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Abstract—Deep learning plays an essential role in multidisci-
plinary research of remote sensing. We will encounter security
problems during the data acquisition, processing, and result gen-
eration stages. Therefore, secure deep-learning inference services
are one of the most important links. Some theoretical progress
has been made in cryptographic deep-learning inference, but it
lacks a general platform that can be realized in reality. Constantly
modifying the corresponding models to approximate the plaintext
results reveal the model information to a certain extent. This article
proposes a generic post-quantum platform named the PyHENet,
which perfectly combines cryptography with plaintext deep learn-
ing libraries. Second, we optimize the convolution, activation, and
pooling functions and complete the ciphertext operation under
floating point numbers for the first time. Moreover, the computation
process is accelerated by single instruction multiple data streams
and GPU parallel computing. The experimental results show that
the PyHENet is closer to the plaintext inference platform than any
other cryptographic model and has satisfactory robustness. The
optimized PyHENet obtained a better accuracy of 95.05% in the
high-resolution NaSC-TG2 database, which the Tiangong-2 space
station received.

Index Terms—Convolutional neural network (CNN), deep
learning inference, fully homomorphic encryption (HE), privacy
preserving, remote sensing scenes.

Manuscript received 9 January 2023; revised 6 March 2023; accepted
20 March 2023. Date of publication 23 March 2023; date of current ver-
sion 7 April 2023. This work was supported in part by the Basic Research
Project of Shenzhen, China under Grant JCYJ20200109113405927 and Grant
JCYJ20200109113427092, in part by the National Natural Science Founda-
tion of China under Grant 61872109, Grant 62272131, and 62203134, in
part by the National Science and Technology Major Project Carried on by
Shenzhen under Grant CJGJZD20200617103000001, in part by the Guangdong
Provincial Key Laboratory of Novel Security Intelligence Technologies under
Grant 2022B1212010005, in part by the Science and Technology Project of
Guangzhou under Grant 2020A1515010652, in part by the Key Fields R&D
Project of Guangdong Province under Grant 2020B0101380001, and in part
by the PINGAN-HITSsz Intelligence Finance Research Center. (Corresponding
authors: Xuan Wang; Zoe L. Jiang.)

Qian Chen and Yulin Wu are with the School of Computer Science and
Technology, Harbin Institute of Technology, Shenzhen 518055, China (e-mail:
gianchen @stu.hit.edu.cn; yulinwu @cs.hitsz.edu.cn).

Xuan Wang, Zoe L. Jiang, Weizhe Zhang, and Yang Liu are with the
School of Computer Science and Technology, Harbin Institute of Technology,
Shenzhen 518055, China, and also with the Peng Cheng Laboratory, Shenzhen
518066, China (e-mail: wangxuan @cs.hitsz.edu.cn; zoeljiang @hit.edu.cn; wz-
zhang @hit.edu.cn; liu.yang @hit.edu.cn).

Mamoun Alazab is with the College of Engineering, IT and Environ-
ment, Charles Darwin University, Casuarina, NT 0810, Australia (e-mail:
alazab@ieee.org).

Digital Object Identifier 10.1109/JSTARS.2023.3260867

, Xuan Wang
, Senior Member, IEEE, Yang Liu

, Member;, IEEE, Zoe L. Jiang"”, Member, IEEE,
, and Mamoun Alazab, Fellow, IEEE

1. INTRODUCTION

ITH the continuous development of Big Data and deep

learning, the combination of remote sensing systems
and artificial intelligence is getting closer and closer, and the
corresponding privacy problems [1], [2], [3] are becoming in-
creasingly prominent. The Nature published literature “Map Op-
portunities” [4] and suggested the importance of geographic in-
formation, which is one of the three most promising technology
areas. However, many feature information and private data are
hidden in the acquired remote sensing images. Sun [5] proposed
a Hashing method to explore the characteristics of RS images.
Kang [6] overcame the limitation on the class discrimination.
So how to effectively protect the security of the raw data and the
deep learning models trained in the cloud are critical.

The structure diagram of the deep-learning inference frame-
work with high-security level is shown in Fig. 1, which can
be applied in various application scenarios [7], such as disaster
detection [8], pest monitoring [9], [10], target location [11], [12]
and personal GPS [13] under different devices [14]. Public key
encryption scheme [15], symmetry algorithm [16], orthogonal
decomposition [2], crypto-watermarking [17], and other encryp-
tion technologies are used for remote sensing image processing.
However, their encryption level cannot resist quantum attacks
and cannot provide a unified platform for different tasks. This is
what the PyHENet is to be solved.

Cloud computing provides convenient transmission, storage,
and sharing for image classification of remote sensing scenes
but brings many security problems [18]. 1) The transmission
of data and models in plaintext is vulnerable to reverse attacks,
poisoning attacks, back door attacks [19], and many other secu-
rity attacks. 2) With the continuous development of quantum
computing [20], traditional cryptographic algorithms are no
longer absolutely secure. Watermarking, differential privacy,
partially homomorphic encryption (HE) [16], [17], [21], and
other methods are poor insecurity, unable to resist quantum
attacks, and cannot provide the ability of deep computing. 3)
The encryption computation remains in the basic addition and
multiplication operations, which cannot be combined with the
standard deep learning libraries, such as TensorFlow or Pytorch
to complete the generic secure deep learning computation.

