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A Category-Contrastive Guided-Graph Convolutional
Network Approach for the Semantic

Segmentation of Point Clouds
Xuzhe Wang, Juntao Yang , Zhizhong Kang , Junjian Du, Zhaotong Tao, and Dan Qiao

Abstract—The semantic segmentation of light detection and
ranging (LiDAR) point clouds plays an important role in 3-D
scene intelligent perception and semantic modeling. The unstruc-
tured, sparse and uneven characteristics of point clouds pose great
challenges to the representation of the local geometric shapes,
which degrades semantic segmentation performance. To address
the challenges of describing local geometric shapes due to un-
structured and sparse 3-D point clouds, this article proposes a
category-contrastive-guided graph convolutional network (CGGC-
Net) for the semantic segmentation of LiDAR point clouds. First, a
detailed geometric structure of the raw point clouds is encoded to
represent the inherent geometric pattern within the local neigh-
borhood. At the same time, the geometric structures informa-
tion is transmitted across multiple layers, so that the geomet-
ric structure encoding information containing different receptive
fields and richer neighborhood spatial structure can be aggre-
gated. Following this, the graph convolution neural network uses
the edge convolution layer to adaptively describe the semantic
correlation between the query point and its neighboring points,
and combines the attention mechanism to gather the surrounding
feature information to the query point. As a result, the graph
convolution neural network and attention mechanism are itera-
tively stacked for the aggregation and fusion of spatial context
semantic information, to generate highly discriminative semantic
feature representation. Finally, the superparameters of the model
are learned through a multitask optimization strategy guided by
category-aware contrastive loss and cross-entropy loss. Experi-
ments are conducted on the public SemanticKITTI dataset and
the Stanford large-scale 3-D Indoor Spaces dataset to demon-
strate the effectiveness and reliability of the proposed CGGC-Net
from both quantitative and qualitative perspectives. The results
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indicate its capability of automatically classifying LiDAR point
clouds, with a mean intersection-over-union of 58.4%. Moreover,
multiple comparative experiments also demonstrate the superior
performance of the proposed method, exceeding state-of-the-art
methods.

Index Terms—Attention mechanism, contrastive learning, graph
convolutional network, light detection and ranging (LiDAR),
semantic segmentation.

I. INTRODUCTION

L IGHT detection and ranging (LiDAR) point clouds have in-
creasingly attracted interests in numerous applications, es-

pecially autonomous driving [1], [2], virtual reality and robotics
[3], [4], due to their superior ability to preserve the spatial
detail information of objects or sceneries [5], [6], [7]. In these
applications, fine-grained classification, which assigns semantic
labels to each point that belongs to the objects of interest,
is a fundamental and important task. This detailed semantic
information plays an important role in the downstream tasks,
such as place recognition [8], instance segmentation [9], and
scene reconstruction [10]. Therefore, the automatic fine-grained
classification of LiDAR point clouds has been an active topic.

To date, many methods have been developed for the seman-
tic segmentation of 3-D point clouds. Traditionally, machine
learning-based approaches (e.g., support vector machines [11]
and random forests [12]), where hand-crafted features are de-
signed for representing the geometric structure information of
point clouds, have been adopted for the semantic segmenta-
tion of point clouds. Although these approaches have shown
the capability of automatically classifying point clouds, their
performance is limited by the descriptive ability of the de-
signed hand-crafted features and the reliability of the selected
classifier.

More recently, deep learning techniques have demonstrated
excellent abilities in various computer vision and natural lan-
guage processing fields and are increasingly popular in scene
understanding tasks, such as classification, object detection and
instance segmentation, based on point clouds. Due to the discrete
and disordered data characteristics of point clouds, it is challeng-
ing to directly implement classic convolutional neural networks
on raw point clouds. Some solutions that transform raw point
clouds into regular representations, such as projected images
and structured volumetric grids [13], [14], have been presented,
which then serve as the input of classic convolutional neural
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networks for semantic segmentation. Although these solutions
enhance the descriptiveness and discriminativeness of feature
representation to some extent, the local geometric structures and
fine-grained semantic contexts are difficult to preserve due to the
regular transformation.

To directly carry out an end-to-end deep learning model on
raw point clouds for extracting pointwise semantic features,
pioneering networks, such as PointNet [15] and PointNet++
[16] have paved the way using shared multilayer perceptrons
(MLPs). However, they ignore semantic correlations between
neighbors. Subsequently, many researchers have devoted efforts
to encoding semantic correlations between neighbors [17], [18],
[19], [20] and fusing multiscale semantic features [21], [22],
due to the different semantic contexts at different scales [23].
For example, graph convolution [24], [25] and attention pooling
mechanisms [20], [26], [27], [28], [29], [30] were used to gen-
erate promising classification results by efficiently aggregating
contextual semantic information.

