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Multifeature Semantic Complementation Network for
Marine Oil Spill Localization and Segmentation

Based on SAR Images
Jianchao Fan , Member, IEEE, Shuai Zhang, Xinzhe Wang , and Jun Xing

Abstract—Marine oil spill causes severe damage to the marine
ecological environment. Synthetic aperture radar (SAR) is widely
used in marine oil spill detection due to its all-day and all-weather
advantages. However, long stripe shape oil spill areas make it chal-
lenging to extract the oil spills effectively. A multifeature semantic
complementation network (MFSCNet) is proposed for oil spill
localization and segmentation of SAR images in one framework to
address these problems. The long strip shape interference of oil spill
is reduced by extracting intensity and damping ratio characters
from nonpolarimetric features and entropy, anisotropy, and mean
scattering angle from polarization features to form a multifeature
SAR image. Then, the backbone feature network and feature fusion
module are used for feature extraction. The decoupled head and
the proposed oil spill semantic segmentation head are used for
localization and semantic segmentation tasks, respectively. Also,
the semantic complementation module is used in the training phase.
It combines the results of localization and semantic segmentation
to obtain complementation boxes for interactive iterative updat-
ing of the model parameters to enhance the detection accuracy
of localization boxes. The effectiveness of the proposed model is
demonstrated based on a lot of Sentinel-1 oil spill data compared
with other state-of-the-art methods.

Index Terms—Localization, multifeature, oil spill detection,
SAR, semantic complementation, semantic segmentation.

I. INTRODUCTION

MARINE oil spill is a huge hazard and will cause severe
damage to marine ecosystem once happen [1]. Frequent

marine activities increase the risk of marine oil spills. It is
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estimated that about two million tons of oil annually leak into
the marine environment [2]. Such a large-scale oil spill not only
causes enormous economic losses and environmental damage,
but also damages the marine ecological environment of coastal
countries. A severe oil spill even threatens human health. The
occurrence of marine accidents, such as ship accidents and
pipeline ruptures, has led to the emergence of oil spills, which
makes the source and location of oil spill random [3]. The early
remediation of oil spills is critical to the result. Therefore, timely
and accurate monitoring of oil spills is required to facilitate
oil spill clean-up operations and protect the marine ecological
environment [4], [5].

Satellite remote sensing is widely used in marine oil spill
detection due to its comprehensive coverage and high timeliness.
In recent years, related researchers have conducted studies in
satellite remote sensing [6], [7]. Synthetic aperture radar (SAR)
has become a powerful tool for oil spill detection because of
its all-day monitoring and unaffected capability by clouds and
fog [8], [9], [10]. The presence of oil film on the sea surface
suppresses the short gravity capillary waves and reduces the
roughness of the oil spill area, which results in oil spill areas
appearing dark in SAR images [11]. However, oil spill areas are
usually a small part of the whole SAR image, and many natural
phenomena also appear as dark spots, such as internal waves
and low wind speed areas [1], [12]. It is essential to quickly
locate the oil spill area from the entire scene image, realize
semantic segmentation, and reduce the calculation amount of
many background areas.

Oil spill detection can be divided into three steps: feature
extraction, dark spot detection, and segmentation. Feature ex-
traction plays a vital role in oil spill detection, which can enhance
oil spill information and reduce the interference of the long strip
shape oil spill. Many researchers have extracted oil spill features
from SAR images. Topouzelis et al. [13] used a decision forest
approach to evaluate a total of 25 features in geometric, physical,
and textural and found that a combination of nine features
was more effective for oil spill detection. Mdakane et al. [14]
extracted geometric, physical, and texture totaling 29 features for
oil spill detection. Fifteen significant features that can be used
for oil spill detection were identified by using a multifeature
selection method. These traditional feature extraction methods
only consider the intensity information of SAR images and do
not view the phase information. Polarimetric features contain
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physical information about oil spills, overcoming the limitations
of single polarimetric technology [15], [16]. Ma et al. [17] used
both the amplitude and phase information to extract the polari-
metric features of SAR images and experimentally demonstrated
the capability of multilayer features for oil spill detection. Ren
et al. [18] extracted polarimetric features from full-polarimetric
SAR data for oil spill detection and experimentally verified
the ability of the proposed features and methods to distinguish
between crude oil, vegetable oil, and seawater. Song et al. [19]
extracted polarimetric features and constructed nine-channel
PolSAR data. The experimental results showed that the proposed
method could effectively distinguish between oil spills and bio-
oil films. However, most of the above methods obtain features
from oil spill targets and satellite characteristics themselves,
which will produce more redundancy and incompatibility of
subsequent algorithms. Selecting salient features organically
combined with subsequent positioning and semantic segmen-
tation is critical to ensure the accuracy and spatial consistency
of the long strip shape oil spill area.

