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Abstract—Building detection from panchromatic (PAN) and
multispectral (MS) images is an essential task for many practical
applications. In this article, a dual-stream asymmetric fusion net-
work is proposed, named DAFNet. DAFNet can achieve effective
information fusion at the feature level. It obtains better building
detection performance from the following three perspectives: a
two-stream network structure is designed to guarantee the ability
to extract information from PAN and MS images; an asymmetric
feature fusion module is proposed to fuse features efficiently and
concisely; and two consistency regularization losses, i.e., PAN in-
formation preservation loss and cross-modal semantic consistency
loss are applied to further explore the consistency between features
for better fusion. The experiments are conducted on a challenging
building detection dataset collected from GaoFen-2 satellite im-
ages. Comprehensive evaluations on 12 popular detection methods
demonstrate the superiority of our DAFNet compared with the ex-
isting state-of-the-art fusion methods. We reveal that feature-level
fusion is more suitable for building detection from PAN-MS images.

Index Terms—Building detection, deep learning, multimodal
fusion, remote sensing (RS) images.

I. INTRODUCTION

BUILDING detection from remote sensing (RS) images is
an important research topic since it provides basic informa-

tion for a wide range of applications such as urban planning [1],
earthquake disaster reduction [2], and mapping [3]. Thanks to
powerful deep neural networks, research in this field has been
advancing rapidly in recent years. Many of these methods draw
inspiration from generic object detection approaches that aim to
detect everyday objects in natural scenes.
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However, real-world RS image processing and analysis sys-
tems usually accept inputs in two modalities: panchromatic
(PAN) and multispectral (MS), because many Earth observa-
tion satellites cannot provide images with both high spatial
and spectral resolutions. Alternatively, these satellites acquire
images in two modalities: PAN images that are rich in spatial
information with fine details and textures and MS images with
rich spectrum information complementary to the PAN images.
To leverage the advantages of both modalities and facilitate
subsequent processing steps, researchers have developed pan-
sharpening techniques that fuse PAN and MS images to generate
high-resolution MS images. The pan-sharpened images have
been proven to be able to achieve a fairly good recognition
performance [4] because they can preserve the spatial detail and
spectral information of the image content [5]. Pan-sharpening-
then-understanding has become a standard pipeline for many RS
image interpretation systems.

However, our experiments show that constructing RS image
interpretation models (e.g., building detection model) based
on pan-sharpened images might be suboptimal. Pan-sharpening
methods have a significant impact on building detection perfor-
mance. We test various image fusion methods, including tradi-
tional [6], [7], [8], [9] and deep learning ones [10], [11], [12],
[13]. Some of them degrade detection methods significantly
compared with those using only PAN images. There are two
reasons for this, which are as follows:

1) these pan-sharpening methods are not optimized for the
downstream tasks, such as building detection, even though
they can produce good pan-sharpened images;

2) PAN and MS are considered to have equal contributions
for fusion; however, our experiments show that PAN is
more important than MS for object detection.

Compared with pan-sharpening methods, feature-level fu-
sion [14], [15], [16], [17], [18], [19] combines the fusion process
with the downstream tasks to alleviate the suboptimal problem.
Nonetheless, there are still several concerns that must be taken
into account while applying feature fusion on building detection.

1) As an effective multiscale feature fusion method, feature
pyramid network (FPN) [20] is widely used in object de-
tection. The strategy of combining multimodal fusion with
FPN will affect the detection performance. The effective
combination strategy remains to be studied.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5181-6451
https://orcid.org/0000-0002-5050-2311
https://orcid.org/0000-0001-8001-2703
mailto:ziyuehuang@buaa.edu.cn
mailto:ziyuehuang@buaa.edu.cn
mailto:qingjie.liu@buaa.edu.cn
mailto:zhysora@buaa.edu.cn
mailto:gaoguangshuai1990@buaa.edu.cn
mailto:yhwang@buaa.edu.cn
mailto:xutao@ujn.edu.cn
mailto:whistlewen@aliyun.com
https://github.com/floatingstarZ/DAFNet


HUANG et al.: BUILDING DETECTION FROM PANCHROMATIC AND MULTISPECTRAL IMAGES 3365

2) Most current fusion modules fuse features using a sym-
metrical structure. However, PAN and MS are not equally
helpful for building detection. There still needs to be more
researches on the asymmetric fusion structure to highlight
the information of PAN.

3) Attention mechanisms [14], [15], [16], [17], [18], [19]
are widely employed in existing fusion methods, which
pushes the model focus on essential parts and obtain the
complementary information from multimodal data [14].