Although there have been many deep learning-based methods
presented for the semantic segmentation of point clouds in recent
years, this task is remarkably challenging due to the follow-
ing aspects. First, the efficient aggregation of rich semantic
information at various scales remains difficult due to unstruc-
tured data characteristics. Although graph convolution-based
methods have been explored for the semantic segmentation of
point clouds in recent years [17], [18], [31], capturing local
geometric patterns and aggregating spatial context is neces-
sary, especially for dynamic and large scenarios [27], [32],
[33]. Second, although semantic supervised labels effectively
improve the descriptiveness of feature representation via an
end-to-end deep learning architecture, most approaches update
the model superparameters to converge by only comparing their
predictions with the associated semantic labels. Few studies have
focused on explicitly using semantic supervised information
to guide the process of generating high-level semantic feature
representations of point clouds.

To address the aforementioned issues, this article devel-
ops a category-contrastive guided graph convolutional network
(CGGC-Net) method for the semantic segmentation of LiDAR
point clouds. Moreover, both quantitative and qualitative analy-
ses are conducted on the public SemanticKITTI dataset bench-
mark [34] and S3DIS dataset [35] to evaluate its robustness and
reliability. Our contributions in this article are as follows.

1) The spatial context information from both the detailed
geometric structure and semantic feature are locally aggre-
gated for each point in parallel using a graph convolution
module and attention mechanism as the receptive field
progressively increases, to generate highly discriminative
semantic feature representation.

2) A category-contrastive loss is designed to guide the learn-
ing process of semantic feature representation, which
would make the semantic features of the same class remain
close while put those of different classes far apart. More-
over, combined with the cross-entropy loss, a multitask
optimization strategy can jointly utilize the discrepancies
among different categories to highly-discriminative and
descriptive semantic representation.

The rest of this article is organized as follows. The related
works are briefly reviewed in Section II. Section III describes the
developed LiDAR point cloud classification framework in detail.
Section IV presents the experimental results and an analysis for
both quantitatively and qualitatively evaluating the developed
method. Finally, Section V concludes this article.

II. RELATED WORK

Semantic segmentation, especially for large scale scenes,
has been an active topic. However, this is also challenging for
accurate semantic classification in large scenes due to complex
elements, varieties of scene classes, occlusions, and noise. In
recent years, deep learning techniques have become increasingly
popular since they can produce promising interpreted results.
In this section, we review the relevant literature, which can be
generally divided into four groups: projected image methods,
voxel-based methods, point-based methods, and graph-based
methods.

A. Projected Image Methods

Due to the great success of 2-D images semantic segmen-
tation [36], [37], unordered and unstructured 3-D point clouds
have been initially projected onto regular and structured 2-D
images. Subsequently, numerous mature deep neural networks
for 2-D image semantic segmentation could have been used
for pixelwise labeling. 2-D multiview synthetic images have
been generated from point clouds [38], [39], [40], [41], and
multistream convolutions on different views have been applied
for labeling the semantic information, which is then reprojected
to each point. In addition, spherical projections, such as SPLAT-
Net [42] and SequeezeSeg [43], have been used to alleviate
geometric information loss during preprocessing. To consider
the uneven distribution of point clouds in grid cells, polar bird’s-
eye-view representations, such as PolarNet [44], have been
defined through the polar coordinate system. Although mature
2-D semantic segmentation methods can be implemented on
regular and structured projected images, geometric information
is inevitably missing during projection transformation, which
can inhibit the classification quality.

B. Voxel-Based Methods

Voxel-based methods, such as VoxNet [13] and OctNet [45],
convert discrete 3-D point clouds into volumetric occupancy
grids whose feature maps can be generated through a 3-D
convolutional neural network (3-D CNN). It is obvious that
as the resolution of voxelization increases, richer geometric
information can be retained, which results in excessive memory
consumption and a heavy computational cost. To ease this issue,
sparse convolution has been designed and implemented on flexi-
ble unbalanced octrees that adaptively partition 3-D point clouds
based on sparsity [45], [46], [47]. In fact, voxel-based methods
extend the success of 2-D convolution into 3-D space, which can
effectively deal with unstructured point clouds. Similar to pro-
jected image-based methods, voxel-based methods inevitably
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lead to information loss although they retain 3-D information to
some extent.

C. Point-Based Methods

Point-based methods carry out the convolution operation di-
rectly on unordered and irregular point clouds. PointNet [15] was
a pioneering model which that utilized on unordered and irregu-
lar point clouds. Although it enhanced the feature representation
capability by directly using raw point clouds, PointNet ignored
the spatial context without taking neighborhood information
into consideration. Subsequently, PointNet++ [16] applied a
ball-query module to extract and aggregate local features using
a hierarchical structure. Nevertheless, PointNet++ still lost the
relationship between points within a ball-query set. To this end,
other works [24], [25] concentrated on how to carry out an
effective and efficient convolutional operator directly on raw
point clouds via graph convolutional networks and attention
mechanisms [22], [27], which augments and fuses feature maps
of multiple resolutions for large-scale semantic segmentation.