In recent years, with the development of deep learning, it has
been gradually applied to the field of computer vision [20], [21],
[22], [23]. Relevant researchers have also used deep learning to
remote sensing, such as ship detection and marine aquaculture
extraction [24], [25], [26], [27]. Also, many researchers have
applied deep learning to oil spill detection. Raeisi et al. [28]
combined the cuckoo search algorithm and nonnegative matrix
factorization of different Zernike moment features to distinguish
oil spills and look-alikes in SAR images. Aghaei et al. [29]
proposed OSDES-Net methods for oil spill detection based on
efficient ShuffleNet blocks. Laurentiis et al. [30] used airborne
uninhabited aerial vehicle SAR data to classify oil spills based on
the deep learning framework and successfully classified mineral
oil film, biogenic oil film, and clean sea, which verified the oil
film classification potential of the convolution neural network.
Bianchi et al. [31] used a fully convolutional neural network for
oil spill segmentation and then used a classification network to
predict 12 different categories, such as shape and texture. Zeng
et al. [32] constructed a relatively deep-level DCNN for oil spill
classification of SAR images based on the VGG16 network.
Aghaei et al. [33] extracted oil spill features after dark spot
detection of SAR images and used an improved level set method
for classification identification. The classification results of these
methods depend on the dark spot detection results, and the
inaccuracy of the dark spot detection increases the computation
time and false alarms. Yang et al. [34] used You Only Look
Once version 4 (YOLOv4) method for oil spill detection in
the region of interest, which was effectively validated on an
extended dataset by removing tiny oil spill areas in the study area.
Huang et al. [35] used an object detection model called Faster
R-CNN to detect oil spill areas in large-scale remote sensing
images and analyzed the interference of additional factors on
oil spill detection to determine the optimal wind speed and
incidence angle degrees for oil spill detection. Nieto-Hidalgo
et al. [36] used three pairs of convolutional neural networks
to form a two-stage oil spill detection model for side-looking
airborne radar (SLAR) images, with the first network performing
coarse detection and the second acquiring the exact pixels of

the class, showing experimentally that the proposed method
outperforms previous methods used for this task. Guo et al. [37]
used 4200 images extracted from five original SAR images of
oil spill to validate the potential of the SegNet model for dark
spot detection in the oil spill area. Wang et al. [38] performed oil
spill detection based on the AlexNet model and achieved oil spill
segmentation of SAR images through slice classification and
morphological filtering. Ma et al. [17] used the amplitude and
phase information of SAR data to extract polarimetric features
and combined multilayer features with a deep learning network
model to achieve oil spill segmentation of SAR images, achiev-
ing excellent results in terms of accuracy and inference time.
Zhu et al. [39] proposed a contextual and boundary-supervised
network (CBD-Net) for oil spill detection, which improved
the extraction results of oil spill regions in SAR images with
intensity inhomogeneity, high noise, and boundary-blurring by
fusing multiscale features, spatial and channel squeeze excita-
tion block and joint loss functions. However, the localization
approaches only capture the location of the oil spill and cannot
obtain more information, such as the oil spill area. Semantic
segmentation methods are susceptible to false detection due
to the interference of coherent speckle noise and other marine
targets. Therefore, fast localization and semantic segmentation
collaboration are more suitable for the actual oil spill detection
process.

Related researchers have already researched on simultane-
ous localization and segmentation. He et al. [40] proposed a
two-stage target detection algorithm that enables segmentation
during localization. The first stage uses a region proposal net-
work to obtain proposals. The second stage uses RoIAlign to
resample the proposal to the same size and perform classifica-
tion, localization, and segmentation. Then, the target instance
segmentation is achieved. Bolya et al. [41] proposed a one-stage
instance segmentation model. It implements instance segmen-
tation mainly through two parallel subnetworks. One network
is used to generate the class, localization, and mask coefficients
of each anchor. The other network generates a set of prototype
masks, which are then multiplied with the mask coefficients
to obtain the segmentation result for each target. Also, Yekeen
et al. [42] used Mask R-CNN to detect marine oil spills, and they
realized the detection and segmentation of oil spills, look-alikes,
ships, and land areas after pretreatment. Although these methods
allow for the localization and segmentation of oil spills, some
issues still need to be solved. Due to the long strip shape of
the oil spill with non-Gaussian distribution, as shown in Fig. 1,
the localization box cannot completely cover the whole oil spill
area. Incomplete localization can seriously affect the accuracy
of semantic segmentation. However, due to other nonoil spill
dark spots in SAR images, as shown in Fig. 1(e), the wrong
segmentation tends to occur when only semantic segmentation
is used.

To solve the above problems, this article proposes a multifea-
ture semantic complementation network (MFSCNet) for oil spill
localization and segmentation of SAR images. MFSCNet uses a
deep convolutional neural network to extract depth features from
multifeature SAR images. The feature extraction results are used
in the decoupled head and the oil spill semantic segmentation
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Fig. 1. Marine oil spill localization and segmentation based on SAR false
color images with Pauli decomposition. (a)–(c) Localization imperfection when
only localization is available, and the red box is the localization box. (d) A SAR
image including an oil spill and low wind speed look-alike region with 3.2 m/s
wind speed. (e) Oil spill segmentation result. The green box shows the correctly
classified oil spill area, while the blue box shows the misclassification of the
low wind speed look-alike area. (f) Result of the combination of localization
and segmentation. The localization box restricts the segmentation area to avoid
misclassification.

head for simultaneous implementation of oil spill localization
and segmentation. The semantic complementation module ob-
tains the complementation box by combining the localization
and segmentation results in the training phase. Then, the model is
updated interactively and iteratively to improve the localization
results. The main contributions of this study are as follows:

1) MFSCNet is proposed for performing marine oil spill
localization and semantic segmentation simultaneously,
which can avoid wrong segmentation. It includes multi-
feature extraction, PANet for feature fusion, a decoupled
head, a segmentation head, and a semantic complementa-
tion module.