However, they ignore the heterogeneous gap [21] existing
in multimodal features, i.e., features from different modalities
located in unequal subspaces, and will weaken multimodal
fusion’s benefits. We propose the dual-stream asymmetric fu-
sion (DAF) network to deal with these issues. The commonly
used two-stream architecture [22], [23] in multimodal fusion is
adopted to extract MS and PAN features. To better adapt to the
FPN, we propose dual fusion FPN, which first performs scale
fusion, and then, modality fusion. An asymmetric feature fusion
(AFF) module and a PAN information preservation (PiP) loss
are designed to avoid losing PAN information. Motivated by
DCCA [24], a cross-modal semantic consistency (CSC) loss is
introduced to alleviate the heterogeneous gap so that the fused
feature does not contain noise and is more robust.

In summary, our contributions are as follows.
1) We reveal that models aiming to detect buildings from

RS images should be well-designed. Performing detection
from fused images may not be a good solution. Detection
from joint inputs of PAN and MS images has great poten-
tial to be investigated.

2) A dual-stream asymmetric fusion network, termed DAF, is
proposed for building detection. DAF takes advantage of
the original information of PAN and MS images and fuses
them using an AFF module. PAN information preservation
(PiP) loss and cross-modal semantic consistency (CSC)
loss are proposed to augment building detection further.

3) Experiments demonstrate that the proposed losses and
AFF module have strong adaptability that are applicable
to various detectors and can boost detectors’ performance
on building detection without bells and whistles.

II. RELATED WORK

A. Generic Object Detection

Object detection is a fundamental task in computer vision.
It has achieved great success thanks to powerful deep neural
networks. Most of the existing detectors can be grouped into
two families, namely two-stage detectors [25], [26], [27], [28],
and single-stage detectors [29], [30], [31], [32], [33]. Two-stage
detectors resolve the detection with a two-stage pipeline, in
which the first stage generates a set of candidate proposals, and
the second stage performs category classification and bounding
box regression simultaneously. The second stage can be consid-
ered a refinement process. Thus, two-stage detectors generally
show high detection performance; however, they always suffer
from low inference speed. Single-stage methods discard the
proposal generation stage and directly conduct detection from

features. These methods are more computationally efficient than
two-stage detectors but have lower accuracy.

In order to achieve a better performance, single-stage methods
usually place a large number of preset dense anchors over
images, and then, predict the final detection boxes by scoring
the anchors and estimating relative offsets to them. Anchors
play a similar role to proposals, thus enabling detection perfor-
mance promotion. These methods [25], [29] are widely known
as anchor-based detectors. However, to guarantee better per-
formance, there might be more than 10K anchors required,
which significantly decreases the training and inference speed,
and more importantly, results in extremely unbalanced positive
and negative samples during training. Anchor-free models (e.g.,
FSAF [31], FCOS [30]) are proposed to solve these problems.
They use the center points or center areas as positive sample
areas and directly predict detection boxes and categories in these
areas.

B. Building Detection

Benefiting from generic object detectors, detecting ground
objects in RS images has been advancing rapidly in recent
years. Many methods have emerged and achieved astonishing
performance. Among all concerning objects in aerial images,
buildings are the most important and challenging ones. Great
efforts have been devoted to solving the building detection
problem.

Vakalopoulou et al. [34] propose an automatic building de-
tection framework based on deep features and SVM classifiers.
Zhang et al. [35] design a coarse-to-fine detection framework,
which uses saliency maps to locate built-up regions, followed
by an R-CNN [36] like pipeline to detect buildings. Li et al. [37]
develop a cascaded network, where they incorporate the Hough
transform to highlight the boundaries of buildings. Li et al. [38]
design a multibranch network to capture contextual and struc-
tural features for better identification of buildings.

Many methods solve building extraction with instance seg-
mentation approaches. Alshehhi et al. [39] address road and
building extraction with a single-branch CNN. Hamaguchi
et al. [40] address the multiscale problem with a multitask
framework. The framework consists of multiple U-Net mod-
els. Each model is devoted to a specific size of building.
Yang et al. [41] design a dense-attention network for building
extraction. The attention mechanism can strengthen features,
thereby enabling better performance. Griffiths et al. [42] argue
that label quality is critical for model training. They propose to
improve building footprint masks using morphological geodesic
active contours. Han et al. [43] combine the advantages of
traditional image processing methods and deep models. They
use traditional methods to enhance the dataset, and then, employ
a Mask R-CNN for building detection. Sirko et al. [44] study
continental-scale building detection. They also utilize U-Net to
segment buildings.