D. Graph-based Methods

Point clouds inherently lack topological information, so de-
signing a model to recover topology can enrich the representa-
tion power of point clouds. To better exploit semantic relevance
between neighbors, numerous studies have focused on relation-
ship modeling via graph structures or attention mechanisms,
where semantic context could then be extracted and aggregated
into the corresponding center points. Graph neural networks
(GNN) were first proposed by Hu et al. [27], and have been
widely used in different fields, including semantic understanding
[49], medical neuroimaging [50] and social networks [51], to
describe the local and global contexts within unstructured data
in recent years. For instance, superpoint graph (SPG) [52] was
constructed to realize semantic segmentation in a large scene.
However, this required extra preprocessing for segmenting the
superpoints, and the labeling quality in large scenarios was
unsatisfactory. Wang et al. [18] proposed the graph attention
convolutional network, where adaptive weights were assigned
to different neighbors through a self-attention mechanism, and
then the local spatial context could be aggregated using adaptive
pooling to automatically classify point cloud data. Wang et al.
[31] developed a dynamic graph convolutional neural network
that adopted edge convolution to extract and dynamically update
local semantic features through the characteristic relationship
between center points and neighbors. Liu et al. [32] explored the
graph convolutional network to preserve rich geometric details
and capture long spatial dependencies for enhancing the network
feature representation.

To summarize, inspired by [22], [27], [32], our work uses
a graph convolutional neural network as the baseline and is
dedicated to semantic segmentation directly on raw LiDAR
point clouds. Unlike previous GNNs that focused on updating
semantic features and neglected the detailed geometric structure
information [18], [22], [31], [32], our work encodes detailed
geometric structure information into semantic features and ag-
gregates the long-range spatial context as the receptive fields are

expanded and stacked. In addition, our work further extends the
applications of contrastive learning on a small number of objects
such as 2-D images [53], [54] to the semantic segmentation
of massive 3-D point clouds and verifies the effectiveness of
the category-aware optimization strategy in the point cloud
domain.

III. METHODOLOGY

To capture local geometric patterns and aggregate spatial con-
text effectively and efficiently, this article follows the encoder-
decoder architecture [16], [20], [27], [37] and develops a CGGC-
Net method for the semantic segmentation of LiDAR point
clouds, which has an encoder network and a corresponding
decoder network, followed by a final point-wise classification
layer. Fig. 1 illustrates the pipeline of the proposed CGGC-Net
for the semantic segmentation of point clouds.

The encoder network consists of four encoder layers; the
detailed geometric structure and semantic feature are locally
aggregated for each point in parallel using graph convolution
module and attention mechanism as the receptive field pro-
gressively increases through iterative stacking. Moreover, the
detailed geometric structure information is transmitted across
multiple encoder layers to effectively preserve complex local
geometric patterns. Consequently, multiple encoder layers are
progressively stacked for the aggregation and fusion of spatial
context information to generate highly discriminative semantic
feature representation. Each encoder layer has a corresponding
decoder layer, and thus the decoder network also has four
layers. The encoder layer and its corresponding decoder layer
are connected through skip connections, which combine deep,
semantic, coarse-grained feature maps from the decoder layer
with shallow, low-level, fine-grained feature maps from the en-
coder layer. Finally, the decoder output is fed into a classification
layer, consisting of three fully connected layers and a multiclass
softmax classifier, to produce class probabilities for each point
independently. The superparameters of the model are learned
through a multitask optimization strategy guided by category-
aware contrastive loss and cross entropy loss. As a result, the
raw point clouds are interpreted to obtain the final pointwise
labeling results. More details of the proposed CGGC-Net are
given below.

A. Detailed Geometric Structure Encoding

In this section, a detailed geometric structure encoding mod-
ule is designed to describe inherent spatial relations within
the local neighborhood and preserve complex local geometric
patterns as much as possible, which enhances the expression and
refinement of the subsequent semantic features.

1) Local Geometric Structure Descriptor: X-Y-Z coordinate
information is incapable of directly describing complex local
geometric patterns since relative spatial relations between the
query point and its neighbors are unexplored. Thus, inspired by a
previous work [32], we use a local geometric structure descriptor
to explicitly represent their potential geometric structure within
the local neighborhood directly on 3D coordinates.
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Fig. 1. Pipeline of the proposed CGGC-Net for semantic segmentation of point clouds.

A tensor P = [p1, p2, · · · , pn]T is defined to represent a set
of point clouds, wherepi denotes the ith point. For the query point
pi, its neighboring points are gathered using a simple K-nearest
neighbors (KNN) algorithm based on Euclidean distances, as
[p1i , p

2
i , · · · , pKi ] where K denotes the number of neighbors.

