H. Liu, H. Guo, and L. Zhang, “SVM-based sea ice classification using tex-
tural features and concentration from RADARSAT-2 dual-pol ScanSAR
data,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 4,
pp. 1601–1613, Apr. 2015.

[6] M. Ghanbari, D. A. Clausi, L. Xu, and M. Jiang, “Contextual classification
of sea-ice types using compact polarimetric SAR data,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 10, pp. 7476–7491, Oct. 2019.

[7] T. Esch, A. Schenk, T. Ullmann, M. Thiel, A. Roth, and S. Dech, “Char-
acterization of land cover types in TerraSAR-X images by combined
analysis of speckle statistics and intensity information,” IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 6, pp. 1911–1925, Jun. 2011.

[8] K. Huang, W. Nie, and N. Luo, “Fully polarized SAR imagery clas-
sification based on deep reinforcement learning method using multiple
polarimetric features,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 12, no. 10, pp. 3719–3730, Oct. 2019.

[9] R. Yang, X. Xu, Z. Xu, H. Dong, R. Gui, and F. Pu, “Dynamic fractal
texture analysis for PolSAR land cover classification,” IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 8, pp. 5991–6002, Aug. 2019.

[10] B. Ren, B. Hou, J. Chanussot, and L. Jiao, “PolSAR feature extraction via
tensor embedding framework for land cover classification,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 4, pp. 2337–2351, Apr. 2020.

[11] B. Brisco, K. Li, B. Tedford, F. Charbonneau, S. Yun, and K. Murnaghan,
“Compact polarimetry assessment for rice and wetland mapping,” Int. J.
Remote Sens., vol. 34, no. 6, pp. 1949–1964, 2013.

[12] M. Ohki and M. Shimada, “Large-area land use and land cover classifi-
cation with quad, compact, and dual polarization SAR data by PALSAR-
2,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 9, pp. 5550–5557,
Sep. 2018.

[13] X. Ren and J. Malik, “Learning a classification model for segmentation,”
in Proc. IEEE 9th Int. Conf. Comput. Vis., 2003, pp. 10–17.

[14] T. Priya, S. Prasad, and H. Wu, “Superpixels for spatially reinforced
Bayesian classification of hyperspectral images,” IEEE Geosci. Remote
Sens. Lett., vol. 12, no. 5, pp. 1071–1075, May 2015.

[15] A. Farag, L. Lu, H. R. Roth, J. Liu, E. Turkbey, and R. M. Summers, “A
bottom-up approach for pancreas segmentation using cascaded superpixels
and (deep) image patch labeling,” IEEE Trans. Image Process., vol. 26,
no. 1, pp. 386–399, Jan. 2016.

[16] D. Stutz, A. Hermans, and B. Leibe, “Superpixels: An evaluation of the
state-of-the-art,” Comput. Vis. Image Understanding, vol. 166, pp. 1–27,
2018.

[17] R. Uziel, M. Ronen, and O. Freifeld, “Bayesian adaptive superpixel seg-
mentation,” in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 8470–8479.

[18] J.-S. Lee, M. R. Grunes, and R. Kwok, “Classification of multi-look
polarimetric SAR imagery based on complex Wishart distribution,” Int.
J. Remote Sens., vol. 15, no. 11, pp. 2299–2311, 1994.

[19] M. Ghanbari, D. A. Clausi, and L. Xu, “CP-IRGS: A region-based segmen-
tation of multilook complex compact polarimetric SAR data,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 14, no. 1, pp. 6559–6571,
Jun. 2021.

[20] P. Yu, A. Qin, and D. A. Clausi, “Unsupervised polarimetric SAR im-
age segmentation and classification using region growing with edge
penalty,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1302–1317,
Apr. 2012.

[21] Q. Yu and D. A. Clausi, “IRGS: Image segmentation using edge penalties
and region growing,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30,
no. 12, pp. 2126–2139, Dec. 2008.

[22] S. Leigh, Z. Wang, and D. A. Clausi, “Automated ice–water classification
using dual polarization SAR satellite imagery,” IEEE Trans. Geosci.
Remote Sens., vol. 52, no. 9, pp. 5529–5539, Sep. 2014.

[23] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,”
Synth. Lectures Artif. Intell. Mach. Learn., vol. 3, no. 1, pp. 1–130, 2009.

[24] P. Sellars, A. I. Aviles-Rivero, and C.-B. Schönlieb, “Superpixel contracted
graph-based learning for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 6, pp. 4180–4193, Jun. 2020.

[25] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data
with label propagation,” Carnegie Mellon Univ., Tech. Rep., 2002.

[26] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning
with local and global consistency,” in Proc. Adv. Neural Inf. Process. Syst.,
2004, pp. 321–328.

[27] S. Jia, X. Deng, M. Xu, J. Zhou, and X. Jia, “Superpixel-level weighted
label propagation for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 7, pp. 5077–5091, Jul. 2020.

