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A Priori Land Surface Reflectance Synergized With
Multiscale Features Convolution Neural Network for

MODIS Imagery Cloud Detection
Nan Ma , Lin Sun , Chenghu Zhou, Yawen He, Chuanxiang Dong, Yu Qu, and Huiyong Yu

Abstract—Moderate resolution imaging spectrometer (MODIS)
images are widely used in land, ocean, and atmospheric monitoring,
due to their wide spectral coverage, high temporal resolution, and
convenient data acquisition. Accurate cloud detection is critical to
the fine processing and application of MODIS images. Owing to
spatial resolution limitations and the influence of mixed pixels, most
MODIS cloud detection algorithms struggle to effectively recognize
of clouds and ground objects. Here, we propose a novel cloud
detection method based on land surface reflectance and a multiscale
feature convolutional neural network to achieve high-precision
cloud detection, particularly for thin clouds and clouds over bright
surface. A monthly surface reflectance dataset was constructed
by MODIS products (MOD09A1) and employed to provide back-
ground information for cloud detection. Difference-based samples
were obtained using surface reflectance as well MODIS images of
different phases based on difference operations. The multiscale
feature network (MFCD-Net) using an atrous spatial pyramid
pooling and a channel and spatial attention module integrated
low-level spatial features and high-level semantic information to
capture multiscale features and generate a high-precision cloud
mask. For cloud detection experiments and quantitative analysis,
61 MODIS images acquired at different times on various underly-
ing surface types were used. Cloud detection results were compared
to those of UNet, Deeplabv3+, UNet++, PSPNet, and top of
atmosphere-based (MFCD-TOA) methods. The proposed method
performed well, with the highest overall accuracy (96.55%), pre-
cision (92.13%), and recall (88.90%). It improved cloud detection
accuracy in various scenarios, reducing thin cloud omission and
bright surface misidentification.

Index Terms—Cloud detection, difference-based samples, land
surface reflectance (LSR) dataset, moderate resolution imaging
spectrometer (MODIS), multiscale feature.
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I. INTRODUCTION

O PTICAL satellite images are an important source of earth
observation data, however, due to the inherent limitations

of imaging system, optical remote sensing images are inevitably
contaminated by clouds [1]. According to moderate resolution
imaging spectrometer (MODIS) cloud mask product statistics,
clouds cover approximately 67% of the earth’s surface [2].
Cloud coverage in satellite images causes the loss of surface
information, which not only limits data utilization but can
also generate errors in the remote sensing application, such as
land cover classification [3], surface temperature retrieval [4],
and atmospheric variables estimation [5]. Therefore, rapid and
high-precision cloud detection methods are critical for the fine
processing and application of remote sensing imageries.

Over the past few decades, numerous cloud detection algo-
rithms have been developed. Current cloud detection approaches
are classified into three types: threshold-based, multitemporal-
based, and machine learning methods. These methods use spec-
tral, spatial, and temporal information, as well as joint features
to separate clouds from the clear-sky areas. Threshold-based
methods, such as the International Satellite Cloud Climatol-
ogy Project algorithm and the Advanced Very High Resolution
Radiometer processing scheme over the cloud land and ocean
(APOLLO) algorithm [6], [7], use thresholds to identify clouds
and underlying surfaces based on spectral differences or low
brightness temperature. The MODIS cloud mask algorithm fully
employs the rich spectral information of MODIS data and sets
thresholds to generate cloud mask products [8], [9]. The function
of mask (Fmask) algorithm proposed by Zhu and Woodcock
[10] uses a series of thresholds to obtain cloud detection prob-
ability map for Landsat images. Fmask 4.0 [11] compensates
for the lack of cloud and shadow detection in Fmask 3.3 and
enhances the detection accuracy. It is challenging to determine a
suitable threshold for large-scale remote sensing scenarios due
to the diversity of surface types, particularly for thin clouds
and highly heterogeneous surfaces such as desert, ice/snow,
and bare rocks. To reduce the influence of fixed thresholds and
complex surfaces, Sun et al. [12] proposed a dynamic thresh-
old cloud detection method based on prior surface reflectance,
which increased cloud detection accuracy over various under-
lying surfaces. Because the surface reflectance database is built
using high-temporal-resolution images, their approach is best
suited for images acquired in short revisit intervals. In general,
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parameter adaptation and global optimization are typically dif-
ficult to perform for threshold-based methods due to the com-
plexity of the surface environment and the diversity of cloud
geometry, leading to varying degrees of cloud cover estimation
bias [13].