Following this, we adopt (1) to describe the geometric structure
of neighborhood

ri = Concat
[
pi, p

k
i , ‖pi − pki ‖,

(
pi − pki

)]
, ri ∈ RK×10

(1)
where pi denotes each center point, pki denotes the K neigh-
boring points of the query point. ‖ · ‖ represents the Euclidean
distance between the query point and its neighboring points,
(pi − pki ) reflects the 3-D coordinates difference between pi
and pki , and Concat[·] denotes the concatenation operation. As a
consequence, r ∈ RN×K×10 is encoded as the representation of
spatial relationships between the query point and its neighboring
points from redundant 3-D coordinates.

To efficiently aggregate the neighboring relations, we use
attentive pooling [27], which adaptively allocates a unique at-
tention score to different neighbors, to automatically learn and
select the salient geometric structures, as defined

g = AttentivePool (r) , g ∈ RN×10 (2)

where AttentivePool(·) denotes the attentive pooling function
consisting of a shared MLP followed by softmax. To summarize,
given the input point cloud P , an informative feature vector
g ∈ RN×10 in the first layer is generated to effectively describe
complex local geometric patterns.

2) Local Geometric Structure Transmission: To capture
complex local structure patterns, a series of downsampling op-
erations is performed to alleviate the limited the size of receptive

field. With the encoder layer deepening through downsampling
operations, the receptive field of each point increases. In this
way, richer local structures are progressively aggregated due
to wider context information for each point. It is inevitable
that fine-grained spatial relationships might be lost. Therefore,
the geometric structure feature g is transmitted across multiple
encoder layers to effectively preserve complex local geometric
patterns, so that it is efficiently augmented and enriched with
a combination of different receptive fields, which provides a
fundamental spatial basis for mining the semantic correlation
between neighboring points of discrete 3-D point clouds. Finally,
the detailed local geometric structure encoding in the tth layer
can be represented as

g̃1 = g

g̃t = Concat
[
DS(g̃t−1

)
, gt] (3)

where DS denotes down-sampling operation, Concat[·] denotes
the concatenation operation, 1 ≤ t ≤ 4 in this article. Fig. 2
illustrates differences of local structure patterns under different
receptive fields.

B. Geometric and Semantic Aggregation Graph Convolution
Module (GSAGCM)

In this section, we design a graph convolutional neural net-
work module to produce new semantic features by aggregating
the neighboring semantic information, which takes the detailed
local geometric structure encoding g̃ and semantic features F
as the inputs. Initially, the semantic features are embedded
from 3-D coordinates using a simple MLP operation. In the
GSAGCM, the propagated edge convolution (PEConv) is used
to extract the semantic feature relationship between the query
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Fig. 2. Differences of local structure patterns under different receptive fields, where three layers are illustrated.

Fig. 3. Pipeline of GSAGCM.

point and its neighbors, and aggregates the neighboring fea-
ture information to the query point through attention pooling.
Finally, detailed local geometric structures and semantic fea-
tures are fused by stacking several layers with residual con-
nection to update the new semantic feature per point. Different
from original RandLA-Net [27], we adopt attentive pooling
to aggregate the encoded local spatial information into the
associated query point. In addition, after multiple transmis-
sions, we use a further augmented local geometric structure
to induce the expression and refinement of semantic features
with the help of graph convolution rather than a single layer
of MLP.

1) Propagated Edge Convolution for Feature Aggregation:
Within the local neighborhood, PEConv and attention pool-
ing are used to achieve the extraction and transmission of

neighborhood information. This consists of three parts: graph
model construction; edge feature representation; and edge fea-
ture aggregation. As a result, a new semantic feature per point
is produced, which aggregates newer semantic features using
PEConv and attention pooling (see Fig. 3) or serves as the input
of the subsequent encoder layer with the detailed local geometric
structure encoding (see Fig. 1).

1) Graph Model Construction: Unlike 2-D raster images, 3-D
point clouds are discrete and disordered, and there is no
explicit topological relationship between points. However,
points that are adjacent to each other in Euclidean space
usually have interaction relationships. In addition, for
a specific point, the geometric structure formed by its
several neighboring points is the foundation of semantic
mining. As mentioned above, we obtain the index of the
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Fig. 4. Illustration of the increasing size of receptive field when stacking.

K nearest points of each point by KNN, and establish the
directed edge between the query points and the neighbors.

