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Attention and Hybrid Loss Guided 2-D Network for
Seismic Impedance Inversion

Qiao Xie, Bangyu Wu

Abstract—Deep learning methods, especially convolutional neu-
ral networks, achieve state-of-the-art performance on seismic
impedance inversion. Most of the methods are based on one-
dimensional (1-D) convolution, tending to yield lateral disconti-
nuities of impedance on field data applications. To alleviate this
problem, we design a network equipped with 2-D convolutions
and a coordinate attention (CA) block. The former can take the
relationship between adjacent traces into consideration. The latter
can capture the positional relationship of the geological structure,
both horizontally and vertically. At the same time, we use a hybrid
loss combined with an edge operator and mean square error to
further improve the stability of the designed network. Compari-
son experiments on the synthetic SEAM model and field seismic
data demonstrate the effectiveness of the adopted components,
2-D convolution, CA, and hybrid loss function in improving the
lateral continuity of inverted impedance. For field seismic data, the
impedance predicted by the proposed method shows improved lat-
eral continuity and high resolution compared with the 1-D network
and constrained sparse spike inversion method using commercial
software (InverTrace Plus module in Jason).

Index Terms—Coordinate attention (CA), hybrid loss, seismic
impedance inversion, two-dimensional (2-D).

I. INTRODUCTION

EISMIC inversion is a crucial task in geological interpre-
S tation to speculate the physical parameter and spatial dis-
tribution of underground stratigraphic structures [1]. However,
various noises and the unknown wavelet (usually unavailable and
difficult to estimate) cause uncertainty in the inversion results.
Predicting impedance from seismic is an ill-posed nonlinear
problem, resulting in nonunique seismic impedance solutions
and unstable results on real data applications [2]. Methods
based on deep learning (DL) provide new problem-solving
opportunities due to their powerful feature learning and com-
puting capabilities [3]. Using nonlinear operators such as ac-
tivation functions, DL maps the strong nonlinearity between
impedance and seismic data in the network. Furthermore, the
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data-driven DL method, unlike the conventional model-driven
method, directly learns from seismic data to impedance mapping
without the assumption of an approximate forward model [4].
The amount of available seismic data increased exponentially,
reaching 667.7 trillion bytes by September 2020 [5]. Dealing
with Big Data with a huge number of parameters, DL has de-
veloped into a promising method to cope with different types of
geophysical problems [5], [6], [7], [8], [9], [10]. In recent years,
many DL networks have been proposed for seismic impedance
inversion, such as convolutional neural network (CNN) [11],
fully convolutional residual network [12], constitutional neural
network [13], recurrent neural network [14], [15], generative
adversarial networks (GANSs) [16], [17], [18], and so on. All
of these DL methods achieve outstanding results. However, for
practical implementation, the results need to conform to a certain
degree of geological priors, one of which is lateral continuity.
The convolution seismic data model states that a seismic trace
is the convolution of the earth’s reflectivity converted from the
impedance with the source wavelet [19]. Poststack seismic data
and impedance, serving as inputs and labels for data-driven
methods, are corresponding trace by trace. Since a sequence of
seismic data corresponds to an impedance sequence and there is a
specific functional relationship between them, most DL. methods
train a model with one-dimensional (1-D) convolution [12], [16],
[17]. To succeed in DL, it is important to provide more training
examples than free parameters in deep networks with huge
parameter space [20]. However, due to drilling costs, the number
of available wells in a 3-D seismic survey is usually very limited.
The 1-D algorithm using sequences with limited training data is
a challenge to yield stable and accurate impedance estimation.
However, the actual stratum is spatially continuous, and there
is a strong correlation between seismic adjacent traces which
are ignored by 1-D networks, such as lateral continuity. Many
1-D networks are also incapable of capturing sudden changes
in the rock properties in the complex geological structure due
to the limited training well logs [21]. The increasing number
of publications [4], [22], [23] and the industry are keeping an
eye on the 2-D network implementations for seismic impedance
inversion which shows a positive trend in this field. In this
article, we use 2-D convolution for training, which enhances
the continuity with the help of stratum structure correlation.
The continuity of geological structure, both horizontal and
vertical, means that the structures between adjacent traces are
similar and related. Nevertheless, convolution operations can
only capture local relations and fail to model long-range de-
pendencies [7], [24]. To mitigate this problem, we introduce a
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Fig. 1.  Squeeze-and-excitation block [38].