Clouds are dynamic, and images obtained at different times
in the same area can differ dramatically. Compared to the abrupt
increase in surface reflectance generated by clouds, tempo-
ral changes in underlying surfaces are relatively smooth [14],
[15]. Therefore, multitemporal-based methods are developed
for cloud detection. Multitemporal information can alleviate the
confusion of clouds and bright features. However, the imple-
mentation of this method necessitates the selection of cloud-free
images or the construction of cloud-free reference images using
multitemporal images [16], [17]. A clear-sky reference image is
essential for cloud detection using multitemporal images. Ob-
taining cloud-free images is time-consuming and labor-intensive
due to the effects of climate and sensor observing conditions, and
cloud-free images in a particular location at a certain time are
impossible to produce.

Machine learning-based approaches treat cloud detection as
a binary (cloud and noncloud) or multiclass (thin cloud, thick
cloud, and noncloud) task by establishing a reliable classifier
and iteratively optimizing the parameters using massive training
data [18]. Support vector machines [19], [20], random forests
[21], [22], decision trees [23], and neural networks [24], [25],
have been widely used in cloud detection. Traditional machine
learning methods can provide representative features for iden-
tifying clouds and underlying surfaces; however, parameter se-
lection, manual empirical judgment, and feature extraction are
still required, and their performance is limited by classification
frameworks, network structures, and capabilities [26]. As an
extension of machine learning, deep learning fully excavates
different scales of information using deep convolutional neu-
ral networks (DCNNs), and with robust feature representation
capabilities, has produced promising results in cloud detection
research [27], [28], [29], [30]. Initially, DCNN-based cloud
detection methods used image patches to classify clouds and
surfaces [31], [32], [33]. It enhances the accuracy and appli-
cability of cloud detection compared with existing approaches.
However, the image patch-based detection method has a local
receptive field that ignores image neighborhood information.
Therefore, a fully convolutional network (FCN) [34] is applied
for cloud detection. FCN-based cloud detection is a pixel-level
semantic-segmentation process. The UNet network [35], which
fuses features between different layers and comprehensively
extracts image information, is commonly used in cloud de-
tection [29], [36], [37]. Jeppesen et al. [36] proposed RS-Net
for achieving promising cloud detection results, although it
had limited multispectral capabilities. To reduce the annotation
of training samples, Ma et al. [13] combined ASTER library
and AVIRIS spectral images using convolutional neural net-
work (CNN) to achieve cloud detection for multi-sensor remote
sensing imageries. Domain adaption [38], [39] were also intro-
duced to improve the cloud detection performance. CNN-based
cloud detection can fully mine the spectral and spatial informa-
tion of images, and produce accurate cloud detection results,

however, it yields weaker performance in capturing global con-
text information. Attention mechanism [40], [41] focusing on the
important features was combined with CNN structure to improve
cloud detection. Zhang et al. [42] introduced the spatial-channel
attention mechanism into the cloud detection network, strength-
ened the feature information, and obtained better cloud detec-
tion results. Li et al. [43] proposed the Global Context Dense
Blocks (GCDB-UNet) for cloud detection. This method embeds
GCDB into the UNet framework and can detect thin clouds
effectively.

MODIS images have a wide spectral range and high temporal
resolution, and MODIS data are readily available; therefore,
they are widely used in land, ocean, and atmosphere studies.
An accurate cloud mask is crucial for the fine processing and
application of MODIS images. At present, MODIS image cloud
detection still has two aspects to be concerned. On the one hand,
the effects of spatial resolution and mixed pixels (a mixture
of the underlying surface and clouds) limit the cloud detection
accuracy of MODIS. Deep learning technology can exploit the
difference in spectral, spatial, and temporal information between
clouds and the surface, indicating a significant application po-
tential in MODIS image cloud detection. On the other hand, thin
clouds over the inhomogeneous underlying surface and highly
mixed scenes are the primary challenges in cloud detection.
Changes in cloud radiation information across the land surface
present complex uncertainties due to complex land surfaces and
variable cloud phase states, sizes, and densities, particularly
when pixels are covered by thin clouds. Satellite sensors provide
relatively limited information, making it difficult to distinguish
between highly heterogeneous surfaces and polymorphic clouds.
The lack of land surface information hinders the distinction
between clouds and complex surfaces. The combination of prior
surface reflectance data and deep learning might be a promising
method for MODIS image cloud detection.