2) Edge Feature Representation: Many graph-based net-
works stack both global and local information as their
edge representations. What distinguishes us from them is
that the local geometric structure is also included in ad-
dition to the semantic feature used in building undirected
edges. Considering that the global information has been
embodied in g, we eventually use the difference between
the query points and neighbors, which can be calculated
as

G = [g̃,F ] (4)

eji = Gi −Gj
i , e

j
i ∈ R10×t+C (5)

whereGj
i represents the geometric and semantic stacked feature

of the jth point in the corresponding neighborhood of the ith

point.
Ultimately, we extract the edge attribute features from e by

means of a three-layer successive stacked MLP, which can be
expressed as follows:

Ej
i = hΘ

(
eji

)
(6)

where hΘ1
denotes feature learning of Rd × Rd → Rd′

, d is the
feature dimension, and Θ1 denotes the learnable weights of the
multiple groups.

3) Edge Feature Aggregation: To aggregate edge attribute
features into the query point while avoiding the loss of
important edge information, we introduce a self-attention
mechanism to adaptively learn the unique score of each
edge attribute and maximize the characterization of the
edges they contain. The aggregated feature of the query
point can be calculated, as defined in

F i = hΘ2
(AttPool (Ei)) (7)

where Θ2 is also a group of learnable weights.

2) Residual Connected and Dilate Stacked Module: To ex-
pand the receptive fields, many existing works [55], [56] opti-
mized the K-nearest searching strategy, which was required to
search more neighboring points in different receptive regions
and select a fixed number of neighboring points regularly. Un-
doubtedly, these approaches would create additional memory
costs on searching more nearest points. In this section, we stack
multiple propagated edge convolutional layers to increase the
receptive field by means of feature propagation. Moreover, to
address the problem of gradient vanishing and model degrada-
tion in deep neural networks, a PEConv is used as our residual
connection rather than MLP [57], [58].

Fig. 4 illustrates the increasing size of the receptive field
when stacking. When the PEConv is first performed on the
input G, the receptive field of each point is the corresponding
number of neighborhoods K. In regard to the second layer,
although the number of neighborhoods remains constant, the
actual receptive field becomes K2 since the semantic feature of
neighbors has contained information of its own neighborhood
in the previous layer. As a result, the size of the receptive field
is repeatedly expanded through feature aggregation within the
local neighborhood. In this article, we ultimately stack 2 layers.

C. Category-contrastive and Cross-Entropy Guided
Optimization Strategy

It is well known that the superparameters within the whole
network are learned for mapping a set of inputs to a set of outputs
from massive high-quality labeled training data. Generally, the
problem of learning is cast as an optimization problem, which
navigates the space of possible sets of superparameters within
the whole network to produce the satisfactory predictions. Here,
we present a category-contrastive and cross-entropy guided op-
timization strategy to search for a candidate solution with the
optimal values.

For the multitask classification of point clouds, the most
typical and effective method is to describe the cross-entropy
loss between predictions and the ground truth, which can be
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calculated as follows:

Lcro = −
V∑

i = 1

yi log (ŷi) + (1− yi) log (1− ŷi) (8)

where yi denotes the predictions, ŷi denotes the ground truths,
and V represents the number of categories. Consequently, the
predicted probability distribution gradually approaches the true
probability distribution by minimizing Lcro through gradient
back-propagation.

However, cross-entropy loss ignores the relations between
categories themselves. In fact, class separation in the latent fea-
ture space would also be an ideal characteristic to discriminate
among different categories. Theoretically, feature vectors of the
same category should remain close in latent feature space, while
those of different categories should be far apart. Therefore,
based on output feature µv generated by the encoder-decoder
architecture belonging to class v, we design a category-guided
contrastive loss that is devoted to depicting the category-specific
distance from the centroid representation of each class δi. It can
be shown as

Lcont =
V∑
i=0

l (δi, µv) (9)

l (δi, µv) =

{
D (δi, µv) , i = v
max {0,Δ−D (δi, µv)} , otherwise

(10)

where D(·) denotes Euclidean, cosine or any other distance
function, and Δ represents the maximum distance of the same
class and the minimum distance of different classes.

In the specific implementation, we define a fixed size of
tensor βi ∈ RS×D per category i for storing the corresponding
features, where D is the dimension of µv and S represents the
maximum number of stored features. In addition, we randomly
select N points for updating the centroid representation of each
category, which strikes a balance between effectiveness and
efficiency. The centroid representations δnew

i is calculated based
on βi every Ip iterations. To avoid rapid fluctuation, we set a
momentum m between δi and δnew

i so that the centroid in the
feature space can evolve steadily in an end-to-end manner, which
is formulated as:

δnew
i

′ = m× δi + (1−m)× δnew
i . (11)

Finally, the total loss function can be represented as

Ltotal = λ × Lcont + Lcro (12)

where λ is a weight between category-guided contrastive loss
Lcont and cross-entropy loss Lcro. As a result, the differences
between the prediction and the ground truth are measured and the
superparameters of the model are updated using the stochastic
gradient descent algorithm so that the next evaluation reduces
the differences, which enables the superparameters of the model
to move toward convergence.