2) A multifeature extraction module is constructed to en-
hance the oil spill accuracy and spatial consistency and
reduce the interference of long stripe shape oil spill area
by combining intensity and damping ratio features in non-
polarimetric features and entropy (H), anisotropy (A), and
mean scattering angle (Alpha) in polarimetric features.

3) A semantic complementation module is designed in the
training phase. It integrates the localization and segmen-
tation results to generate the complementation box, which
is iteratively updated to cover the entire oil spill area
effectively.

The remainder of this article is organized as follows. Section
II introduces the related work related to the research direction of
this article. Section III introduces the proposed MFSCNet model
in detail for marine oil spill in SAR image. Section IV shows
the experimental results of the work. Section V summarizes the
highlights of the article and future research.

II. RELATED WORK

Current object detection algorithms can be broadly classified
into two categories, one is two-stage object detection algorithm

Fig. 2. Framework of YOLOX.

and the other is one-stage object detection algorithm [43].
Two-stage object detection algorithms have higher accuracy
but are slower, such as the R-CNN series algorithm [22], [40],
[44]. They obtain higher detection accuracy by acquiring region
proposals and then performing detection. One-stage object de-
tection algorithm treats detection as a regression problem. It uses
a framework to directly implement classification or localization,
such as the YOLO series algorithm and SSD [21], [41], [45],
[46], etc. This type of algorithm is more advantageous in terms of
speed. It is more important to identify the oil spill area for oil spill
detection quickly, so the one-stage object detection algorithm is
more suitable for oil spill detection. Further, one-stage object
detection algorithms can be classified into anchor-based and
anchor-free. Anchor-based generates prediction boxes based
on a predetermined number of anchors with fixed scales and
aspect ratios. In contrast, anchor-free generates prediction boxes
directly based on points [47]. For regular targets such as people
or cars, the anchor-based approach will be more advantageous
in terms of accuracy because their sizes are relatively fixed.
However, the dimensions are not suitable for oil spills. The
anchor-based approach will limit the ability of the model. So,
the anchor-free method is more suitable for oil spill detection.

With the development of the YOLO series, YOLOX [45] is
proposed as a one-stage anchor-free object detection algorithm,
which is more suitable for oil spill detection. As shown in Fig. 2,
the YOLOX model can be divided into four parts from input
to output: Backbone, PANet, decoupled head, and loss. For the
input SAR image, the feature extraction is first performed using a
backbone feature network named CSPDarknet53 [48]. Then, the
PANet [49] module is used to fuse the feature extraction results
of the last three layers. After fusion, the output is performed
using the decoupled head for the three feature layers. Two
parallel branches are used in the decoupled head to predict
localization boxes, confidence, and classification, respectively.
Finally, the SimOTA algorithm is used to perform label assign-
ment to calculate the loss. The loss function is as follows:

Lloss = − 1

N

N∑
i=1

(li log (l
′
i) + (1− li) (1− log (l′i))) (1)

where the Lloss is the loss function of Lcls and Lconf, li is the
predicted probability of pixel i, l′i is the ground-truth label, N
is the number.

Lreg = 1−
(
l′box ∩ lbox

l′box ∪ lbox

)2

(2)

where the Lreg is the loss function of the localization boxes, lbox

is the predicted localization boxes, l′box is the ground-truth boxes.
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Fig. 3. Framework of MFSCNet. The framework is divided into five parts: multifeature input, backbone for feature extraction, PANet for feature fusion, detection
head consisting of a decoupled head and a segmentation head for localization and segmentation, and semantic complementation module.

III. PROPOSED METHOD

The proposed MFSCNet can be divided into five parts, and
the framework is shown in Fig. 3. The first part is the multi-
feature input, which extracts the nonpolarimetric features and
polarimetric features of SAR images to form the multifea-
ture SAR image for reducing the interference of long stripe
shape oil spill area and enhancing the oil spill information.
The second part is a backbone feature network composed of
CSPDarknet53 for preliminary feature extraction. The third
part is the PANet module, which fuses the semantic and spa-
tial information of the last three feature layers of the back-
bone by a top-bottom and bottom-up approach. The fourth
part is a detection head consisting of a decoupled head and
a segmentation head that uses the feature extraction results
for the localization and segmentation tasks. The fifth part is
the semantic complementation module, which uses the water-
shed algorithm to obtain complementation boxes by combining
the localization and segmentation results. Then, it is used to
interactively and iteratively update the model to improve the
accuracy.

A. SAR-Based Feature Extraction

For better oil spill detection, a multifeature input module is
proposed. A good feature enhances the extracted target informa-
tion and enables the deep learning model to learn the valuable
features better and faster. The long stripe shape oil spill area in
SAR images brings some interference to oil spill detection. It
is difficult to extract oil spill information effectively by filtering
methods, or intensity features only. Therefore, the intensity and
damping ratio features in the nonpolarimetric features and the
H/A/Alpha feature in the polarimetric features are extracted for
oil spill detection.