To address the aforementioned issues, a priori land surface
reflectance (LSR) dataset was coupled with a multiscale feature
convolution neural network for MODIS imagery cloud detection
(SRMF-CD). The LSR dataset constructed by MOD09 was em-
ployed to provide specific information for creating differential
features with MODIS images. A multiscale feature cloud detec-
tion network using an atrous spatial pyramid pooling (ASPP)
module and a channel and spatial attention module (CSAM)
could integrate low-level spatial features and high-level semantic
information to accurately separate clouds from surfaces.

The main contributions of this article can be summarized as
follows.

1) A new cloud detection technique was developed using
an LSR dataset and multiscale feature cloud detection
network. The LSR dataset provides specific ground infor-
mation without cloud coverage, hence solving the problem
of obtaining a clear sky reference.

2) Difference-based training samples obtained using LSR
dataset and MODIS images of different phases were used
as the information source of the cloud detection network.
Compared with the top of atmosphere (TOA) reflectance
images, the differential images enhance the cloud feature
and weaken the bright ground feature, alleviating the
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TABLE I
BAND PARAMETERS AND THEORETICAL ACCURACY OF MOD09A1

phenomenon of thin cloud omission and bright features
misjudgment.

3) A multiscale feature cloud detection network (MFCD-
Net) was designed for cloud detection. The DCNN, ASPP
module, and attention module combined low-level spa-
tial features and high-level features to capture multiscale
information and generate a high-precision cloud mask.

II. DATA SOURCES

In this article, we used Terra MODIS images and MOD09
surface reflectance products to provide cloud and surface in-
formation (MODIS images and products are available at https:
//ladsweb.modaps.eosdis.nasa.gov/) [44]. MODIS is a medium-
resolution imaging spectrometer that is carried by both the
Terra and Aqua satellites, and it performs a complete scan
of the earth’s surface every one to two days. MODIS has
36 spectral bands, encompassing visible and infrared spectral
ranges (0.4–14.4 μm) as well as image spatial resolution ranges
from 250–1000 m. Therefore, it can provide large-scale global
data such as cloud cover, radiance energy, and ocean and land
changes.

The MOD09 dataset is a Level 2 product of the MOD09
surface reflectance series. It is a high-accuracy estimate of the
surface spectral reflectance of each spectral channel, corrected
for atmospheric conditions, aerosol scattering, thin clouds, cirrus
clouds, and other factors [45]. MOD09A1 is an 8-day gridded
Level 3 surface reflectance product with seven bands covering
visible to near-infrared wavelengths. It delivers the optimal
observations within eight days, effectively reducing the effect of
surface and cloud interference. Under favorable conditions, the
atmospheric correction accuracy was± (0.005+ 0.05× ρ) [44],
[46]. Table I lists the spectral range parameters of MOD09A1
as well as the theoretical errors resulting from atmospheric
correction. The absolute error of each band of the MOD09A1
data was lower than 0.02, indicating that the data can accurately
represent the actual surface reflectance.

III. METHODOLOGY

The surface reflectance of most objects was assumed to remain
almost constant over a certain timeframe [12], [45]. Compared
with the abrupt increase in surface reflectance generated by
clouds, changes in the underlying surfaces were considered
to be relatively smooth. This implied that the cloud-covered
region differed significantly from the surface reference. The
TOA reflectance curves of clouds and typical ground features are
shown in Fig. 1, as are the reflectance difference curves between
the TOA reflectance and the surface reference. As shown in
Fig. 1(a), the TOA reflectance of snow is similar to that of
thick clouds, which have the highest TOA reflectance, whereas
the TOA reflectance of desert and bright artificial surfaces is
similar to that of thin clouds. Due to the synergy of prior
surface information, the reflectance difference in cloudy areas
is most apparent in Fig. 1(b), and the reflectance differences in
water, vegetation, desert, and snow are minor. Therefore, the
reflectance difference information could effectively distinguish
the cloud from the surface to a certain extent and reduce the
confusion between the highlighted surfaces and clouds.

Here, the proposed algorithm consists of three parts: con-
struction of the LSR dataset, generation of difference-based
training samples, and cloud detection using a multiscale features
network. The framework of the proposed algorithm is shown in
Fig. 2. The LSR dataset constructed using MOD09A1 provided
the real surface information as clear-sky references. Difference-
based training samples were generated using difference oper-
ations. The multiscale feature cloud detection network utilized
low-level spatial features, high-level semantic features, and tem-
poral information to achieve high-precision cloud detection.