In addition to the perspective of segmentation, some works
seek better representations for buildings, e.g., polygon and vec-
tor fields. Castrejon et al. [45] cast instance-level building seg-
mentation as a contour polygon prediction task, inspiring more



3366 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

subsequent building detection works. Li et al. [46] circumvent
the conventional pixel-wise segmentation of aerial images and
directly predict buildings and roads in a vector representation.
They developed a method named PolyMapper to achieve this
goal. Wei et al. [47] propose a two-step method. They first intro-
duce an improved fully convolutional network to obtain masks of
building footprints, and then, use a polygon regularization algo-
rithm to transfer the masks into polygons. Li et al. [48] propose a
hybrid model for building polygon extraction, in which they em-
ploy several networks to obtain bounding boxes, segmentation
masks, and corners of buildings, and then, use Delaunay triangu-
lation to construct building polygons. Zhu et al. [49] present an
adaptive polygon generation algorithm (APGA), which first gen-
erates sequences of building vertexes and then arranges them to
form polygons.

In real applications, images may come from different plat-
forms, and thus, are with different resolutions. To bridge the
resolution gap, Guo et al. [50] adopt a superresolution method
to zoom them into the same resolution and perform building
segmentation. Chen et al. [51] extract buildings from PAN and
MS imagery to fully explore the spatial-spectral information.
They propose to use a multiscale spatial-spectral contextual
information mining CNN for this goal.

C. Multimodal Fusion

Different modalities captured from the same platform usually
carry distinct yet complementary information. Combining them
together, such as RGB-Depth [17], RGB-Thermal [17], [52],
Audio-Visual [53], RGB-LiDAR [54], and RGB-Radar [53]
is believed to enable considerable and consistent perception
improvement compared with a single modality. Bin et al. [55],
[56] use an adaptive multimodal mechanism in dealing with real-
world inverse synthetic aperture radar (ISAR) object recognition
problem on the level of feature and decision. Bin et al. [57]
proposed deep geometric learning to strengthen the capability
of the CNN in multimodal scenarios.

Multimodality fusion can be divided into three categories:
early fusion, mid fusion, and late fusion. These fusion strategies
happen on pixel level, feature level, and decision level. Early fu-
sion is widely used in RS field, such as pan sharpening [10], [11].
However, pan sharpening is independent of downstream tasks;
therefore, it may not be beneficial for interpretation models. Late
fusion makes decisions based on the predictions obtained from
each modality. However, terrible predictions from one modality
are likely to damage the final performance. The mid-fusion
strategy has been widely studied. The key to achieving effective
multimodal fusion is to filter useless information in each modal-
ity and combine the rest. This idea coincides with attention,
making attention mechanisms are widely used in multimodal
fusion [17], [22], [53], [58], [59], [60].

Satellites usually carry two kinds of sensors providing two
modalities: PAN and MS. In addition to combing the strengths of
the two modalities using pan-sharpening techniques, researchers
also explore interpreting RS images using midfusion strategies.
Li et al. [22] design an attention-based heterogeneous gated fu-
sion network to fuse the optical and SAR features for land cover

classification. Kang et al. [15] propose a fully convolutional
network using a cross-gate module to fuse features from optical
and SAR images.

III. METHOD

A. Overview

The overall pipeline of our method is shown in Fig. 1. Two
CNN networks are used to extract features from the input PAN
and MS images. Since the modalities carry distinct information,
these two networks do not share weights. Then, FPNs [20]
are equipped to obtain multiscale features for better detecting
buildings on various scales. Finally, AFF module is proposed
to fuse features of PAN and MS images. Two loss functions
are introduced to enforce fusion: PAN information preservation
(PiP) loss and cross-modal semantic consistency (CSC) loss.
Our fusion strategy occurs in the feature extraction stage and is
independent of detection heads, making it applicable to a variety
of detection methods.

B. Feature Extraction

Given a pair of PAN and MS images {Ip, Im}, where su-
perscript p denotes PAN and m denotes MS, ResNet50 [61]
with unshared parameters are used as the backbones to extract
their visual features. During the construction of the dataset, MS
images are upsampled by bilinear interpolation to the same size
as PAN images, which gives the same resolution to the features
obtained by the two branches. ResNet50 is composed of one
input block B and four stages: {R2,R3,R4,R5}. ResNet50
accepts three-channel RGB images as inputs, which is inconsis-
tent with PAN and MS images. Modifying the input channel of
the input block will destroy the pretrained parameters, whereas
selecting only three channels as input will damage the multi-
spectral information [62], [63]. Motivated by the 3-D CNN [64]
used in hyperspectral image classification, we develop a sliding
strategy to fill this gap. The PAN image is replicated three times
and stacked together to form a three-channel input. Then, the
new inputs are fed into the PAN branch

Cp
1 = Bp ([Ip, Ip, Ip]) (1)

where Bp denotes the input block of the PAN branch, and Cp
1

is the obtained feature. For one MS image that contains four
channels, we slide the input block of ResNet50 along its channel
dimension and obtain the features of the input block in the MS
branch

Cm
1 =

1∑
i=0

Bm
(
Imi:i+3

)
(2)

where Imi:i+3 represents the ith to the (i+ 3)th channels of the
MS image. Through the sliding strategy, the network can process
MS images while preserving the pretrained weights.