The intensity feature reflects the image brightness, which
represents the backward scattering coefficient of the radar and
reflects the roughness of the object. The damping ratio is the ratio
of the backward scattering coefficient of the calm sea surface to
the backward scattering coefficient of the oil film, which reflects
some extent, the emulsification degree of the oil film in SAR
images. A larger damping ratio value indicates a thicker oil
film, while a smaller damping ratio value indicates a thinner oil
film. The polarimetric features reflect the polarimetric scattering
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characteristics of the object. H describes the randomness of the
target scattering. A is a complementary parameter to H . Alpha
indicates the scattering type of the target.

1) Nonpolarimetric Features: Due to the interference of
imaging weather, geographical location, marine targets, and
other factors, most of the target information is in the low gray
value area. In contrast, maritime targets, especially ships, are
concentrated in the high gray value area. However, this informa-
tion will interfere with oil spill detection. The intensity features
obtained are decimalized to enhance the information in the low
gray value region and compress the information in the high gray
value region and the decibel is shown in the following:

xdb = 10 log10 σ0 (3)

where σ0 is the backscattering coefficient andxdb is the intensity
feature after decibelization.

The damping ratio is the ratio of the backscattering coefficient
of the calm sea surface to that of the oil film and some extent
and it can be calculated according to the following:

xdr =
σ0

water

σ0
oil

(4)

where σ0
water is the backscattering coefficient of seawater, σ0

oil
is the backscattering coefficient of oil, and xdr is the extracted
damping ratio feature.

2) Polarimetric Features: SAR can obtain different polari-
metric information by controlling the polarimetric mode of
transmission and reception. Different polarimetric modes have
various sensitivities to other ground objects. Multipolarimetric
SAR can get more abundant target information to analyze the
scattering mechanism of targets and avoid the uncertainty of
target information. For dual-polarimetric SAR data, Cloude–
Pottier can be performed to obtain the target’s polarimetric
information for better representation.

The C2 polarimetric covariance matrix must first be extracted
to extract the polarimetric information from the SAR image. Af-
ter preprocessing operations such as multiview and radiometric
calibration, the C2 polarimetric covariance matrix is extracted
with the following:

C2 =

⎡
⎣ < 2

∣∣∣SV H

∣∣∣2 > <
√
2SV HS∗

V V >

<
√
2SV V S

∗
V H > <

∣∣∣SV V

∣∣∣2 >

⎤
⎦ (5)

with

SV V =
∣∣SV V

∣∣ ejφV V (6)

where
∣∣SV V

∣∣ is the amplitude of V V polarimetric channel,SV V

is the complex information of V V polarimetric,
∣∣SV H

∣∣ is the
amplitude of V H polarimetric channel, SV H is the complex in-
formation of V H polarimetric, φV V is the phase of polarimetric
channel, ∗ is conjugate operator, <> is statistical mean, and j
is imaginary unit.

The eigenvalue is calculated according to the polarimetric
covariance matrix:

C2 =
2∑

i=1

λieie
∗
i = λ1e1e

∗
1 + λ2e2e

∗
2 (7)

Fig. 4. Different semantic segmentation heads. (a) Rough segmentation head.
(b) Fine segmentation head.

where λi is the eigenvalues in polarimetric covariance matrix
and ei is the feature vector.

Then the probability of the eigenvector λi corresponding to
each eigenvalue ei is calculated, pi is as follows:

pi =
λi

λ1 + λ2
(8)

where the λ1 and λ2 are two eigenvalues of polarimetric covari-
ance matrix, pi is proportion probability.

Next, the H/A/Alpha feature is calculated according to the
pseudo probability and the eigenvalue obtained above. The
H/A/Alpha is shown in following:

H = −
2∑

i=1

pilog2pi (9)

A =
λ1 − λ2

λ1 + λ2
(10)

α =

2∑
i=1

piαi (11)

with

ai = cos−1 (|e1i|) (12)

where H is the entropy, A is the anisotropy, α is the average
polarimetric scattering angle, e1i is the value of the first row,
and the first column of the eigenvector.

After feature extraction, different results have different orders
of magnitude. Two percent truncated linear stretching is used to
unify all data into the same dimension [50].

B. Oil Spill Segmentation Head

An essential problem in oil spill detection of SAR images is
the interference of coherent speckle noise. Generally, the shallow
features in the depth learning model are more susceptible to
the interference of coherent speckle noise. As shown in Fig. 4,
two different segmentation heads are proposed for judging the
influence of coherent speckle noise on segmentation.

The semantic segmentation module uses the output TO3 from
PANet and the outcomes O1 and O2 from Backbone. After
TO3 is resampled and spliced with the output of Backbone
of the corresponding size, a convolutional block consisting of
a combination of convolution, BN, and SiLu is then used for
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feature extraction. Finally, the semantic segmentation result is
output by convolution of 1×1.

The input TO3 is first resampled to the same size as O2

using a transposed convolution, then stitched in the channel
dimension, followed by feature extraction using two convolution
blocks. The feature extraction result continues with a transposed
convolution to resample it to the same size as O1, followed by
feature extraction using the same two convolution blocks. To
ensure that the output segmentation size is consistent with the
input image, a transposed convolution is used to resample it to
the same size as the input. After using one convolution block
for feature extraction, a convolution of 1×1 is used to output a
semantic segmentation result that is the same size as the original
image.