A. Construction of LSR Dataset

To construct a high-quality LSR dataset, MOD09A1 surface
reflectance products from 2014 to 2018 were downloaded in
this study. The visible and near-infrared bands are effective
in providing spectral information and are common channels
in most sensors. Considering the universality of the proposed
method in cloud detection of different types of satellite images,
bands 1, 2, 3, and 4 of the MODIS images are used in this article.
To ensure the spatial continuity of surface reflectance data and
the accuracy of the spectral information, the LSR database was
constructed using the monthly minimum synthesis method [12],
as follows:

L(i, j) = Min((L1(i, j), L2(i, j), L3(i, j), L4(i, j)) (1)

where L is the synthetic LSR image, L1, L2 ,L3, and L4 are the
MOD09A1 data of four scenes in a month, and i, j are the rows
and columns of a scene image.

According to (1), a LSR dataset consisting of 12 global
monthly composite surface reflectance images in the visible
and near-infrared bands (blue, green, red, and near-infrared)
was constructed. The projection and coordinate systems of the
LSR dataset were unified into the Albers projection and WGS84
coordinate systems, respectively. The constructed dataset could
reduce the influence of clouds and cloud shadows and consider

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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Fig. 1. Reflectance curves of cloud and typical objects from MODIS images. (a) TOA reflectance. (b) Reflectance difference.

Fig. 2. Flowchart of the proposed algorithm based on land surface reflectance and the multiscale feature cloud detection network (SRMF-CD).

the temporal changes of the surface, enabling it to effectively
adjust to seasonal changes while maintaining strong spatial
continuity. Fig. 3 shows a false-color synthesis image of global
surface reflectance in June 2014, demonstrating strong spatial
continuity and accurate representation of the real surface, with
slight effects from factors such as clouds and cloud shadows.

B. Generation of Difference-Based Training Samples

The differential image was generated using the constructed
surface reflectance image and the MODIS image to be detected.
First, the MODIS image was radiometrically calibrated to obtain
TOA reflectance. Subsequently, the surface reflectance image of
the corresponding month and location was obtained according
to the time, longitude, and latitude of the cloud coverage image.

Finally, the surface reference image and the TOA reflectance
image of the same area and month were used for the difference
calculation to obtain the differential image. The equation is as
follows:

IDk(i, j) = |ITk(i, j)− ISk(i, j)| (2)

where IDk represents the difference image, ITk represents the
TOA reflectance image, ISk represents the surface reference
image, the k represents the band, where k is 1, 2, 3, and 4, and i
and j represent the ith row and jth column, respectively.

In this article, 61 MODIS images with different spatial distri-
butions at different times including distinct underlying surface
types, such as vegetation, water bodies, urban regions, deserts,
and ice/snow, were employed, of which 45 scenes were used
for training and 16 scenes for validation. The cloud masks were
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Fig. 3. False color synthesis image (RGB: bands 2, 4, 3) of global surface reflectance in June 2014.

manually annotated, where pixel value 1 indicates cloud and
pixel value 0 indicates no cloud. Considering the limitations
of the network structure and hardware facilities, the entire
scene of the differential images and cloud masks were cropped
into images with a size of 512×512 pixels. Ultimately, the
difference-based training samples consist of more than 4200
training images.

Table II shows the MODIS true-color images and the cor-
responding differential images for various surface types. The
first and third columns display the true-color composite images
(RGB: bands 1, 4, and 3), and the second and fourth columns
display the differential images. As shown in Table II (blue
arrow), bright surface information in the differential image,
such as rocks, deserts, and ice/snow are weakened, while clouds
are highlighted, which is important for distinguishing clouds
from highlighted surfaces. Additionally, the differential image
enhances the thin cloud features.

C. Cloud Detection Using Multiscale Feature Network

Due to the phenomenon of same spectrum foreign matter and
the limited number of extracted spectral features, distinguishing
clouds from complex surfaces based solely on spectral features
is difficult. However, DCNNs have achieved remarkable perfor-
mance by combining spatial and spectral information, thanks to
their powerful information extraction and feature representation
capabilities. Thus, a multiscale feature cloud detection network
was designed in this article using the differential feature dataset
as the primary source of information.