After the feed-forward propagation, features in a pyramid
style {(Cp

i , C
m
i )}5i=2 are obtained by

Ci = Ri(Ci−1), i = 2, 3, 4, 5 (3)
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Fig. 1. Overall architecture of our dual-stream asymmetric fusion network (DAFNet). It consists of two networks responsible for extracting features of PAN and
MS images, respectively. The DAFNet is equipped with two independent FPNs [20] for each modality to address the multiscale detection problem. The proposed
AFF module fuses features in each scale of the two FPNs to combine the strengths of PAN and MS. Two loss functions, i.e., PiP loss and CSC loss are proposed
to ensure that the fusion is achievable and the most important information of PAN can be preserved.

each is with channels of {256, 512, 1024, 2048}, respectively.
Ri denotes the ith layer of backbone.

Then, features pass through two independent FPNs to obtain
multiscale features. The FPN conducts multiscale feature fu-
sion through a top-down pathway with lateral connections [20],
which produces the features {Xi}5i=2, all with channels of 256.
Finally, the two pyramidal-style features are fused through AFF
modules for detection:

Xf
i = AFFi (X

p
i , X

m
i ) , i = 2, 3, 4, 5 (4)

where AFFi denotes the ith AFF module. Considering that PAN
image features account for the dominant role in the detection,
a skip connection is added to ease gradients update of the PAN
branch, as shown in the AFF module in Fig. 1. It is formulated as

AFFi (X
p
i , X

m
i ) = Conv(Xp

i ) + Conv(Xm
i ) +Xp

i (5)

where Conv is a convolutional layer with kernel size 3× 3.

C. Consistency Regularization of the AFF Module

For object detection, each level of the FPN is supervised
by the regression loss and classification loss [20] to learn
features with semantic and spatial information. The semantic
information helps the detector to distinguish objects in each
region. The spatial information, such as contours and edges,
helps to identify object boundaries [65]. By using global av-
erage pooling (GAP) [66], the global-level representations of
the whole image could be obtained. The maximum value along
channels describes the spatial information to some extent [67].

There are two consistencies essential for fusion and detection.
1) The features of the PAN and MS images should hold a

semantic consistency since they are captured over the same
site.

2) Both semantic and spatial information of PAN images
should be preserved after fusion since PAN images play a
decisive role in detection.
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Two regularization losses are proposed to achieve these con-
sistencies: semantic consistency loss and spatial preservation
loss.

Semantic consistency loss ensures that the semantic infor-
mation of two inputs is as close as possible. To this end,
the global-level representations Gi are obtained by applying
GAP [66], followed by a 1× 1 convolutional layer without
bias. To avoid a trivial solution, that is, features collapse to
0, an orthogonal regularization [68] is applied to constrain the
parameter of convolutional layer. The parameter is marked as
Wc ∈ RD×D, where D is the dimension of the features. Finally,
the L2 distance of features in the latent space is calculated to
obtain semantic consistency loss Lc.

Gi = Conv(GAP(Yi)), i = 1, 2 (6)

Lc(Y1, Y2) = ||G1 −G2||2 + ||WT
c Wc − I||2 (7)

whereYi denotes the features to be constrained, and I denotes the
identity matrix with ones on the diagonal and zeros elsewhere.
The CSC loss is the sum of semantic consistency losses between
PAN and MS features at each stage

Lcsc =

5∑
i=2

Lc (X
p
i , X

m
i ). (8)

The spatial preservation loss measures spatial information
agreement between two inputs. Considering that spatial infor-
mation lies in the activations of feature maps, a max-pooling
operation along the channel axis is performed to obtain the
spatial feature map. Finally, the loss is calculated using L2
distance as

Si = Conv
(
max

c
(Yi)

)
, i = 1, 2 (9)

Ls(Y1, Y2) = ||S1 − S2||2 (10)

where Si denotes the spatial feature map, Ls is the spatial
preservation loss, and Yi denotes the features to be constrained.
The parameters of the spatial preservation loss will not collapse
to zero since its’ optimization difficulty is much lower than that
of the semantic consistency loss.