coordinate attention (CA) block to capture spatial correlation
in seismic data. The CA block captures direction-specific in-
formation along each spatial direction. The network with a CA
block can acquire not only cross channel but also direction-aware
and position-sensitive information. This also improves network
accuracy by locating and emphasizing the features of interest.
Meanwhile, CA blocks can alleviate the loss of positional infor-
mation in 2-D global pooling [7], [24].

Essential information exists on the edge of the image where
local features of the image manifest discontinuity, namely, the
structure changes violently. Edge detectors are a significant part
of many computer vision systems to obtain useful structural
information from image contours. The uncertainties such as
potential ambient noise, acquisition limitations, and processing
errors in the real seismic data make DL models difficult to
describe the recorded seismic data properly and directly. In
this article, we introduce an edge detection operator into loss
function. By minimizing the feature distribution divergence,
the structure feature distribution of predicted impedance can
better match the true value feature. Functioning as a physical
constraint, the obtained edge information can facilitate more
reasonable inversion results, that is, better lateral continuity and
less noise impact for practical application [25].

In summary, we propose a 2-D CNN equipped with a CA
block using a hybrid loss of edge operator for seismic impedance
inversion. In Section II, attention mechanisms including the
CA block, the network structure, the hybrid loss function, and
transfer learning are described in detail. In Section III, two
ablation studies are conducted. We also validate the effectiveness
of 2-D convolution, CA and hybrid loss function and the advan-
tages of the proposed method on synthetic and field datasets.
Discussions and conclusions are given in Sections IV and V,
respectively.

II. METHODOLOGY
A. Attention Mechanism

Attention mechanisms [26], [27] have promoted various
computer vision tasks, such as image classification [28], [29],
[30], and image segmentation [31], [32], [33], over recent years.
They are also beneficial in dealing with geophysical problems
[34], [35], [36], [37]. Successful attention implementations
include SENet [38], CBAM [29], GENet [30], AA [31], and
self-attention [39]. Wu et al. [40] demonstrated the effectiveness
of a multibranch attention block combining SENet [38] and
SKNet [41] and designed a new attention block for seismic

impedance inversion. SE block and SK block are shown in Figs. 1
and 2, respectively. Tsotsos [26] models the channel relationship
in the network and [41] captures the feature-map relationship
with a multibranch nonlinear combination. The proposed Re-
sANet [40] outperforms several comparable neural networks in
accuracy and generalization ability while ensuring efficiency for
seismic dataimpedance inversion. However, the 1-D algorithmis
challenging to yield a stable impedance estimation. To enhance
the lateral continuity, we utilize a 2-D convolution network that
incorporates two-direction information and captures the posi-
tional information by introducing CA [24] on the 2-D model with
SE attention and SK attention expanded from 1-D ResANet [40].

Different from the aforementioned attention approaches, CA
captures positional information and channelwise relationships
to strengthen the feature representations efficiently [24]. The
two spatial directions can effectively make use of the geological
structure and suppress unreasonable information, such as noise.
In this way, CA can enhance the model’s ability in tasks to deal
with complex geological scenarios. When it comes to handling
large-size datasets, DL. models may suffer from memory con-
sumption problems. CA improves the performance of various
models with nearly no computational overhead.