Network Structure: The cloud detection network adopts an
encoder–decoder structure, as shown in Fig. 4. In the encoder
section, a DCNN uses a differential image as input to obtain
low-level and high-level feature. The high-level feature is fed
into an ASPP module to obtain multiscale semantic information.
However, the convolution operation at different scales may cause
information loss. To enhance the feature representation ability,

a CSAM is designed to learn high-level feature, as shown in
Fig. 5. First, max-pooling and average pooling operations ex-
tract various channelwise attention features. Then, shared fully
connected layers learn channel correlations and weight distribu-
tions. After fusing the two outputs, an attention map is obtained
by applying a sigmoid function. The re-weighted feature maps
are generated by multiplication operations between the attention
map and Fh. Subsequently, the channel-refined feature maps are
fed into the spatial attention mechanism, which differs from the
channel attention mechanism in that the 1×1 convolutional layer
replaced the shared fully connected layer. Finally, the attention
feature map FA is generated. A concatenation operation is used
to merge the two types of feature maps from the CSAM module
and ASPP modules.

The decoder first performed a four-fold bilinear upsampling
on the multiscale semantic feature and then combined the low-
level features to refine the concatenated features using 3×3
convolutions. The final pixel-level cloud mask was generated
via four-fold bilinear upsampling. The cloud detection network
combined the respective advantages of the ASPP module and the
CSAM module to produce clearer segmentation object bound-
aries while effectively capturing multiscale features.

Network Training Details: The training of the cloud detection
model is the process of continuously optimizing the parameters
to achieve pixel-level recognition of clouds and the ground
surface. The difference-based samples with red, blue, green,
and near-infrared bands were used for input images. The total
number of training images is 4267, and the ratio of validation
images to training images is 1:9. To minimize the discrepancy
between predictions and ground truth, the adaptive moment
estimation (Adam) optimizer was used to dynamically optimize
the model parameters. The initial learning rate was set to 0.001
and the batch size was set to four.

Furthermore, to address the issue of sample imbalance, a novel
loss function that combines the Dice loss and weighted binary
cross-entropy (DWCE) loss has been introduced. This function
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TABLE II
MODIS IMAGE AND CORRESPONDING DIFFERENCE IMAGE OVER VARIOUS TYPES OF UNDERLYING SURFACES

aims to mitigate the influence of imbalanced data on the training
process. The specific definition of this function is as follows:

LDWCE = LDice + LWCE (3)

whereLWCE represents WCE loss, andLDice represents soft Dice
loss. The WCE loss gives weights to different classes to reduce
model bias due to sample imbalance (the number of noncloud

pixels is greater than that of cloud pixels). It is defined as follows:

LWCE = −
M∑

c=1

wcyc log(pc)

wc =
N −Nc

N
(4)

where wc is the weight of each category, N is the total number of
pixels, and Ncdenotes the number of pixels of the true category
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Fig. 4. Flowchart of the multiscale feature cloud detection network.

Fig. 5. CSAM module. The upper part is the channel attention mechanism and the lower part is the spatial attention mechanism.

c. Dice loss is defined as follows:

LDice = 1− 2TP
2TP + FN + FP

(5)

where TP denotes the cloud pixels, FP denotes the noncloud pix-
els detected as cloud pixels, and FN denotes the noncloud pixels
detected as cloud pixels. The DWCE loss takes the advantages
of WCE loss and Dice loss to get a more stable convergence of
the model.

The cloud detection model was implemented using Python 3.7
and PyTorch 1.7. The DCNN, ASPP module, and CSAM module
provide multiscale features for cloud and ground surface pixel
prediction. Based on training accuracy and loss, the optimal

cloud detection model was obtained when the number of epochs
reached 100. Fig. 6 shows the feature map size of different layers.

IV. EXPERIMENT AND RESULTS ANALYSIS

A. Cloud Detection Results of MODIS Image

Sixteen MODIS images with an approximate cloud coverage
of 5% to 100% were used to validate the performance of the
SRMF-CD algorithm. Fig. 7 shows four scenes of cloud de-
tection results over different underlying surfaces: vegetation,
water, desert, and bare soil. White pixels indicate the cloud
pixels and black pixels indicate the noncloud pixels. Compared
with the MODIS true-color composite image, surface reflectance
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Fig. 6. Feature map size of different layers.

reference, and manual cloud mask, the proposed algorithm per-
formed well on cloud detection in different scenes and achieved a
complete cloud contour that is highly consistent with the manual
cloud mask.