The overall preservation loss between PAN and fused features,
i.e., the PiP loss, could be formulated as

Lpip =

5∑
i=2

Lc

(
Xf

i , X
p
i

)
+ Ls

(
Xf

i , X
p
i

)
(11)

D. Detection

To coordinate optimization with the detection task, the CSC
loss and PiP loss are optimized during training. Let Ldet be the
detection loss and the total loss of our model is

L = Ldet + Lpip + Lcsc. (12)

The detection loss Ldet depends only on the detector, ir-
relative to our method. Our experiments are performed on
12 popular object detectors, including Faster R-CNN (FR-
CNN) [25], FoveaNet (FvNet) [69], FSAF [31], GA Faster R-
CNN (GFRCNN) [28], Grid R-CNN (GRCNN) [26], RetinaNet

(RtnNet) [29], ATSS [32], Cascade R-CNN (CRCNN) [70],
Dynamic R-CNN (DRCNN) [71], Reppoints [72], Sparse R-
CNN (SRCNN) [73], and the newest RTMDet [33]. The first
11 models use FPN for multiscale feature extraction. These
models are trained with 12 epochs, and the learning rate decays
by a factor of 10 at epoch 8 and 11. Models except for Sparse
R-CNN [73] are optimized with SGD optimizer with an initial
learning rate of 0.01. For Sparse R-CNN [73], the SGD opti-
mizer is replaced with AdamW optimizer and reduces the initial
learning rate to 0.000025. RTMDet [33] is an efficient real-time
detector equipped with an FPN. The AdamW with a 0.05 weight
decay and cosine annealing [74] with a minimum learning rate
of 0.0002 are adopted for optimizing RTMDet. The medium size
one is chosen for our experiments among the five available model
sizes in RTMDet. Warm-up strategy is adopted for the first 500
iterations with ratios of 0.33 to stabilize the training process. The
gradient clipping with maximum normalized value of 35 is also
utilized to avoid gradient explosion. The experiments run on a
single NVIDIA 2080TI GPU with a batch size of 4. For test-
ing, non-maximum suppression (NMS) with intersection over
union (IoU) threshold of 0.3 is leveraged to remove duplicated
bounding boxes. In addition, boxes with scores less than 0.05
are removed to further reduce false detections.

IV. EXPERIMENTS

In this section, we first introduce the building dataset for
evaluation. Then, the impacts of different fusion levels on de-
tection is validated, revealing the disadvantages of image-level
fusion and result-level fusion methods in building detection. The
alternative multiscale architectures for multimodal fusion are
discussed afterward. What is following is the ablation study
of our proposed CSC loss and PiP loss. Finally, the proposed
DAFNet is compared with other feature fusion strategies.

A. Dataset

Experiments are conducted on 5M-building dataset [75],
which is comprised of images captured by GaoFen-2 satellite
over Shandong province of China. This dataset contains 109
PAN images and their corresponding MS images. The spatial
resolution is about 3.2 m for the 4-band MS images and 0.8 m
for the PAN images. The image size ranges from 2000× 2000
to 5000× 5000 pixels. Buildings in 5M-building dataset are
diverse in scale and shape. Some examples are shown in Fig. 2.

The MS images are up-sampled by bilinear interpolation to
meet the size of their corresponding PAN images. Then, all
images are cropped into 512× 512 patches with an overlap of
64, constituting training and test samples. Finally, there are 3 750
images containing 62 487 buildings in the training set and 1 233
images containing 15 550 buildings in the testing set. Images
captured by GaoFen-2 have a bit depth deeper than 8, so the
pixels are normalized into [0, 255] by histogram equalization.

Statistics of training set w.r.t building size, aspect ratio, and in-
stances in each sample are shown in Fig. 3. The dataset contains
many small objects; 37 299 buildings are smaller than 32× 32
pixels. It also can be seen that buildings vary significantly in
aspect ratio; 11 341 buildings have an aspect ratio greater than 4.
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Fig. 2. Sample images in 5M-building. PAN and MS image pairs are shown in the top and middle rows. The fused images obtained by the Brovey method are
illustrated in the bottom row. Annotations are marked with green rectangle boxes and are drawn on the PAN images.

Fig. 3. Statistics of 5M-building dataset in three aspects: number of instances
in each image, building area, and the aspect ratio of buildings.

B. Experiment Details

Our model is implemented with MMDetection [76]. All mod-
els use ResNet50 as the backbone network. The backbone is
initialized with ImageNet [77] pretrained weights. The first layer
of the backbone is frozen to match the default configuration in

MMDetection [76]. During training, the MS images and PAN
images are resized into800× 800 through bilinear interpolation,
and then, random horizontal flips with a probability of 0.5 for
data augmentation. The images are normalized with the mean
and variance obtained from the ImageNet images, since the
pretrained parameters are derived from the ImageNet classifi-
cation task. Image preprocessing in the test phase is consistent
with training, except that no data augmentation is used. The
performance is measured by COCO [78] metrics, including
mean average pooling (mAP) and AP50.

C. Impacts of Fusion Levels

The impacts of different fusion levels on detection are vali-
dated in this section, including image-level fusion, feature-level
fusion, and decision-level fusion.