Fig. 3 shows the architecture of a CA block. First, CA ag-
gregates the input (X) with two parallel 1-D global pooling
operations to obtain separate information along two directions,
written as

2t () =35 D we(h, i),0<i<W (1)
1
2 (W) =5 D we(jyw) 0<j<H )

where 2" and 2 are the output of the cth channel at height
h and width w, respectively. Second, the two feature maps are
first concatenated and then activated using a 1 x 1 convolutional
function to produce an intermediate feature map (2). Split 2, two
separate tensors (2" and 2%), with direction-specific information
are generated. To activate the two attention maps, X, and X,
are calculated by

X =0 (Gy (£1)) 3)
Xy =0 (Gy (3Y)) 4)

where o is the sigmoid function and G denotes 1x1 convolu-
tional transformation. Finally, both attention maps are utilized
as attention weights and multiplied by the input feature map to
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Fig. 3. CA block [24].

emphasize the feature expression, yielding

~

X =, (i, j) x X (4) x X2 (j)

(&)

where X is the output of the CA block.

In the experiment part, we test appropriate positions of CA
in the network on synthetic data, SEAM model. To demonstrate
the advantages of CA, a series of experiments are conducted
with/without CA modules on both synthetic and field data.

B. Network Architecture

In this article, we design a 2-D ResANet network with CA
for impedance inversion, called 2-D CA-ResANet. The specific
structure of the proposed model is shown in Fig. 4. The 2-D
CA-ResANet consists of three parts: the input layer, the attention
part, and the output layer. The attention part contains three
stacked branch attention blocks (red dash-dot box in Fig. 4)
and a CA block. The input data first go through a convolutional
layer and a dropout layer with a 0.2 dropout probability. The
former enables the model to capture the seismic data’s low-level
features. The latter is utilized to alleviate the problem of over-
fitting. Then, three branch blocks refine the information to form
high-level information. Specifically, four convolution branches
with (convolution kernel size, dilation) parameter pairs as (Kx 3,

1), (Kx3,2), (K/2x3, 1), and (K/2x3, 2) are applied to get the
multiscale information. K is the width of the convolution kernel,
which is related to the wavelength of the source wavelet [11].
Thus, we set different values for K on the synthetic and field
model according to the length of a seismic trace after simple
experiments. To extract the information, each convolutional
branch is followed by SE operation. A convolution layer with
batch normalization (BN) [42] and rectified linear unit (ReLLU)
[43] function nonlinearly aggregates information from multiple
convolution kernels. Then, the global information is controlled
by SE. After the stacked branch part, CA block is used to aggre-
gate global information according to correlations. The last layer
comprises a convolution layer and ReL U function for regression.
The residual block is embedded into these attention modules
to obtain stable deep networks. To magnify the generalization
ability of the model and accelerate the network training, BN is
applied after each convolutional layer except the last layer.

C. Network Training

Estimating an impedance sequence from a seismic trace using
data-driven methods is a regression problem. Mean square error
(MSE) loss function is used to measure the error of each pixel
between the predicted data and the target data. Networks with a
single MSE loss function are prone to be influenced by noises in
the real seismic data, such as potential ambient noise, acquisition
errors, and processing errors which can result in the irrationality
of seismic data structure. To further enhance the lateral conti-
nuity of inversion results and antinoise performance, we add an
edge detector operator based on MSE loss function. The hybrid
loss function is introduced in detail as follows.

1) MSE Loss Function: The MSE loss function is defined as

Luse = E[lly - ||F] (6)
where F is the mathematical expectation, y denotes the ground
truth, and y' represents the prediction result calculated from
seismic data.

2) Sobel operator

The edge intensity is calculated by edge detection operators
according to the gradient of the image. Specifically, edges cor-
respond to a change of pixels’ intensity and the value is acquired
using the value of pixels [, j] and their neighbors. In this case,
the intensity change in both directions, Ij,(X) (horizontal) and
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I,(X) (vertical), is computed as
In(X) = X [i,j +1] = X [i, ]] ©)

where X [i, j] denotes the value of the corresponding pixel [7, 7]
of image X. Then, the magnitude G of the gradient is generated
by

G (X) = \/1(X)? + LX) ©)

And the edge operator loss Lgpgg is obtained by measuring
the error between the magnitude of the predicted data G(y') and
the target data G(y) written as

Lepce = E[| G(y) =G () |IF].