The detection of thin clouds presents a challenge for cloud
detection algorithms, especially in heterogeneous regions where
the surface reflectance varies greatly. Additionally, clouds may
be misclassified due to the underlying surface type. For instance,
in deserts, ice, snow, and other areas with high surface reflec-
tivity, cloud pixels can be easily confused with the underlying
surface. To evaluate the performance of the SRMF-CD algorithm
in cloud detection for thin clouds and highly heterogeneous
surfaces, we conducted a comparative experiment using a cloud
detection method based on TOA reflectance data and MFCD-Net
(MFCD-TOA). This method used the same network structure as
the SRMF-CD algorithm but employed different inputs (TOA
reflectance images).

Fig. 8 shows the cloud detection results of the SRMF-CD and
MFCD-TOA methods three different surface types: 1) bright
rocks, 2) ice/snow, and 3) water bodies. In Fig. 8(a)–(d), rocks
and ice/snow with similar TOA reflectance to clouds appear
white, and are often mistakenly identified as clouds in cloud
detection based on spectral information. However, in the dif-
ferential image, the reflectance changes of the highlighted rocks
and ice/snow are small, which reduces confusion between rocks,
ice/snow, and clouds. Therefore, the SRMF-CD algorithm im-
proves the accuracy of cloud detection for bright surfaces owing
to the prior surface information, while MFCD-TOA method
incorrectly detects bright rocks and ice/snow as clouds. Because
solar radiation of the thin cloud can easily penetrate the cloud
layer to reach the ground, the reflectance characteristics of the
thin cloud are similar to the reflectance characteristics of the
underlying surface, and the difference in reflectivity between
the two becomes smaller, making the detection of thin clouds
another challenge in this field. In Fig. 8(e) and (f), the underlying
surface type can be seen in the images covered by thin clouds,
which has little impact on image interpretation. However, thin
clouds are usually omitted in spectrum-based cloud detection,
which can greatly impact applications such as parameter inver-
sion and change monitoring. According to the difference image
and spectral difference curve in Fig. 2, the reflectance difference
between water bodies and vegetation surfaces is extremely small

(less than 0.1), while the difference in thin cloud areas is often
greater than 0.1, especially in the blue band. The differential
image enhances thin cloud features, promoting the multiscale
feature-cloud detection network to extract effective information.
The SRMF-CD method can better identify thin clouds with fewer
omissions and has higher consistency with cloud masks, while
MFCD-TOA method omits thin clouds over water, desert, and
bare soil.

To further evaluate the effectiveness of the algorithm, we
compared the cloud detection results of our proposed SRMF-CD
method with those of UNet, Deeplabv3+, and MFCD-TOA
methods. Fig. 9 presents the comparison of cloud detection
results from different methods with cloud masks. The red circle
indicates commission and the yellow rectangle indicates cloud
omission. The UNet network obtains limited information due
to the loss of information in the down-sampling layer, resulting
in the omission of clouds. Although the Deeplabv3+ method
improves the cloud detection results due to atrous convolution
and feature integration, there are still more thin clouds missing,
and the overall contours of the clouds are rather coarse. In
contrast, the proposed multiscale feature cloud detection net-
work that combines the ASPP module and the CSAM module
is beneficial to extract multiscale information, which improves
the accuracy of cloud recognition. Although the MFCD-TOA
method has fewer clouds omitted, it misidentifies bright features
as clouds. Based on the true-color image, surface reflectance
image, and differential image, the change of the bright surface
in the difference image was very small compared to the cloudy
area. The SRMF-CD method, supported by surface reflectance,
reduces the omission of thin clouds and the misidentification of
the highlighted surface, and achieved the best cloud detection
results among the four methods.

To fully demonstrate the role of the different components of
the proposed method, we conducted ablation experiments for the
differential feature, the attention mechanism module, and loss
function, respectively. Fig. 10 presents the results of the ablation
experiments and comparisons with state-of-the-art methods. As
shown in Fig. 10(c1) and (h1), (c2) and (h2), the results using
differential features as network inputs surpass those using TOA
reflectance data as inputs, reducing the misidentification of
bright surfaces. Fig. 10(d1) and (h1), (d2) and (h2) demon-
strates that the inclusion of the attention mechanism module
enhances cloud detection accuracy. Fig. 10(e1) and (h1), (e2)
and (h2) suggests that the utilization of the DWCE loss function
reduces cloud omission errors. Compared to advanced cloud
detection methods such as UNet++ and PSPNet, the SRMF-CD
algorithm generally outperforms these outstanding segmenta-
tion models in terms of accuracy. Specifically, it improves the
detection of thin clouds and clouds in areas with high surface
reflectance, resulting in cloud regions that are highly consistent
with manual cloud masks.