Eight pan-sharpening methods are selected for image-level fu-
sion, including Brovey [6], fast intensity-hue-saturation (FIHS)-
based [7], principal component analysis (PCA)-based [8], A
Tróus wavelet transform (ATWT)-based [9], PGMAN [11],
PNN [79], PanNet [13], and PSGAN [12]. These methods
are either widely used in practical applications or new deep
fusion approaches. In our experiments, the traditional methods
are directly applied to obtain fused images without training.
The CNN-based methods are trained with the open accessed
GaoFen-2 images, and then, used for image fusion. Two non-
reference metrics Dλ [80] and DS [80] are used to evaluate the
performance of the pan-sharpening methods. Faster R-CNN [25]
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TABLE I
DETECTION PERFORMANCE WITH DIFFERENT FUSION STRATEGIES IN TERMS

OF AP50 (%) ON 5M-BUILDING TEST SET

and RetinaNet [29] are used for evaluation. The results are shown
in Table I.

It can be seen that PAN images are far better than MS im-
ages for building detection, indicating that spatial information
is essential for the detection task. Simply concatenating PAN
and MS images together is not a good solution. The results
degenerate compared to that of using PAN images. A possible
reason may be that MS channels dominate the input, which
makes the network hard to learn textural and structural features
that are mostly within PAN. The decision-level fusion based on
the detections of PAN and MS images is also investigated. We
use PAN and MS as training data, and train two independent
detectors based on Faster R-CNN. Then, the results of the two
detectors are merged by using nonmaximum suppression (NMS)
algorithm. The results are shown in the NMS row of Table I,
which are worse than PAN but slightly better than [PAN, MS].
Since the performance gap between PAN and MS images is
huge, MS drags the performance of NMS. Also, pan-sharpening
has a significant impact on building detection. As shown in
Table I, although CNN-based methods achieve much better fu-
sion results in terms ofDλ andDS , the performance on detection
is completely opposite. ATWT based is the worst among the
eight methods. Brovey-based produces the best results, although
PAN is slightly better for the RetinaNet detector. Detections from
the rest pan-sharpening methods are not as good as PAN images,
indicating substantial information loss during pan sharpening.

D. Multiscale Multimodal Fusion

An FPN [20] is widely used in object detection to address the
multiscale problem. In this work, the strategies of combining
multiscale features for multimodal fusion are discussed.

A straightforward approach is simultaneously performing
multiscale multimodal feature fusion, termed SiMM, as shown
in Fig. 4(b). At each scale, except for the lowest one, the fusion
module accepts features from the multimodal features in the
same scale and the fused futures of the lower scale. The fusion
process can be described as follows:

Xf
5 = Fusioni (L

p
5(C

p
5 ),L

m
5 (Cm

5 )) (13)

Xf
i = Fusioni

(
Lp
i (C

p
i ),L

m
i (Cm

i ), Xf
i+1

)
, i = 2, 3, 4 (14)

Fig. 4. Two multiscale architectures for fusion. (a) Dual FPN fusion (DuFF),
which first obtains multiscale features by the FPN, and then, fuses features in
each scale. (b) SiMM, which performs simultaneous multiscale and multimodal
feature fusion.

where Cp
i and Cm

i denote features from PAN and MS after the
ith stage, respectively; Li denotes the ith lateral connection;
Xf

i denotes the fused feature; and Fusioni denotes the fusion
module. During fusion, the last obtained feature is upsampled
by a factor of two.

The second architecture is dual FPN fusion (DuFF), which is
also implemented in our DAF network. DuFF first builds feature
pyramids for different modalities, and then, performs fusion in
each scale, as shown in Fig. 4(a).

The experiments evaluate two fusion strategies, i.e., element-
wise addition (ADD) and concatenation (CAT). The ADD ap-
plies element-wise addition to combine features and uses a 3× 3
convolutional layer to obtain fused features. The CAT concate-
nates features and then compresses the dimension through a
3× 3 convolutional layer. Both of these two operations are tested
in SiMM and DuFF. The results are shown in Table II, with the
“Source” column indicates the data source utilized for training.
DuFF delivers better performance than SiMM, and ADD opera-
tion is better than CAT. The reason is that DuFF is a progressive
fusion method that first performs multiscale feature fusion, and
then, completes the multimodal feature fusion, while SiMM
accomplishes multiscale and multimodal fusion simultaneously,
the network would be confused about what is important and what
should be preserved when fusion. On the other hand, the large
semantic gaps between different modalities and different scales
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Fig. 5. Influence of consistency loss on feature learning. The semantic agreement before and after mapping is measured by cosine distance and diversity using
L2 distance. A good consistency loss must ensure that the semantic information of features should be held and does not harm the diversity of the features.
(a) Semantic agreement before and after mapping. (b) Diversity changes before and after mapping.