In the training phase, the semantic segmentation loss function
with the following:

Lse = Lloss + 1− 2
∑N

i=1 yiy
′
i∑N

i=1 yi +
∑N

i=1 y
′
i

(13)

where yi is predicted probability of pixel i, y′i is the ground-truth
label, and N is the number.

In the prediction stage, the activation function is used to obtain
the probability of the category to which each pixel on the output
feature map belongs. Then the index of the maximum value
corresponding to each topic is selected as the category to which
it belongs, and the semantic segmentation result is output

y′′i =
ey

′
i∑

i e
y′
i

(14)

where y′′i is the output after activation function of pixel i.
The final semantic segmentation result is obtained after the

above operation and is denoted as y′ss. In addition, the local-
ization box will be combined with the semantic segmentation
result, and the intersection region of the two will be taken as the
final segmentation result with the following:

y′′ss = y′ss ∩ y′box (15)

where y′box is the predicted localization box, y′ss is the predicted
semantic segmentation, y′′ss is the result of semantic segmenta-
tion after taking the intersection.

C. Semantic Complementation

After obtaining the localization and semantic segmentation
results, k samples are accepted according to the label assignment
strategy SimOTA. The semantic complementation is performed
on these k samples using the watershed algorithm. The outer
rectangle of the segmentation results after the complementation
is used as the complementation box, and the loss is calculated
with the actual value to update the model parameters.

First, get the current semantic segmentation result, which is
defined as y′ss. Next, the value of the Intersection over Union
(IOU ) between the k localization boxes and the actual boxes
obtained by the label assignment strategy is calculated. When the
result is less than 0.3, semantic complementation is performed.
Otherwise, the development of the localization box remains
unchanged, and no processing is performed. The intersection

is used as the label map for subsequent completion

slabel =

{
y′ss ∩ y′box, IOU(y′box, ybox) < 0.3

pass, otherwise
(16)

where ybox is the ground-truth box, slabel is the intersection
results, pass means no semantic complementation.

The intensity data xdb is then fed into the watershed algorithm
along with the label map slabel to obtain the complementation
result, which is only performed if there is an oil spill area in the
label map. Otherwise, the complementation result is 0

smask =

{
wa(slabel, xdb), sum(slabel) > 0

0, otherwise
(17)

where wa(·) is the watershed algorithm and smask is the comple-
mentation result.

After obtaining the complementation result, get the outer
rectangle of the result to obtain the final complementation box,
which will be 0 when the complementation result does not
contain the oil spill area

y′′box =

{
(h1, v1, h2, v2), sum(smask) > 0

0, otherwise
(18)

where y′′box is the semantic complementation box, h and v repre-
sent abscissa and ordinate, respectively, h1 and v1 represent the
coordinates of the upper left corner of the complementation box,
h2 and v2 represent the coordinates of the lower right corner of
the complementation box.

The semantic complementation module is formally described
in Algorithm 1, the loss function of the semantic complementa-
tion module is the same as that of Lreg.

Finally, the total loss function formula is shown below:

Loss = w1Lse + w2Lsc + w3Lreg + Lcls + Lobj (19)

where Loss is the total loss, Lse is the loss of semantic segmen-
tation, Lsc is the loss of semantic complementation, Lreg is the
loss of localization box, Lcls is the loss of classification, Lcls is
the loss of confidence, w1 is the weighting factor of Lse, w2 is
the weighting factor of Lsc, w3 is the weighting factor of Lreg.

IV. EXPERIMENTS

A. Implementation Details

All experiments are compiled under Windows 10 with python
3.6, pytorch 1.7.1, and cuda 11.0, run with GeForce RTX 3080
GPU. The optimization algorithm uses Adam. The initial learn-
ing rate of the network is 1e−4. SetpLR is used to adjust the
learning rate of each epoch, and the adjustment multiple is 0.92.
The value ofw1 andw2 are 2, 0.1, respectively. The value ofw3 is
5, referring the result of literature [45]. The training epoch is set
as 100. Moreover, the total training time is 5.6 h. The proposed
model is trained without the semantic complementation module
in the first 80 epochs, and it is utilized in the final 20 epochs.
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Algorithm 1: Semantic Complementation.
Input: xdb : intensity data after processing

k : k samples obtained by label allocation
y′box : location boxes obtained by prediction
y′ss : segmentation obtained by prediction
ybox : ground-truth boxes
slabel : intersection results
smask : complementation results
y′′box : semantic complementation boxes
IOU(·) : intersection over union
wa(·) : watershed algorithm