IV. EXPERIMENTATION AND ANALYSIS

A. Experimental Dataset and Evaluation Metrics

To verify the effectiveness and reliability of the proposed
approach, we select two well-known public dataset benchmarks:
SemanticKITTI dataset [34] and the Stanford large-scale 3-D
Indoor Spaces dataset [35]. Raw point clouds are manually
classified into 19 categories as ground truths and the 3-D point
cloud data only presents X-Y-Z, intensity information without
RGB information. S3DIS dataset is divided into six large-scale
indoor areas, containing more than 215 million labeled points.
And raw points are manually annotated into 13 categories. Each
point has 3-D coordinates and RGB information. According to
previous work [27], [32], we adopt six-fold cross-validation for
evaluation. To measure the classification quality, we conduct
the quantitative evaluation using intersection over union (IoU)
per class, mean IoU (mIoU), overall accuracy, mean accuracy
over classes (mAcc) and Kappa as defined in (13)–(17). IoU is a
measure which imposes the penalty of false positive on the class
accuracy per class, and the mean IoU is the IoU over union in all
classes. Overall accuracy denotes the sum of the true positives
plus true negatives divided by the total number of queried
individuals. And mAcc denotes the sum of the true positives plus
true negatives divide by the total number of queried individuals,
which reflects the proportion of the correct samples identified
by the classifier to all samples

IoU =
TPi

GTi + FPi
(13)

mIoU =

∑C
i=1 IoUi

C
(14)

Overall accuracy (OA) =
TP + FN

TP + FP + TN + FN
(15)

mAcc =
1

C
· TP + TN

TP + FN + FP + TN
(16)

Kappa =
po − pe
1− pe

(17)

where TP denotes the number of positives that are correctly
classified as positives, TN denotes the number of positives that
are correctly classified as negatives, FN denotes the number
of negatives that are incorrectly classified as negatives, and FP
denotes the number of negatives that are incorrectly classified
as positives, TPi, GTi, and FPi denote the number of positives
that are correctly classified as positives, ground truth and the
number of negatives that are incorrectly classified as positives
in the class i, respectively. po is the overall accuracy, and pe can
be denoted as

pe =

∑C
i=1 ai+ ∗ a+i

N2
(18)

where a represents the confusion matrix, and N is the number
of samples.
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TABLE I
RESULTS OF DIFFERENT APPROACHES ON SEMANTICKITTI DATASET

B. Implementation Details

The experiments are implemented on deep learning frame-
work PyTorch [63] with Ubuntu18.04. We train for 100 epochs
on Geforce RTX 3080 GPU (memory size is 12GB) with a bath
size of 6. Besides, we use Adam optimizer and weight decay is
set as 0.00001. The initial learning rate is set as 0.004 and we
adopt exponential scheduler with gamma = 0.95 to maintain a
better learning rate. Moreover, to prevent the overfitting, dropout
with p = 0.5 is added after the fully connected layer.

C. Analysis of Semantic Segmentation Results

1) Semantic Segmentation on the SemanticKITTI Dataset:
Table I gives the quantitative comparisons with different existing
models on the SemanticKITTI dataset. It clearly illustrates that
our proposed CGGC-Net has surpassed the other approaches by
a large margin with an mIoU of 58.4%. In detail, the CGGC-
Net demonstrates a remarkable advantage in classifying small
instances such as person, bicycle, motorcycle, and bicyclist,
achieving 58.8%, 35.2%, 40.8%, and 57.6%, respectively.

In addition, some qualitative results are visualized, as shown
in Fig. 5, where the first and third rows represent the ground
truth and the second and fourth rows represent our prediction.
We could observe that our CGGC-Net is able to classify most
objects and still perform well in incomplete places due to oc-
clusions or defections. This could be attributed to the geometric
structure encoding, which captures inherent geometric spatial
relations within neighborhoods to provide more geometric in-
formation for the GSAGCM. Therefore, we could conclude that
our CGGC-Net is capable of capturing and exploiting both the
local geometric and semantic information of small local regions
as well as incomplete places.

Moreover, the visualization of the confusion matrix is also
provided in Fig. 6. Kappa reaches 0.847, demonstrating that
our proposed CGGC-Net is an excellent classifier for semantic
segmentation of large-scale outdoor scene point clouds.

2) Semantic Segmentation on the S3DIS Dataset: To further
evaluate the effectiveness of the proposed network in a large-
scale indoor scenario, experiments are reported on the S3DIS
dataset. In our implementation, the six-fold cross-validation
strategy is applied, where every five areas are used as the training
set to evaluate the remaining area.