Finally, the overall objective function in this article is formu-
lated as

(10)

D

where A1 and Ao are weights to balance the objective terms, and
the sum of the weighting coefficients is 1.

Lo = A1 Lepce + Ao Lse,

D. Transfer Learning

Transfer learning is a machine learning method, where the
model developed for a task is reused as the starting point of a
second task model. Specifically, transfer learning uses the related
tasks learned in one setting to improve generalization in another
setting through knowledge transfer [44]. It can be regarded as
an optimization that allows rapid progress or improved perfor-
mance when modeling the second task [45]. Transfer learning
is popular in computer vision, natural language processing,
geophysical practical applications, and other fields that need
huge resources. Through transfer learning, the developed neural
network models on these issues can save vast computing re-
sources and turnaround time and also make a huge performance
improvement on related tasks. Here, we use the pretraining

SE Attention ™) CA Attention = RelU L/ Floor

Architecture of the 2-D CA-ResANet for seismic impedance inversion. K is 599 in SEAM model and 29 in the field data experiments.

method, which is commonly used in the field of DL. First, the
source model is trained on basic datasets and tasks. Then, the
input—output pair data available for the task of interest is used
to train on the target dataset and task to repurpose the learned
features or transfer them to a second target network [46]. In
this article, we fine-tune the model trained on the synthetic
dataset using interpolated data around the wells. The interpolated
seismic data and impedance are more accurate than data far away
from the wells and can be regarded as augmented data to train
the neural networks.

III. EXPERIMENTS
A. Experiment on Synthetic Seismic Dataset

To quantify the effect of the CA block and edge detector, we
first test on open SEAM dataset, which is widely used in DL
inversion methods [47], [48]. The seismic data are generated by
convolving reflectivity with a 30 Hz zero-phase Ricker wavelet.
As shown in Fig. 5, the seismic data and impedance both have
1751 traces with 5001 time points and 4 ms time interval. To
train the model, we choose 102 trace pairs with equal intervals
from the impedance and seismic profile. Considering the lateral
structural relationship, the left and right adjacent traces of each
trace are also selected for 2-D network training. The (16, 3,
5001) are randomly selected as validation sets where 16 is the
number of trace pairs, 3 denotes the adjacent 3 traces, and 5001
represents the time points. We use Adam optimization [49] with
an initial learning rate of 0.001 and weight decay 1x107 as
the optimization algorithm. Batch size is set to 10. Kaiming
Initialization [50] is chosen to initialize network weights and
train 1000 epochs.

Two brief ablation studies are first conducted to obtain ap-
propriate weightings in loss function and network structure,
respectively. Table I lists the results of predicting impedance, and
the lowest MSE (highlighted in bold red) is obtained when A1
is 0.3. As mentioned above, CA can obtain spatial information
and integrate global information. Therefore, we consider two
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Fig. 5. SEAM model. (a) Synthetic seismic data. (b) Impedance.
TABLE I
SEAM MODEL PREDICTION RESULTS WITH DIFFERENT WEIGHTS IN LOSS FUNCTION
Weight coefficient (1,) 0 0.3 0.5 0.7 1
MSE 0.1036 0.0672 0.0682 0.0750 0.1010
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Fig. 6. Impedance prediction results by networks with CA at different positions. (a) CA in the branch attention block. (b) CA after the branch attention block.