Output: Semantic complementation result.
for epochs do

for i = 1 to k do
if IOU(y′box(i), ybox(i)) < 0.3 then
slabel(i) = y′box(i) ∩ y′ss
if sum(slabel(i)) > 0 then
smask(i) = wa(slabel(i), xdb)

else
smask(i) = 0

end if
if sum(smask(i)) > 0 then
y′′box(i) = (h1, v1, h2, v2)(i)

else
y′′box(i) = 0

end if
else
y′′box(i) = y′box(i)

end if
end for
Loss Lsc = 1− (

y′′
box(i)∩ybox

y′′
box(i)∪ybox

)2

end for

B. Dataset

Existing oil spill datasets are difficult to obtain, and there are
few publicly available datasets to evaluate the dependability of
oil spill detection technologies. Therefore, 82 Sentinel-1 data
scenes are obtained from the Alaska Satellite Facility (ASF)
data distribution website (https://search.asf.alaska.edu) for the
period 2014–2021 based on oil spill information provided by
other researchers and the findings of long-term monitoring of the
Chinese Bohai Sea [17], [39], [51], [52], [53], [54]. Sentinel-1
data in vertical emission vertical reception (VV) and vertical
emission horizontal reception (VH) polarimetric modes in In-
terferometric Wide (IW) swath strip scan mode are used in this
work to extract different features.

Thermal noise removal, radiometric calibration, filtering, ter-
rain correction, and multilooking preprocessing are all con-
ducted on the obtained data. The filtering employs a 7× 7 refined
Lee filter and the multilooking size is 1 × 5. The oil spill region
is then clipped out. Also, resampling and data augmentation are
carried out. Finally, 1024 × 1024 pixels SAR images with 20 ×
20 m resolution of 1050 views are obtained. The ratio of training
and test sets is 7:3. This means that the number of training sets
is 730, and the number of test sets is 320. Some sample images

Fig. 5. Training dataset sample images.

are shown in Fig. 5. In the experiment, the ground-truth of oil
spill SAR images are collected through relevant news reports,
literature publications, and our daily oil spill monitoring. The
software of labelme is also used for labeling ground-truth labels.

C. Evaluation Criteria

In order to objectively evaluate the performance of different
models, different evaluation metrics are used to compare the
results of localization and semantic segmentation. Average pre-
cision (AP ) is used for localization. Overall accuracy (OA),
mean intersection over Union (MIoU ), F1-score (F1), and
Kappa are used for semantic segmentation.

1) The Evaluation Criteria of Localization: Before AP cal-
culation, Precisionbox and Recallbox need to be obtained. These
two values need to be obtained according to intersection over
union (IOU ) with the following:

IOU =
PB ∩ TB

PB ∪ TB
(20)

where PB is the prediction boxes and TB is the ground-truth
boxes.

Next, Precisionbox and Recallbox are obtained for different
confidence levels according to the confidence level of the pre-
diction boxes, with the following:

Precisionbox =
TP

TP + FP
(21)

Recallbox =
TP

TP + FN
(22)

where TP , TN , FP , and FN denote the number of true
positives, true negatives, false positives, and false negative sam-
ples, respectively Precisionbox and Recallbox are the result of
localization.

After receiving Precisionbox and Recallbox at different confi-
dence levels, the P-R curve is plotted, the area under the P-R

https://search.asf.alaska.edu
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curve is calculated, and the result is the AP with the following:

AP =

∫ 1

0

p(r)dr (23)

wherep(r) is the value of Precisionbox under different confidence
levels.

2) Evaluation Criteria of Semantic Segmentation: The met-
rics OA, F1, MIoU , and Kappa are used to compare the
semantic segmentation results of different methods. There are
calculated as follows:

OA =
TP + TN

TP + TN + FP + FN
(24)

Precision =
TP

TP + FP
(25)

Recall =
TP

TP + FN
(26)

F1 = 2× Precision × Recall
Precision + Recall

(27)

MIoU =
1

2

(
TP

TP + FP + FN
+

TN

TN + FN + FP

)
(28)

Kappa =
OA− Pe

1− Pe
(29)

where

Pe =
(TN + FP )× (TN + FN ) + (TP + FP )× (TP + FN )

N ×N
.

(30)

D. Results and Analysis

1) Comparison With Other Oil Spill Detection Methods: To
validate the performance of the proposed model adequately,
it is compared with the present oil spill detection algorithm.
The proposed method is compared with AlexNet1 [38], Seg-
Net2 [37], Faster R-CNN3 [35], YOLOV44 [34], YOLOX5,
Mask R-CNN6 [42], and YOLACT7 [41]. Due to the differences
between the various comparison methods, they are compared in
terms of localization and semantic segmentation, respectively.

The experimental results are shown in Table I. The proposed
MFSCNet achieves the highest accuracy in both localization and
semantic segmentation. Unlike conventional object detection,
the shape and size of the oil spill area are not uniform and
exhibit a non-Gaussian normal distribution. This leads to anchor-
based depth learning object detection algorithms such as Faster
R-CNN, YOLOV4, Mask R-CNN, and YOLACT, which are
difficult to find a suitable anchor. Thus, reducing the localization

1[Online]. Available: https://github.com/fjc1575/Marine-Oil-Spill/tree/
main/AlexNet

2[Online]. Available: https://github.com/fjc1575/Marine-Aquaculture/tree/
main/SegNet

3[Online]. Available: https://pytorch.org/tutorials/intermediate/torchvision_
tutorial.html

4[Online]. Available: https://github.com/bubbliiiing/yolov4-pytorch
5[Online]. Available: https://github.com/bubbliiiing/yolox-pytorch
6[Online]. Available: https://pytorch.org/tutorials/intermediate/torchvision_

tutorial.html
7[Online]. Available: https://github.com/bubbliiiing/yolact-pytorch

TABLE I
COMPARISON OF MFSCNET WITH OTHER OIL SPILL DETECTION METHODS

TABLE II
COMPARISON OF THE COMPUTATIONAL COST OF MFSCNET TO OTHER OIL

SPILL DETECTION METHODS

accuracy. As an anchor-free algorithm, YOLOX does not rely
on anchors, only on the model itself. It is more conducive to
identify the targets with an irregular distribution and has better
universality for oil spill detection. The proposed MFSCNet in
this study has better detection results and achieves 86.24%AP ,
combined with the characteristics of YOLOX and SAR images.