Table II gives the comparable quantitative results with dif-
ferent existing models on the S3DIS dataset. It shows that the
OA and mIoU achieve 88.5% and 70.2%, respectively. In par-
ticularly, our method achieves the highest accuracy in the floor,
beam, window, and sofa. It is worth noting that our proposed
CGGC-Net is superior to a CAN [32], even though they can
capture long-range dependencies to enhance the representation
of point clouds.

Moreover, the detailed semantic segmentation results of 6 ar-
eas are also reported in Table III and the associated visualization
of the confusion matrix is shown in Fig. 8. Many metrics have il-
lustrated that our CGGC-Net is an ideal classifier for large-scale
indoor scene point clouds. Fig. 7 shows the selected examples on
the S3DIS dataset. We can observe that our CGGC-Net performs
well in all categories, especially in wall, beam, door and chair.
Owing to the local geometric multiple transmission and the
GSAGCM, the network can capture geometric and semantic
relations from long distances. As a result, there are few mistakes
at the boundaries of objects.

D. Sensitivity Analysis of Numbers of Neighbors

The number of nearest neighbors directly determines the
description of the local geometric structure as well as the
extraction of semantic features in the GSAGCM. Thus, a se-
ries of comparative experiments are conducted to discuss the
influence of the parameter K, which is set to 8, 12, 16, 20,
and 24. Fig. 9 indicates the sensitivity analysis of the size of
the neighborhood on the classification quality. When K is set
to 8, CGGC-Net cannot effectively extract the geometric and
semantic features due to the limited neighborhood information.
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Fig. 5. Examples of semantic segmentation results on SemanticKITTI.

TABLE II
RESULTS OF DIFFERENT APPROACHES ON S3DIS DATASET

As the size of the neighborhood rises, the classification quality
progressively improves, with a fluctuation in mIoU of over
5%. However, when it reaches 24, a small degradation appears
possibly due to potential noise and the adhesion of adjacent
objects. Fig. 10 also shows a detailed comparison of different
numbers of neighbors in each category. We can observe that it has
a more prominent impact on some small-scale instances, such
as bicycles, trucks and other-vehicles while some large-scale
instances such as buildings, roads and vegetation are slightly

influenced. Considering the classification performance and com-
putational cost, we set K to 16 as an optimal value in our
work.

E. Sensitivity Analysis of the Length of the Stored Tensor βi

The parameter S controls the length of each βi, determin-
ing the number of latest features stored in iteration. Unlike
contrastive learning applied in 2-D images, the value of S is
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TABLE III
DETAILED SEMANTIC SEGMENTATION RESULTS ON 6 AREAS OF S3DIS DATASET

Fig. 6. Visualization of confusion matrix of SemanticKITTI 08 sequence.

TABLE IV
ANALYSIS OF THE LENGTH OF βi

recommended to be set higher, asβi can be renewed rapidly with
massive point clouds. However, as given in Table IV, when S
exceeds 200, there is also a decreasing trend in mIoU. Ultimately,
S is set as 200 in our implementation.

F. Sensitivity Analysis of the Margin in Contrastive Loss

The parameter margin Δ is a criterion of similarity measure
using category-specific distances. It defines the maximum and

TABLE V
ANALYSIS OF THE NUMBER OF SELECTED POINTS EACH ITERATION

TABLE VI
ANALYSIS OF THE NUMBER OF SELECTED POINTS IN EACH ITERATION

minimum distance between input features and the centroid rep-
resentation of the same class in the feature space. The results are
given in Table V. It is worth noting that although the classifica-
tion results may improve as the separation between categories
increases theoretically, the mIoU reaches a peak when Δ is set
as 1.5.

G. Sensitivity Analysis of the Number of Selected Points in
Each Iteration

As explained in Section III.C, it is definitely impossible to
update βi by using the entire point clouds of each iteration
(almost 3× 105) because of the large amount of data. Hence,
we select a fixed number of points randomly. Here, we vary the
parameter N , and the experimental results are given in Table VI.
Consequently, N is set as 5000 in our CGGC-Net.

H. Ablation Studies

In this section, extensive ablation experiments are carried out
to further demonstrate the effectiveness of our CGGC-Net.

1) Ablation Study of Detailed Geometric Structure Encoding:
In the detailed geometric structure encoding module, a local
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Fig. 7. Semantic segmentation results on S3DIS dataset.

Fig. 8. Visualization of confusion matrix on 6 areas of S3DIS dataset. (a) Area 1. (b) Area 2. (c) Area 3. (d) Area 4. (e) Area 5. (f) Area 6.

geometric structure descriptor is employed to describe the in-
herent spatial relations within the neighborhood, and the local
geometric structure transmission is designed to further augment
geometric information with different sizes of the receptive field.
Comparable results with different settings are given in Table VII.
The simplification of the geometric structure leads to the lack
of local geometric information in the neighborhood, resulting in

a decrease of 1.4% in mIoU. In addition, we observe that dif-
ferent forms of transmission play a prominent role in enriching
the local geometric structure. In detail, the geometric structure
feature transmitted across single and multiple layers can cause
an increase of 2.2% and 3.8% in mIoU, respectively.