(c), (d) Corresponding residual profiles between predictions and ground truth [see Fig. 5(b)].

positions to put CA. One is to replace SE operation at the end
of the stacked branch attention block shown in the green box in
Fig. 4. The other, as shown in Fig. 4, follows after the stacked
branch attention block. Fig. 6 shows the prediction results of the
networks with CA at the aforementioned positions, respectively.
The first column is the result predicted by the network with CA
in the branch attention block and the MSE of the prediction

profile is 0.0621. The second column is the result using the
network in Fig. 4. And the profile MSE is 0.0421, which is
significantly lower than putting CA inside the attention block.
Fig. 6 (especially the location inside the black ovals) and the
MSEs illustrate that the network with CA in Fig. 4 achieves
better performance. As a result, the network shown in Fig. 4 with
hybrid loss setting weighting A; as 0.3 is used in the following
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(b), (d), (f), (h) Corresponding residual profiles between predictions and ground truth [see Fig. 5(b)].

experiments.

To further verify the effect of the model and loss, we carry out
a set of experiments on 2-D ResANet. “2-D” is omitted in the
name of the four models in the following synthetic experiments
to be concise. Fig. 7 and Table 1II list the results of the whole
section with four experiments. We first predict the impedance
using ResANet and the result is shown in Fig. 7(a). Then, 1,

is adjusted to 0.3 [see Fig. 7(c), the third column of Table II]
to test the hybrid loss effect compared with Fig. 7(a). Similarly,
Fig. 7(e) and the fourth column of Table II list the result of
CA-ResANet, which can testify CA effect. When only A; is set
to 0.3 or only CA is added, the overall prediction is optimized to
varying degrees in comparison with 2-D ResANet [see Fig. 7(a),
the second column of Table II]. Fig. 7(g) shows a better result in
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TABLE II
2-D MODELS COMPARISON BY MSES ON THE WHOLE SEAM SECTION

Model ResANet ResANet CA-ResANet CA-ResANet
(Weight coefficient) 1, =0) (44, =0.3) (1, =0) (1, =0.3)
MSE 0.1036 0.0672 0.0509 0.0421
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Fig. 8.
Validation.

the middle of SEAM model by adding the edge operator in the
loss function than Fig. 7(e), where the structure laterally changes
violently. Through the comparison in Fig. 7 and Table II, it can
be seen that CA-ResANet with hybrid loss [see Fig. 7(g), the last
column of Table II] shows the most accurate prediction result.
Fig. 8 shows the training and validation curves (verified every
100 epochs to save training time) for the SEAM synthetic
model test. CA-ResANet with hybrid loss has the best train-
ing performance shown in Fig. 8(a). The curves of the other
three methods are all above the proposed network (red), which
presents inferior performance. Fig. 8(b) shows that the validation
curves of the three methods, ResANet with or without hybrid
loss and CA-ResANet with MSE loss, tend to rise suddenly. In
contrast, the validation loss curve of CA-ResANet with hybrid
loss shows a stable decline. From Fig. 8(b), we can see that both
of CA-ResANet perform better than the other models. Between
them, although the model with only MSE loss has the lowest
MSE with a small margin, the model with hybrid loss predicts
more precisely on the whole section given in Table II, which may
be caused by overfitting for using solely the MSE loss function.
We further conduct experiments on seismic data contaminated
by five different levels of Gaussian white noise to demonstrate
the robustness of the proposed method. Specifically, the model
is trained with seismic data, which is noise free, and then
we predict impedance using data with different signal-to-noise
ratios (SNR). The SNRs in the synthetic data of SEAM model are
5, 15,25, 35, and 45 dB, respectively, as shown in Fig. 9(a)—(e).
To avoid accidental errors, the entire experimental procedure
is repeated ten times. We predict the impedance profile by the
proposed method when the inputs are noisy seismic data from
the first row in Fig. 9 and average the ten MSEs calculated using

— — CA-ResANet (\i=0) —— CA-ResANet (\1=0.3)