This study also achieve the highest accuracy in semantic
segmentation. The segmentation results are shown in Fig. 6.8 It
can be seen that MFSCNet proposed in this article can extract oil
spill regions of different sizes and shapes completely with high
accuracy. The Alexnet method performs semantic segmentation
by slider classification. Mask R-CNN resamples the feature
maps to the same size by RoIAlign before performing semantic
segmentation. This leads to poor prediction results in the edge
region for both methods, which are prone to misclassification. In
contrast, SegNet is semantic segmentation of the whole image,
and the presence of targets such as coherent speckle noise and
maritime targets affects the segmentation results. In contrast,
YOLACT combines localization and semantic segmentation,
and each localization box has a semantic segmentation result.
The localization boxes limit the accuracy of semantic segmen-
tation, leading to the truncation phenomenon shown in Fig. 6(f).
This splits a complete oil spill target into two separate targets, re-
ducing the accuracy of the split. Finally, the MFSCNet proposed
in this article treats localization and semantic segmentation as
two parallel tasks that restrict the semantic segmentation results
through the localization box and takes the intersection region
of both as the final segmentation result to extract the oil spill
area effectively. Also, Table II shows the computational cost of
different oil spill detection methods. Since the AlexNet method
classifies for small images instead of segmentation, it takes a
longer time but has lower Giga Floating Point of Operations

8Original SAR images in the experiments are presented as Pauli false color
images.

https://github.com/fjc1575/Marine-Oil-Spill/tree/main/AlexNet
https://github.com/fjc1575/Marine-Oil-Spill/tree/main/AlexNet
https://github.com/fjc1575/Marine-Aquaculture/tree/main/SegNet
https://github.com/fjc1575/Marine-Aquaculture/tree/main/SegNet
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://github.com/bubbliiiing/yolov4-pytorch
https://github.com/bubbliiiing/yolox-pytorch
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://github.com/bubbliiiing/yolact-pytorch
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Fig. 6. Experimental results of semantic segmentation. (a) Original images. (b) Ground-truth. (c) AlexNet. (d) SegNet. (e) Mask R-CNN. (f) YOLACT.
(g) MFSCNet.

Fig. 7. Results of MFSCNet. (a)–(e) original images. (f)–(j) ground-truth
maps. (k)–(o) predict results.

(GFLOPs) [45] values. The MFSCNet proposed in this study
achieves a balance between time and GFLOPs. Fig. 7 shows the
prediction results of the proposed method in this article. It can be
seen that the SAR oil spill images of different sizes and shapes
can be extracted well. Also, the image with other nonoil dark
spots can also be well extracted.

2) Comparison of Different Features: This study uses the
intensity and damping ratio features in the nonpolarimetric fea-
tures and the H/A/Alpha features in the polarimetric features.
Oil spill detection is carried out by combining polarimetric with
nonpolarimetric features. The detection results are shown in
Table III, and the visualization results under different features are
shown in Fig. 8. The combination of different features has higher
accuracy in localization than single features. This indicates that
the extracted multifeature module is effective. Although, the
addition of the damping ratio feature enhances the information
on the dark spot region and improves the detection accuracy.
However, the damping ratio reflects the emulsification degree of
the oil film. It will have different feature extraction results for

TABLE III
COMPARISON OF DIFFERENT FEATURES

Fig. 8. Result of different features. (a) and (f) are original images, (b) and
(g) are ground-truth maps, (c) and (h) are the result of intensity, (d) and (i) are
the result of intensity and damping ratio, (e) and (j) are the result of intensity,
damping ratio, and H/A/Alpha.

the same oil spill area, which is difficult to have consistency.
Thus, the phenomenon of overlapping localization boxes will
occur, shown in Fig. 8(i) and polarimetric features can effectively
maintain the spatial consistency of the oil spill area by obtaining
richer target information. Both the sparse oil spill area in Fig. 8(a)
and the long strip of the oil spill area in Fig. 8(f) can be detected
well. Finally, 82.85% is achieved in AP , which indicates that
the multifeature module proposed in this study is practical and
feasible to effectively enhance the spatial consistency of oil spills
and improve the oil spill detection accuracy.
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TABLE IV
COMPARISON OF DIFFERENT MODULES

TABLE V
COMPARISON DIFFERENT SEMANTIC SEGMENTATION HEADS

3) Comparison of Different Modules: Different modules will
have different impacts on the results. The effects of the mod-
ules proposed in this study on the oil spill detection accu-
racy are shown in Table IV. With the addition of modules,
the accuracy of oil spill detection is further improved. After
using the multifeature module, the interference of speckle noise
and offshore targets on oil spill detection is reduced, and the
localization evaluation metric AP is increased from 82.85%
to 85.26%, which shows that the proposed feature is feasible
and can effectively improve the accuracy of oil spill detection.
Adding a semantic segmentation module not only realizes the
segmentation of the oil spill area, but also enhances the accuracy
of the localization box. Finally, the semantic complementation
module enhances the localization and segmentation branches
through the organic combination of the localization and semantic
segmentation branches. MFSCNet model obtains AP , OA, F1,
MIoU , and Kappa are 86.24%, 99.41%, 79.10%, 83.20%, and
0.79.