B. Quantitative Assessment

To objectively evaluate the algorithm, the overall accuracy
(OA), precision, recall, F1-Score, and Kappa were introduced
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Fig. 7. Cloud detection result of thick cloud and thin cloud over vegetation area, ocean area, urban area and desert area. (a) True-color image with red, green,
and blue band. (b) Surface reflectance reference. (c) Manual cloud mask. (d) Cloud detection result of SRMF-CD method.

to quantitatively assess the cloud detection results of the different
methods. These metrics are defined as

OA =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1− score =
2× Precision × Recall

Precision + Recall
(9)

Kappa =
Pa − Pe

1− Pe
(10)

Pa =
(TP + TN)

(TP + TN+ FP + FN)
(11)

Pe =
(P ∗(TP + FP)+N ∗(FN + TN))

(P+N)2
(12)

where true positive (TP) denotes the total number of cloud pixels
correctly predicted, true negative (TN) denotes the total number
of non-cloud pixels correctly recognized, and false positive (FP)
and false negative (FN) denote the total number of pixels with
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Fig. 8. Cloud detection results of different method over various underlying surface. (a) Water. (b) Desert. (c) Bare soil. (d) Ice/snow. (e) Water. (f) Vegetation.
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Fig. 9. Comparison of cloud detection results obtained by different methods. (a1) and (a2) True-color image with red, green, and blue band. (b1) and (b2) Surface
reflectance reference. (c1) and (c2) Differential image. (d1) and (d2) Manual cloud mask. (e1) and (e2) Cloud detection results obtained by UNet method. (f1)
and (f2) Cloud detection results obtained by Deeplabv3+ method. (g1) and (g2) Cloud detection results obtained by MFCD-TOA method. (h1) and (h2) Cloud
detection results obtained by SRMF-CD method.

an incorrect outcome from cloud and noncloud recognition,
respectively.

Table III presents the quantitative validation results of the
UNet, Deeplabv3+, MFCD-TOA, UNet++, PSPNet, SRMF-
CD-without-CSAM, SRMF-CD-without-DWCE, and SRMF-
CD methods. The MFCD-TOA, SRMF-CD-without-CSAM,
and SRMF-CD-without-DWCE methods represent ablation ex-
periments. The MFCD-TOA method refers to the use of TOA
reflectance data as the network input, the SRMF-CD-without-
CSAM refers to the SRMF-CD method without the attention
mechanism module, and the SRMF-CD-without-DWCE refers

to the SRMF-CD method without the use of the DWCE loss
function.

As shown in Table III, the SRMF-CD method achieved out-
standing cloud detection performance with high accuracy. The
OA reached 96.55%, whereas the precision and recall reached
92.13% and 88.90%, respectively, indicating fewer omissions
and commission errors of cloud pixels. The F1-score and Kappa
were 90.44% and 88.85%, respectively, objectively demon-
strating that the SRMF-CD algorithm exhibited good detection
performance over diverse underlying surfaces. Furthermore, the
cloud detection results of UNet, Deeplabv3+, UNet++, and
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Fig. 10. Results of the ablation experiments and the comparison with UNet++ and PSPNet methods. (a1) and (a2) True-color image with red, green, and blue
band. (b1) and (b2) Manual cloud mask. (c1) and (c2) Cloud detection results with TOA reflectance as network input. (d1) and (d2) Cloud detection results without
CSAM module. (e1) and (e2) Cloud detection results without DWCE loss. (f1) and (f2) Cloud detection results obtained by UNet++ method. (g1) and (g2) Cloud
detection results obtained by PSPNet method. (h1) and (h2) Cloud detection results obtained by SRMF-CD method.

PSPNet methods are inferior to those of the proposed cloud
detection network (MFCD-TOA and SRMF-CD), which is due
to the fact that the multiscale feature cloud detection network
provides richer spectral and spatial information. Benefiting from
stable surface reflectance and cloud reflectance differences, the
SRMF-CD methods improve the accuracy of cloud pixels and
reduce the misclassification of cloud pixels and clear-sky pixels.
Compared with the results of SRMF-CD-without-CSAM and
SRMF-CD without-DWCE methods, the attention mechanism
and DWCE loss improved the cloud detection accuracy.