TABLE II
PERFORMANCE COMPARISON OF MULTISCALE MULTIMODAL FUSION

STRATEGIES BASED ON FASTER R-CNN [25] ON 5M-BUILDING

make fusion difficult. Additionally, we perform experiments
using PAN+PAN as the data source, as shown in the bottom four
rows in Table II. It is found that the performance of the dual-
stream network using PAN+PAN as the data source is lower than
that of the single network using only PAN. This phenomenon
indicates that the performance improvement brought by DuFF
is due to the spectral information from MS images rather than
the extra computation of the multibranch structure. Thus, DuFF
with ADD is chosen as our multiscale architecture for fusion.

E. Consistency Loss

In addition to our CSC loss, there are two options for im-
posing consistencies between two features. The first is simply
minimizing L2 distance between features [81], and the second
is maximizing cosine distance between the two modalities [82].
All losses are computed in a latent space where features are
projected with a linear mapping. The results are shown in Ta-
ble III. The baseline simply adds the two features element-wise

Fig. 6. Visualization of Wc and WT
c Wc. The first 25 rows and 25 columns of

the parameters used in the first three layers are visualized. The first row indicates
the parameters Wc of 1× 1 convolutional layer used in semantic consistency
loss, and the second row indicates WT

c Wc.

without imposing any constraint. It can be seen that L2 loss de-
creases the detection performance. In particular, FSAF [31] and
RetinaNet [29] do not converge. Cosine loss and ours improve
the performance, while ours obtains the best results.

The semantic agreement and diversities of features before and
after the linear mapping are computed to further investigate why
this happens. Also, the cosine metric is used to measure semantic
agreement and L2 distance to measure the diversity of features.
If two features have strong semantic consistency, their cosine
similarity should be close. Features should also be diverse so
the model can learn good decision boundaries. The results are
shown in Fig. 5.

As can be observed, all losses improve semantic consistency.
Cosine loss obtains the best results since it imposes the cosine
similarity directly. However, it boosts the diversity of features,
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TABLE III
COMPARISON WITH OTHER CONSISTENCY LOSS ON 5M-BUILDING DATASET

Fig. 7. Five popular fusion approaches for comparison. (a) Channel-wise weighted feature fusion (CWF) [14]. (b) Cross gates (GRSs) [15]. (c) Cross reference
module (CRM) [16]. (d) Gated information fusion (GIF) [17]. (e) Adaptive feature fusion modules (AFFM) [18] ©C : Concatenate operation. ©R : ReLU. ⊗: Tensor
product. ⊕: Element-wise addition. ©σ : Sigmoid activation. “GAP”: Global average pooling.

TABLE IV
ABLATION STUDY OF AFF MODULE ON 5M-BUILDING USING SIX DETECTORS, AP50 (%) IS USED AS THE METRIC

which may increase model instability, as shown in the bar graph.
L2 loss significantly decreases the diversity, which hampers
the detection. The proposed loss improves the semantic con-
sistency while still maintaining an appropriate diversity of the
features.

In addition, the parameters Wc and WT
c Wc in (7) are visual-

ized. The first 25 rows and 25 columns of the parameters used in
the first three layers are selected for visualization, as shown in
Fig. 6. It can be found that the orthogonal loss of our matrix can
well force the matrix to meet the orthogonality, so the mapping is
only used to transform the feature into a new space to complete
the constraints, and there will be no feature collapse. We also
study the effectiveness of each term of our loss. The results
are shown in Table IV. The ADD strategy is considered as the

baseline. It can be seen that the CSC loss increases AP50 by an
average of 0.55, the PiP loss increases by an average of 0.62,
and the combination achieves the best, increasing by an average
of 0.73.

F. Overall Results

To further demonstrate the effectiveness of our fusion method,
we compare it with other fusion strategies that are widely used
in RGB-Depth and RGB-Thermal perception tasks, including:
channel-wise weighted feature fusion (CWF) [14], cross gates
(CRGs) [15], cross reference module (CRM) [16], gated in-
formation fusion (GIF) [17], and a fusion method for PAN
and MS data fusion, i.e., the adaptive feature fusion module
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TABLE V
PERFORMANCE COMPARISON ON 5M-BUILDING IN TERMS OF AP50 (%)

(AFFM) [18]. For CWF, CRGs, and GIF, we reimplement them
in strict accordance with the article; for SCA and AFMM, we
use the codes the authors provided.

The detailed architecture of each fusion module is shown
in Fig. 7. For fair comparisons, our AFF module is replaced
with these modules and an extra skip connection is added
on the PAN side so that the valuable PAN information could
be preserved for detection. Twelve popular object detectors
are employed for evaluation, including Faster R-CNN (FR-
CNN) [25], FoveaNet (FvNet) [69], FSAF [31], GA Faster R-
CNN (GFRCNN) [28], Grid R-CNN (GRCNN) [26], RetinaNet
(RtnNet) [29], ATSS [32], Cascade R-CNN (CRCNN) [70], Dy-
namic R-CNN (DRCNN) [71], Reppoints [72], Sparse R-CNN
(SRCNN) [73], and the newest RTMDet [33].