Training and validation loss curves of ResANet (A1= 0), ResANet (11= 0.3), CA-ResANet (11= 0), and CA-ResANet (A1 = 0.3). (a) Training. (b)

predictions and true impedances. Fig. 9(f)—(j) presents one of
the impedance profiles predicted by the proposed method when
the inputs are noisy seismic data in the first row. The third row in
Fig. 9 is the residual profile between the prediction of different
SNR seismic data and the ground truth [see Fig. 5(b)]. The
average MSEs are provided in Table III. Apart from the result
predicted from seismic data at an SNR of 5 dB, we can see
that there is no significant difference between these prediction
results, which are slightly worse than the prediction impedance
on data without noise (see Fig. 7(g) and the fifth column of
Table II). This presents that the robustness of the model tends to
be stable after SNR is higher than 15 dB. Even on seismic data
with 5 dB SNR shown in Fig. 9(a), we can see that our method
shows satisfying prediction in Fig. 9(b). These illustrate that
the model has the ability to deal with field data, which always
contains noise to some degree and shows strong robustness
against random noise when SNR reaches 15 dB.

B. Experiment on Field Data

After determining the model and loss through the synthetic
data test, we validate the performance of 2-D CA-ResANet
with the hybrid loss on a 3-D field dataset shown in Fig. 10.
The 3-D poststack field seismic volume is from the northern
Gulf of Mexico off the southern coast of Louisiana with a
turbidite sedimentary target layer. The seismic data have 1501
time points with 2 ms time interval, and the target layer is
between 2244 and 2494 ms. Fig. 11 shows a time slice of the
seismic data and the locations of six wells. To demonstrate the
performance of the proposed method, we predict the impedance
of the cross-well section indicated by the black solid line on a
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25 dB. (d) 35 dB. (e) 45 dB. (f)—(j) Corresponding impedance prediction results by 2-D CA-ResANet (A1 = 0.3). (k)—(0) Corresponding residual profiles between
predictions and ground truth [see Fig. 5(b)].

TABLE III
2-D MODEL COMPARISONS BY MSES OF THE WHOLE SEAM SECTION
SNR 5dB 15 dB 25 dB 35dB 45 dB
MSE 0.09811 0.05416 0.05384 0.05376 0.05461
Crossline
| n | | ner e e il 5700
ey 250 5800
i Amptitude
— 0.46754
(7)) 2300
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Fig. 10.  3-D field seismic volume.

time slice in Fig. 11. Fig. 11 shows the selected trace locations
(black crossings) for fine-tuning on the interpolated seismic data
and impedance profile. W1 and the selected traces around W1
are locally enlarged in the lower-left corner shown in the red
box for detail inspection. Specifically, we select 48 interpolated
trace pairs centered on each well and combine them with three
adjacent traces, as shown in the red oval for fine-tuning.

Fig. 12 shows the impedance and seismic data on the cross-
well section we used in this article. Since we have no intention
to improve seismic resolution, the well logs were processed to
facilitate model training. A low-pass filter is used to cut off
the high-frequency components for better comparison with the
inversion results of the seismic frequency band. We first train
the models on the interpolated impedance [see Fig. 12(a)] and
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synthetic seismic data [see Fig. 12(b)] generated from the inter-  seismic [see Fig. 12(d)] to verify the effect of the proposed
polated impedance to learn the theoretical mapping relationship.  method.

Then, the pretrained models are fine-tuned with the interpolated To demonstrate the effectiveness of the proposed method, we
seismic data [see Fig. 12(c)] and the interpolated impedance conduct tests by adjusting the convolution kernel dimension,
around the wells to fit the actual geological features. Finally, loss, and CA. The results are shown in Fig. 13. In total, 144 seis-
we predict the impedance from cross-well profile of the field micandimpedance pairs around the 6 wells (24 wells each) from
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Impedance prediction results using field seismic data (a), (b) CSSI. (c) 1-D ResANet. (d) 2-D ResANet (A1 = 0). (e) 2-D ResANet (1; = 0.3). (f) 2-D