C. Efficiency

All the experiments were conducted on a desktop computer
with an Intel Core i5-9500 (3.10 GHz), an NVIDIA GEFORCE
RTX 2080 Ti GPU (with 11 GB) and 32 G DDR4 Memory.

Training a model took approximately 16 hours, but predicting
a 512×512 image only took 0.4 s. An entire MODIS scene can
be predicted in less than 20 s. Compared to other methods, such
as SRMF-CD-without-CSAM and Deeplabv3+, the SRMF-CD
method did not add additional prediction time. This suggests that
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TABLE III
QUANTITATIVE ANALYSIS OF DIFFERENT METHODS

Fig. 11. Analysis of surface reflectance of different underlying surfaces
from 2014 to 2022. (a) True color composite image, location at 92°46′43′′E,
45°24′30′′N. (b) Histograms of reflectance over different underlying surface in
2014, 2016, 2018, 2020, and 2022 year.

processing MODIS images at a rapid pace is achievable using a
standard desktop computer equipped with a single GPU.

D. Disscussion

Qualitative and quantitative evaluations have shown that the
SRMF-CD algorithm performs well in MODIS image cloud
detection. To improve thin cloud detection and reduce misclas-
sification between bright surface and cloud, we synergized the
prior LSR dataset with a multiscale feature convolutional neural
network, providing a promising strategy for cloud detection.
The algorithm is developed based on the assumption that the
land surface reflectance changes little within a certain period.
To evaluate the change of the surface reflectance, we studied the
change of the surface reflectance of the vegetation, water, desert,
and bare soil areas from 2014 to 2022 year. The MOD09A1
product in the same area in 2014, 2016, 2018, 2020, and 2022
year were selected to analyze the reflectance differences of
different underlying surface. Fig. 11 shows the MODIS image
and histograms of reflectance over different underlying surface.
In Fig. 11(a), the dot indicates the selected underlying surface
location. From Fig. 11(b), it can be seen that the surface re-
flectance of vegetation, water bodies, deserts, and bare soil are
all relatively stable from 2014 to 2022, with differences well
below 0.1. This indicates that the surface reflectance of most
objects changes little over several years. Therefore, the surface

reflectance image as a reference can reflect the real surface
information, and the difference feature can effectively highlight
the existence of clouds.

Although the SRMF-CD algorithm has good adaptability to
most surface environments, it may produce weak performance
in some areas where the surface reflectance changes obviously,
such as snowfall/melt, natural disasters, urban sprawl, and so
on.

V. CONCLUSION

This article proposes a novel cloud detection method based on
a land surface reflectance dataset and multiscale feature network
to improve cloud detection for MODIS images. To provide
prior land surface information, the global monthly synthetic
LSR dataset constructed by MOD09 products is used as land
surface reference. Difference-based training samples, including
red, green, blue, and near-infrared bands, are generated by
the difference operation of surface reflectance image and the
MODIS image. A cloud detection network coupled with an
ASPP module and a CSAM module is designed to identify
clouds and ground surfaces by mining differential image infor-
mation and multiscale feature representation. The findings show
that the SRMF-CD method performes well in cloud detection in
different conditions.

Furthermore, compared with the qualitative and quantitative
analyses based on UNet, Deeplabv3+, UNet++, PSPNet, and
MFCD-TOA methods, the proposed method obtains the highest
OA (96.55%), precision (92.13%), recall (88.90%), F1-score
(90.44%), and Kappa (88.85%), demonstrating that the SRMF-
CD algorithm alleviates cloud pixel omissions and commission
errors. The SRMF-CD method, which benefits from the weak-
ening of the bright surface and cloud information enhancement
in difference images, can effectively reduce the effects of mixed
pixels and achieve cloud detection from a large-scale area and
long-term sequence.

With the assumption that the surface reflectance of most fea-
tures varies little over time, the algorithm has certain limitations
in some areas where the surface reflectance changes obviously,
due to snowfall/melt, natural disasters, urban sprawl, and so
on. As new satellites are deployed and the source of satellite
data grows, and the generality of the algorithm is also worth
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considering. In future work, we will investigate the effects of
major changes in surface reflectance and develop novel cloud
detection methods for various satellite data.
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