2) Ablation Study of GSAGCM: Based on PEConv operation,
the GSAGCM utilizes both geometric and semantic information
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TABLE VII
ABLATION RESULTS OF AUGMENTED LOCAL GEOMETRIC STRUCTURE EXPLORATION

TABLE VIII
ABLATION RESULTS OF GSAGCM

Fig. 9. Analysis of different number of neighbors.

to extract the semantic relations between adjacent points, which
achieves the aggregation of semantic contexts. To measure the
performance of the GSAGCM with comparable settings, we
set a series of experiments given in Table VIII. The most
distinguished impact is brought by the GSAGCM, leading to
12.0% and 2.4% increases in mIoU and OA, respectively, which
largely demonstrates that geometric and semantic information
is critical for the semantic segmentation of point clouds. In
addition, the number of stacked PEConvs is of great signifi-
cance, which achieves the highest mIoU (approximately 59.2%).
Using a single layer could prevent information propagation
from a broader perspective, resulting in a decrease of 5.3%
in mIoU. In addition, when the edge attribute feature adopts
hΘ(e

j
i ,Gi), there is a decline of 6.4% and 1.5% in mIoU and OA,

TABLE IX
ABLATION RESULTS OF INTRODUCING CONTRASTIVE LOSS

respectively. Moreover, different forms of residual connections
in the GSAGCM could affect the model to some extent, with
the absence of residual connections and the use of MLP as a
shortcut reducing the mIoU by 6.4% and 10.7%, respectively.
Ultimately, although the max pooling operation retains the most
distinguished features within the neighborhood, some useful
information is inevitably lost compared with attentive pooling,
contributing to a decrease of 1.8% in mIoU.

3) Ablation Study of the Category-Contrastive and
Cross-Entropy Guided Optimization Strategy: The category-
contrastive and cross-entropy guided optimization strategy
adopts additional weighted contrastive loss Lcont, which could
induce the high-dimensional semantic feature to be more
discriminative. The results of introducing contrastive loss on
different datasets are given in Table IX. The introduction of
additional contrastive loss brings an improvement of 1.2%
and 0.4% in mIoU and OA, respectively, in SemanticKITTI.



WANG et al.: CGGC-NET APPROACH FOR THE SEMANTIC SEGMENTATION OF POINT CLOUDS 3727

Fig. 10. IoU changes per class with the different number of neighbors.

Fig. 11. Visualization analysis of contrastive learning (the right one uses contrastive loss).

Meanwhile, the S3DIS dataset can also lead to an increase
ranging from 0.7% to 2.0% in mIoU. We conclude that the
utilization of inter-category information in contrastive learning
is of great significance in both large-scale indoor and outdoor
scenarios.

I. Visualization in Latent Feature Space of
Contrastive Learning

In this section, to further illustrate the clustering results of
contrastive learning more explicitly and vividly, comparative
visualizations of whether contrastive loss is introduced during
iteration are performed using t-distributed stochastic neighbor
embedding techniques. As shown in Fig. 11, after applying
contrastive loss, points belonging to the same category tend to be
gathered together in latent feature space, while those belonging
to different categories are forced to stay apart. In brief, we can

conclude that feature representations are prompted to be more
discriminative in the process of minimizing the category-specific
distances, which would be beneficial to the determination of
semantics and enhance the accuracy of multitask classification
results.

V. CONCLUSION

With the rapid development of 3-D scanners, the semantic
segmentation of LiDAR point clouds is the foundation for spatial
intelligent perception and has been a trending topic in recent
years. Hence, in this article, we develop a contrastive-category
guided learning graph convolutional neural network for the
semantic segmentation of LiDAR point clouds. First, the detailed
local geometric structures are designed to extract the inherent
geometric information and combine it from different receptive
fields. Then, a GSAGCM utilizes the multistacked PEConvs
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and attention pooling to achieve the extraction and transmis-
sion of neighboring semantic relationship information, which
aggregates newer semantic features per point in parallel. Finally,
by introducing contrastive loss, the semantic features generated
from the previous encoder-decoder architecture could become
more discriminative, benefiting the transformation to the point-
wise classification score in the subsequent classification layer.
Experiments on the SemanticKITTI and S3DIS dataset have
shown that our CGGC-Net performs well in both large-scale
outdoor and indoor scenarios and is capable of classifying small
and even incomplete instances.

Nevertheless, the semantic segmentation of large-scale point
clouds in fully-supervised tasks requires time-consuming and
laborious dense annotation. Therefore, in the future, we will
explore weakly supervised point cloud semantic segmentation.
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