[28] G. A. Seber, Multivariate Observations, vol. 252. Hoboken, NJ, USA:
Wiley, 2009.

[29] L. Wang, C. Shi, C. Diao, W. Ji, and D. Yin, “A survey of methods incorpo-
rating spatial information in image classification and spectral unmixing,”
Int. J. Remote Sens., vol. 37, no. 16, pp. 3870–3910, 2016.



3904 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

[30] J. Geng, H. Wang, J. Fan, and X. Ma, “Deep supervised and contractive
neural network for SAR image classification,” IEEE Trans. Geosci. Remote
Sens., vol. 55, no. 4, pp. 2442–2459, Apr. 2017.

[31] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for
image classification,” IEEE Trans. Syst., Man, Cybern., vol. SMC-3, no. 6,
pp. 610–621, Nov. 1973.

[32] D. A. Clausi, “An analysis of co-occurrence texture statistics as a function
of grey level quantization,” Can. J. Remote Sens., vol. 28, no. 1, pp. 45–62,
2002.

[33] A. Jain and G. Healey, “A multiscale representation including opponent
color features for texture recognition,” IEEE Trans. Image Process., vol. 7,
no. 1, pp. 124–128, Jan. 1998.

[34] J. Geng, J. Fan, H. Wang, X. Ma, B. Li, and F. Chen, “High-resolution SAR
image classification via deep convolutional autoencoders,” IEEE Geosci.
Remote Sens. Lett., vol. 12, no. 11, pp. 2351–2355, Nov. 2015.

[35] Z. Huang, M. Datcu, Z. Pan, and B. Lei, “Deep SAR-Net: Learning
objects from signals,” ISPRS J. Photogrammetry Remote Sens., vol. 161,
pp. 179–193, 2020.

[36] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image clas-
sification via kernel sparse representation,” IEEE Trans. Geosci. Remote
Sens., vol. 51, no. 1, pp. 217–231, Jan. 2013.

[37] X. Lv, D. Ming, Y. Chen, and M. Wang, “Very high resolution remote
sensing image classification with SEEDS-CNN and scale effect analysis
for superpixel CNN classification,” Int. J. Remote Sens., vol. 40, no. 2,
pp. 506–531, 2019.

[38] R. Ji, Y. Gao, R. Hong, Q. Liu, D. Tao, and X. Li, “Spectral-spatial con-
straint hyperspectral image classification,” IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 3, pp. 1811–1824, Mar. 2014.

[39] B. Wang, Z. Tu, and J. K. Tsotsos, “Dynamic label propagation for semi-
supervised multi-class multi-label classification,” in Proc. IEEE Int. Conf.
Comput. Vis., 2013, pp. 425–432.

[40] A. C. Frery, A. H. Correia, and C. d. C. Freitas, “Classifying multifrequency
fully polarimetric imagery with multiple sources of statistical evidence
and contextual information,” IEEE Trans. Geosci. Remote Sens., vol. 45,
no. 10, pp. 3098–3109, Oct. 2007.

[41] B. Hou, Q. Wu, Z. Wen, and L. Jiao, “Robust semisupervised classification
for PolSAR image with noisy labels,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 11, pp. 6440–6455, Nov. 2017.

[42] H. Liu, S. Yang, S. Gou, S. Liu, and L. Jiao, “Terrain classification based
on spatial multi-attribute graph using polarimetric SAR data,” Appl. Soft
Comput., vol. 68, pp. 24–38, 2018.

[43] S. Wang et al., “Semi-supervised PolSAR image classification based on
improved tri-training with a minimum spanning tree,” IEEE Trans. Geosci.
Remote Sens., vol. 58, no. 12, pp. 8583–8597, Dec. 2020.

[44] B. Hou, J. Guan, Q. Wu, and L. Jiao, “Semisupervised classification
of PolSAR image incorporating labels’ semantic priors,” IEEE Geosci.
Remote Sens. Lett., vol. 17, no. 10, pp. 1737–1741, Oct. 2020.

[45] H. Bi, F. Xu, Z. Wei, Y. Xue, and Z. Xu, “An active deep learn-
ing approach for minimally supervised PolSAR image classification,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 11, pp. 9378–9395,
Nov. 2019.

[46] B. Hou, H. Kou, and L. Jiao, “Classification of polarimetric SAR images
using multilayer autoencoders and superpixels,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 9, no. 7, pp. 3072–3081, Jul. 2016.

[47] J. Geng, X. Ma, J. Fan, and H. Wang, “Semisupervised classification of
polarimetric SAR image via superpixel restrained deep neural network,”
IEEE Geosci. Remote Sens. Lett., vol. 15, no. 1, pp. 122–126, Jan. 2018.