CWF [14] first concatenates features of PAN and MS, and
then, fuses them using a convolutional layer. Afterward, a weight
vector is generated from the fused features using GAP, which
will be used to reweight the PAN and MS features, as shown in
Fig. 7(a). Finally, the fused features are obtained by element-
wise addition of the weighted PAN and MS features.

CRGs [15] generates channel weights for PAN and MS modal-
ities, respectively, and then, applies them crosswise, as shown
in Fig. 7(b).

CRM [16] first obtains channel attention vectors for each
modality, and then, mines the most discriminative features
among them through element-wise addition. Finally, the channel
features are fused according to the weights of each mode and
the common important region, as shown in Fig. 7(c).

GIF [17] uses a spatial gate fusion mechanism. It
generates spatial weight maps for each modality based on their
concatenated features. Fusion is achieved through weighted
concatenation, as shown in Fig. 7(d).

AFFM [18] generates weights from the concatenation of
features after two convolutional layers. A softmax operation
will then normalizes the weights along the channel. After that,
AFFM computes element-wise weighted sum to fuse spatial and
spectral features, as shown in Fig. 7(e).

Detection results using PAN images are taken as the base-
line and compared with the ADD fusion strategy described in
Section IV-D and detections based on Brovey pan-sharpened
images. The performance of these methods is illustrated in

TABLE VI
COMPARISON OF PERFORMANCE (AP50), PARAMETER (PARAM), TRAINING

TIME (TIME), AND INFERENCE SPEED (SPEED) OF DAFNET WITH OTHER

METHODS BASED ON FASTER R-CNN [25]

Table V. In general, the performance of all detectors on the
5M-Building dataset does not exceed 70% AP50. This is mainly
because 5M-Building dataset covers complex scenes and has
diverse building styles, and large scale variations than other
building datasets, as shown in Figs. 2 and 8. These diversities
make 5M-Building dataset more challenging, so the detection
performance is relatively lower.

It can be seen that, according to the average improvements,
ADD, Brovey pan-sharpening, and GIF slightly improve the
detection performance. All the other three fusion approaches
decrease the detection. In sum, these four fusion approaches do
not contribute much to the detection. Our method achieves an
average improvement of 1.27% AP50. Furthermore, we promote
Grid R-CNN to achieve 70% AP50, which performs the best
in 5M-Building dataset, and improve Sparse R-CNN by 3.7%
AP50.

Table VI shows all methods’ running time and complexity
based on Faster R-CNN [25]. Our DAFNet has fewer parameters
than other feature fusion methods and achieves better perfor-
mance. In particular, DAFNet reaches 68.2% AP50 with 74.2 M
parameters and 12.5 FPS during inference, indicating that it is
a effective way to realize feature fusion compared with other
methods. In addition, the CSC loss and PiP loss introduced by
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Fig. 8. Example detection results on 5M Building. Some Faster R-CNN detection results from PAN images and Brovey pan-sharpened images are given in the
second and third rows for comparison. Note: Pink boxes refer to detection results, green boxes refer to the ground truth, blue boxes refer to miss detections, and
red boxes refer to false positives.

DAFNet can effectively improve the fusion effect without adding
extra computational costs during inference.

Some results are visualized in Fig. 8. Detection results from
PAN and Brovey pan-sharpened images using Faster R-CNN
are shown in the second and third rows. As can be observed,
our model has fewer miss detections and false positives. The
proposed fusion method effectively combines the strengths of
PAN and MS images, enabling augmented features of buildings,
thus leading to more accurate localization and classification.

V. CONCLUSION

In this article, we have conducted in-depth studies of build-
ing detection from remote sensing images. We reveal that pan
sharpening may degenerate the building detection performance.
The building detection problem is resolved from a multimodal-
ity feature fusion view and a dual-stream asymmetric fusion
network is proposed to effectively fuse and augment PAN and
MS features for building detection. The fusion is realized with
an AFF module and two consistency regularization losses, i.e.,
CSC loss and PiP loss. Extensive experiments on 5M-building
demonstrate the effectiveness and superiority of the proposed
approach.

Although the proposed DAFNet was motivated by the PAN
and MS fusion problem in remote sensing, the method is a
general framework that can be applied to other data sources, such

as optical images and photogrammetric point clouds [84]. Addi-
tionally, we noticed that the independent dual-branch structure
would bring too many parameters. A future direction is to use
siamese networks combined with joint learning [85] to achieve
a tradeoff between speed and accuracy.
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