CA-ResANet (A1 = 0.3). The vertical solid green line and black curve stand for the position and the impedance of the six wells (W1-W6), respectively.

interpolated data are used to fine-tune the 1-D ResANet. These
2-D models use 102 sets of traces with 125 time points for fine-
tuning. Fig. 13(d) shows that the overall visual lateral continuity
of the 2-D ResANet has been improved compared with the 1-D
ResANet [see Fig. 13(c)] containing some fragmentation layers
(shown in the black oval). After adding CA [see Fig. 13(e)], those
anomalies are suppressed. Fig. 13(f) shows that not only the
fragments but also the vertical strips [the black oval in Fig. 13(e)]
are further reduced. Fig. 13 illustrates that CA-ResANet with the
hybrid loss can predict impedance with better lateral continuity
and fewer fragments correspondingly. In addition, the result of
the constrained sparse spike inversion (CSSI) [51] method [see
Fig. 13(b)] from commercial software (InverTrace Plus module
in Jason) is also used as a criterion when these predictions are
compared. For CSSI, the resolution of inverted P-impedance is a
tradeoff on many factors. The improvement of vertical resolution
depends not merely on the input seismic wavelet and seismic
data but on the inversion parameters. For example, seismic
SNR and sparsity uncertainty have the most direct influence on
vertical resolution. The determination of these two parameters
can be understood as an optimization problem. From a practical
point of view, the consistency between the invert P-impedance
and P-impedance at the well is a more important economic
criterion than the improvement of vertical resolution. Thus, CSSI
sacrifices vertical resolution for a stable P-impedance result. As
a result, we can see that the proposed method is closest to the
CSSI result with high lateral continuity and little small-scale
anomalies but has a higher vertical resolution.

To compare the overall lateral continuity improvement, we
compare the proposed method with the 1-D ResANet using the
interpolated wells around W1, W3, W4, and W6 as fine-tuning
data while W2 and W5 are used as blind wells. As a result, we
select totally 96 seismic and impedance pairs for 1-D ResANet
and 68 traces with two traces on the left and right for the proposed

method to fine-tune the networks. Fig. 14 and Table IV list
the prediction results of the field seismic data at W2 and W5.
Although the PCC result of both blind wells of 1-D ResANet
and 2-D CA-ResANet are very close, 2-D CA-ResANet has
smaller MSE with fewer outliers (best results highlighted in
bold red in Table IV). From the green oval box in Fig. 14,
we can see that some offsets are reduced. On top of that, the
prediction comparison profile on the cross-well section is shown
in Fig. 15. The vertical solid green line and black curve represent
the position and the impedance of the six wells (WI1-W6),
respectively. Fig. 15, especially the black circles, shows that the
proposed method matches the ground truth better. These results
further prove that 2-D CA-ResANet with hybrid loss tends to
predict impedance with better lateral continuity and less noise.

IV. DISCUSSION

Table V compares the computational cost between 1-D Re-
sANet and 2-D CA-ResANet. The number of parameters of
2-D convolution is much larger than that of 1-D convolution.
For example, the number of parameters of the first convolution
layer of 2-D CA-ResANet is 28 752 and that of 1-D ResANet
is 464. We can see that the number of total parameters of 2-D
CA-ResANet, 2 454 023, is about six times as large as that
of 1-D ResANet (416 687). Thus, the training time for 2-D
CA-ResANet (43 min 40 s) is longer than 1-D ResANet (15 min
38 s). The difference in the test efficiency of the two networks
is not that large. The test time of the profile prediction of 2-D
CA-ResANet (371 ms) is 102 ms longer (37%) than the time for
1-D ResANet.