[48] X. Liu, L. Jiao, X. Tang, Q. Sun, and D. Zhang, “Polarimetric convolutional
network for PolSAR image classification,” IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 5, pp. 3040–3054, May 2019.

[49] W. Xie, G. Ma, F. Zhao, H. Liu, and L. Zhang, “PolSAR image classifi-
cation via a novel semi-supervised recurrent complex-valued convolution
neural network,” Neurocomputing, vol. 388, pp. 255–268, 2020.

[50] S. Ren and F. Zhou, “Semi-supervised classification for PolSAR data with
multi-scale evolving weighted graph convolutional network,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 14, no. 1, pp. 2911–2927,
Feb. 2021.

[51] J.-S. Lee and E. Pottier, Polarimetric Radar Imaging: From Basics to
Applications. Boca Raton, FL, USA: CRC Press, 2009.

[52] S. Cloude, Polarisation: Applications in Remote Sensing. London, U.K.:
Oxford Univ. Press, 2010.

[53] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “SLIC
superpixels compared to state-of-the-art superpixel methods,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282, Nov. 2012.

[54] V. Jampani, D. Sun, M.-Y. Liu, M.-H. Yang, and J. Kautz, “Superpixel
sampling networks,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 352–368.

[55] S. Z. Li, Markov Random Field Modeling in Image Analysis. Berlin,
Germany: Springer, 2009.

[56] V. Akbari, S. N. Anfinsen, A. P. Doulgeris, T. Eltoft, G. Moser, and S. B.
Serpico, “Polarimetric SAR change detection with the complex Hotelling–
Lawley trace statistic,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 7,
pp. 3953–3966, Jul. 2016.

[57] M. Ghanbari and V. Akbari, “Unsupervised change detection in polarimet-
ric SAR data with the Hotelling-Lawley trace statistic and minimum-error
thresholding,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 11, no. 12, pp. 4551–4562, Dec. 2018.

[58] P. Yu, “Segmentation of Radarsat-2 dual-polarization sea ice imagery,”
Master’s thesis, Dept. Syst. Des. Eng., Univ. Waterloo, Waterloo, ON,
Canada, 2009.

[59] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20,
no. 3, pp. 273–297, 1995.

[60] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[61] M. L. McHugh, “Interrater reliability: The kappa statistic,” Biochemia
Medica, vol. 22, no. 3, pp. 276–282, 2012.

[62] M. Dabboor and T. Geldsetzer, “Towards sea ice classification using
simulated RADARSAT constellation mission compact polarimetric SAR
imagery,” Remote Sens. Environ., vol. 140, pp. 189–195, 2014.

[63] A. Aghabalaei, Y. Maghsoudi, and H. Ebadi, “Forest classification using
extracted PolSAR features from compact polarimetry data,” Adv. Space
Res., vol. 57, no. 9, pp. 1939–1950, 2016.

[64] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

Mohsen Ghanbari received the B.Sc. degree in ge-
omatics engineering from the University of Tehran,
Tehran, Iran, in 2012, the M.Sc. degree in remote
sensing from the Khajeh Nasir Toosi University of
Technology, Tehran, in 2015, and the Ph.D. degree
in systems design engineering from the University of
Waterloo, Waterloo, ON, Canada, in 2021.

His research interests include computer vision and
machine learning, mainly focusing on synthetic aper-
ture radar image processing.

Linlin Xu (Member, IEEE) received the B.Eng. and
M.Sc. degrees in geomatics engineering from the
China University of Geosciences, Beijing, China, in
2007 and 2010, respectively, and the Ph.D. degree in
remote sensing from the Department of Geography
and Environmental Management, University of Wa-
terloo, Waterloo, ON, Canada, in 2014.

He has authored or coauthored 1 book chapter, 61
journal papers on high-rank remote sensing journals,
and 37 conference articles on high-impact confer-
ences. His research interests include AI and machine

learning, hyperspectral, LiDAR and SAR remote sensing, and environmental
monitoring.

David A. Clausi (Senior Member, IEEE) received
the Ph.D. degree in systems design engineering from
the University of Waterloo, Waterloo, ON, Canada,
in 1996.

Afterward, he worked in medical imaging with
Mitra Imaging, Waterloo. He started his academic
career in 1997 as an Assistant Professor in geomatics
engineering with the University of Calgary, Canada.
In 1999, he returned to the University of Waterloo
and is currently a Professor who specializes in the
field of intelligent systems and is also the Associate

Dean, Research & External Partnerships, with the Faculty of Engineering. He has
many contributions, conducting research primarily in remote sensing, computer
vision, image processing, and algorithm design.

Prof. Clausi was the Co-chair of IAPR Technical Committee 7 – Remote
Sensing. He has authored or coauthored extensively, received many scholarships,
paper awards, research awards, teaching excellence awards, and his efforts have
led to successful commercial implementations, culminating in the creation and
sale of a tech company. He is a Fellow of the Canadian Academy of Engineering.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