Considering the effect of coherent speckle noise in SAR
images, two semantic segmentation heads shown in Fig. 3 are
proposed in this study. The evaluation results are shown in Table
V, and the segmentation results are displayed in Fig. 9. The
proposed fine segmentation head offers better detection perfor-
mance. It can be seen from Fig. 9 that the two modules are dis-
turbed by the coherent speckle noise, which produces different
phenomena. The rough segmentation head has poorer prediction
results for the edge region. The expansion phenomenon occurs
in the edge region, and the background area is predicted as the
oil spill area. The misclassification region in Fig. 9(h) and (i)
appear because the shallow features are not considered. For the
fine segmentation head, the edge region is better predicted, and
it is easier to distinguish the boundary area of the oil spill and
the background. However, it will be affected by the background
noise and the phenomenon indicated by the red boxes shown in
Fig. 9(k) appears. Still, it has less impact on the overall semantic
segmentation results. So, this study uses the fine segmentation
head for the semantic segmentation task.

4) Comparison of Different Hyperparameters: Different val-
ues of the weighting factors of the loss function will affect the
results, and experiments are conducted to find the appropriate
weighting factors.

The results of semantic segmentation loss with various
weighting factors are compared, and the implementation results
are shown in Table VI. Because the presence of the localization

Fig. 9. Results of different semantic segmentation heads. (a)–(c) original
image. (d)–(f) ground-truth map. (g)–(i) the results of rough segmentation head.
(j)–(l) the results of fine segmentation head.

TABLE VI
COMPARISON OF DIFFERENT SEMANTIC SEGMENTATION LOSS WEIGHTING

FACTORS

box limits the semantic segmentation results, the segmenta-
tion accuracy is affected by the localization accuracy. As the
value of the weighting factors increases, both localization and
semantic segmentation results show a trend of increasing and
then decreasing. When the value is 2, the greatest accuracy for
both localization and segmentation is achieved. Therefore, the
weighting factor of the semantic segmentation loss function is
set to 2.

The semantic complementation module uses the results of
localization and semantic segmentation to produce a label map.
Then, the watershed algorithm is used to obtain a comple-
mentation box for semantic complementation. After the loss
calculation of the complementation box with the ground-truth
box, updating the model parameters. However, not all localiza-
tion boxes are subjected to semantic complementation, and the
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TABLE VII
COMPARISON OF DIFFERENT THRESHOLDS IN SEMANTIC COMPLEMENTATION

MODULE

TABLE VIII
COMPARISON OF DIFFERENT SEMANTIC COMPLEMENTATION LOSS WEIGHTING

FACTORS

intersection ratio between localization boxes and ground-truth
boxes needs to be judged and different thresholds affect the
number of localization boxes that perform complementation, so
the results of varying threshold cases are compared. The results
are shown in Table VII, and the highest accuracy is achieved
when the threshold value is 0.3. Therefore, the threshold value
for the semantic complementation module is determined to be
0.3. Although, the semantic complementation module is exe-
cuted in the last period of the training phase. However, there is
a specific error between the output of the training phase and the
ground-truth, and the watershed algorithm cannot completely
complement the oil spill region, which leads to the error between
the final acquired complementation box and the ground-truth
box as well. Therefore, it is crucial to choose a suitable loss
function weighting factor. Then, considering the existence of
errors, 0.1, 0.5, 1, 2, and 3 are selected for comparison. The
results are shown in Table VIII, and the highest accuracy is
achieved in localization and segmentation when the value is 1.
As the value of the weighting factor increases, the accuracy
gradually decreases. Still, all of them are higher than the ac-
curacy when the module is not used. This indicates that the
proposed semantic complementation module is practical and
can improve localization and semantic segmentation accuracy.
Therefore, the value of the loss function weighting factor of the
semantic complementation module is determined to be 1.

V. CONCLUSION

This study proposes MFSCNet model to implement oil spill
localization and semantic segmentation in the single neural
network model. The multifeature input module eliminates the

long stripe interference of oil spills with the non-Gaussian
distribution. A semantic complementation module is proposed
to improve the accuracy of the localization box by combining the
localization and semantic segmentation results. The best optimal
parameters of the model are determined through hyperparameter
experiments. MFSCNet is superior to other oil spill detection
methods and more suitable for daily monitoring of oil spill
events. In addition, how to distinguish oil spills from many kinds
of look-alikes can be researched in the future.

APPENDIX

TABLE IX
THE STRUCTURE OF MFSCNET
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