From visual inspection of the cross-well section, the lateral
continuity of the inverted impedance is an important criterion
for practical implementation. We implement three tricks on
this regard. First, 2-D convolutions can learn structural features
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TABLE IV
QUANTITATIVE COMPARISON ON BLIND WELLS BETWEEN 1-D RESANET AND THE PROPOSED METHOD
Evaluation metrics Well 1D ResANet 2D CA-ResANet (4; = 0.3)
MSE w2 0.0018 0.0017
W5 0.0016 0.0014
w2 0.8255 0.8592
PCC
W5 0.8583 0.8306
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Fig. 15. Impedance prediction results taken W2 and W5 as the blind wells. (a) 1-D ResANet (A1 = 0). (b) 2-D CA-ResANet (A1 = 0.3).

COMPARISON BETWEEN DIFFERENT NETWORKS ON FIELD DATA

TABLE V

Model Training time Test time of profile prediction Total parameters
1D ResANet 28min 02s 269ms 416687
2D CA-ResANet 43min 40s 371ms 2454023

and relationships between adjacent traces to predict impedance
more stable. Second, a CA block can capture the stratum
direction-aware and position-sensitive information in both time
and horizontal structure dimensions. At the same time, CA can
improve the DL-model performance without significant com-
putation overhead. Third, the edge operator used in the hybrid
loss can be regarded as a physical constraint to match the pre-
dicted structure with the true distribution. Under the constraint
of structure information, the model can obtain more realistic

prediction results with fewer vertical strips and unreasonable
noise and better lateral continuity, thus further enhancing the
stability of the designed network. In this way, the proposed
method can predict complex geological scenarios with better
lateral continuity and stability. Comparison between Fig. 13(d)
and Fig. 13(c), Fig. 13(e) and Fig. 13(c), Fig. 13(f) and Fig. 13(d)
verifies the effectiveness of 2-D convolutions, the hybrid loss,
and CA block, respectively. First and foremost, we recommend
the use of 2-D networks for impedance inversion. Then CA block
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can be inserted in any 2-D network to improve lateral continuity
performance on the task of impedance inversion from seismic
data, such as U-Net, GANs, temporal convolutional networks
(TCNs), and so on. Finally, the loss function with an edge
operator can be a good choice for facilitating model stability
and reasonable results.

In addition, we can improve accuracy by adding other prior
constraints. Biswas et al. [52] introduce physical laws, that is,
wave-propagation physics, into the training process for seis-
mic impedance inversion. Moreover, a low-frequency model is
added to the generated impedance. Alfarraj et al. [15] utilized
geophysical constraints, and seismic forward modeling, for the
impedance inversion. Zhang et al. [53] conducted impedance
inversion by a semisupervised framework with low-frequency
extrapolated data. Mustafa et al. [54] performed impedance
inversion based on a TCN. Our proposed method focuses more
on geological structure, which can also be improved with prior
constraints especially by adding low-frequency data. Lateral
continuity occupies an essential position as an evaluation cri-
terion for impedance inversion in practical application. It is
promising that the proposed hybrid loss and the attention module
are useful in DL-based impedance inversion methods. This
offers a potential solution for lateral continuity improvement to
the impedance inversion on field data or other related geological
imaging tasks.

V. CONCLUSION

In this article, a 2-D CA-ResANet with a hybrid loss function
is designed for impedance inversion. In synthetic SEAM model
experiments, we use two ablation studies to determine our
network architecture and the best hybrid loss. The quantitative
tests are conducted to demonstrate the effectiveness of CA and
the proposed loss. Furthermore, we use field data to illustrate the
effectiveness of the proposed method. The field data experiments
with the interpolated wells around all available wells indicate
that the 2-D convolution, CA, and hybrid loss all can capture
geological structure information. Overall, our method has a
great improvement in lateral continuity, stability, and robustness
against noise compared with the 1-D method and CSSI method
using commercial software (InverTrace Plus module in Jason).
A comparison between 1-D ResANet and the proposed method
with two blind wells on the field data also justifies the superiority
of our method.
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