Many countries and organizations are strengthening their
protection of national security and data privacy. The general
data protection regulation (GDPR) [22] of the European Union,
which came into effect in 2018, has created a new era of
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Fig. 1. Remote sensing system structure diagram with privacy preserving.

privacy-preserving. The users in Mozilla can delete their data
from Mozilla’s servers starting from 2020. As shown in Fig. 2,
the RGB histograms of different residential images in the same
class have different information features, which will reveal much
private information. Chaudhari [17] combined watermarking
and encryption for image copyright protection, but it only pro-
vides simple security for the image itself. Further research is
needed for the more challenging post-quantum encryption for
deep learning computing.

Since deep learning depends on huge computing power and
massive datasets, individuals with limited computing power
cannot accomplish such tasks. Inspired by the platform as a
service (PaaS), deep learning as a service (DLaaS) [23], [24] has
become a service with great application potential. Local users
upload their personal data to the cloud, and the server outputs
the results through the trained model and returns them to the
client. This is called deep learning inference. In many business
applications of remote sensing systems, the security of data and
models is more urgent than that of ordinary applications [25].
Fig. 3 shows the encryption and decryption process of DLaaS
under the condition of ciphertext.

Microsoft Research started research on privacy-preserving
deep learning inference in 2016 [26], [27], based on fully HE
(FHE) called the YASHE algorithm. The MiniONN frame-
work [28] was then proposed. Meanwhile, Shokri [29] started
his research on differential privacy. The follow-up research
on privacy preserving deep learning inference can be divided
into three categories, based on HE [30], [31], differential pri-
vacy [32], secure multiparty computing or combinations of these
methods. It should be emphasized that differential privacy is the
disturbance on the plaintext, which will reduce the accuracy. The
GAZELLE framework [33] is based on the garbled circuit but
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will bring colossal communication overhead. Same problem as
the BAYHENN framework [34].

According to state-of-the-art research [20], the difficult prob-
lems that traditional cryptography is based on are no longer
difficult [35], [36]. But lattice-based fully HE has the ability to
resist on quantum attacks, our research is also based on it.

For the privacy-preserving deep learning inference service
required for remote sensing scenes, this article presents the
PyHENet platform for the first time which is shown in Fig. 6.
We optimize the shortcomings of traditional fully HE in convo-
lutional layer, max pooling, sigmoid, and other computations.

In summary, the contributions of this article are as follows.

1) We develop a generic deep-learning inference platform

PyHENet to protect the security of the raw data and models
with fully HE.
It can work with the plaintext library and does not require
modifying the trained model. And use single instruction
multiple data streams (SIMD) and GPU parallel calcula-
tion to accelerate the calculation.

2) Compared with the most advanced FHE-based framework,
the complexity and generality of PyHENet can be realized
without reducing the accuracy.

We optimize and achieve the convolution, nonlinear sig-
moid, and max pooling functions in FHE.

3) We optimize AlexNet model that used in state-of-the-art
article of the NaSC-TG2, which collected by Tiangong-2!
remote sensing system. We not only ensure the security
but also improve the accuracy to 95.03%.

The rest of this article is organized as follows. Section II
introduces the basic algorithms about fully HE and deep learn-
ing. Section IIT explains the contributions and optimizations of
the PyHENet platform in detail. In Section IV, we finish the
experimental comparison and give a detailed analysis. Finally,
Section V concludes this article.

II. PRELIMINARIES AND RELATED WORK

Remote sensing scenes usually involve people’s livelihood,
the economy, the military, and many other fields. Its security
is far beyond simple image classification tasks [37], such as
ImageNet. First, deep learning models for remote sensing tasks
are trained based on many valuable datasets, so the models must
be secure. In addition, the raw data of the inference service
carries the private data of the remote sensing task. Our PyHENet
platform can be completed under encryption conditions that
can resist quantum attacks with higher security. This section
introduces the relevant work in the following four aspects.

A. Privacy-Preserving Deep-Learning Inference

Inspired by platform as a service (PaaS), deep learning as a
service (DLaaS) came into being in 2018 [38], [39] with great
application potential. The high accuracy rate of deep learn-
ing models depends on many datasets and hardware devices.

Tiangong-2 is China’s first space laboratory. Where 19.6 TB of high-quality
observation data have been obtained, covering a total area of 119.1 million square
kilometers.
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Fig. 3. DLaaS over encrypted data.

This makes datasets and trained models constantly becoming
valuable. More and more researchers are exploring privacy-
preserving deep-learning inference tasks. In addition, customers
who use cloud services can obtain the desired results and solve
the problem of weak computing power.

1) Data Perturbation-Based Privacy-Preserving: The basic
idea of data perturbation is to increase the noise of the data so
that the raw data is difficult to recover [40], [41]. The goal is to
preserve each row of records in the database while allowing the
analysis of the entire database

Differential privacy is frequently used [42], [43] for inference
services. The accuracy of the results will be reduced due to the
addition of noise. Also, the noise-added data is visible to anyone.
Therefore, its security level cannot meet the requirements of
remote sensing scene applications.

2) Cryptography-Based Privacy-Preserving: Cryptogra
phy-based methods can satisfy the invisibility and losslessness
of the result accuracy. Commonly used methods include
secure multiparty computation (MPC) [44], [45] and
HE [34], [46]. But partial HE can only support one kind
of operation, the additive or multiplicative. With the deepening
of quantum computing research [20], researchers believe it
will significantly impact existing cryptography. Therefore, it is
necessary to research the lattice-based fully HE [47], the only
methods that can resist quantum attack and support various
operations.

The lattice-based fully HE is well matched with the diversity
of deep learning operations and the high security of remote
sensing applications. Section IV will explain how to optimize
the fully HE to adapt to the general PyHENet platform. A typical
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Different RGB histograms of different residential images in NaSC-TG2. (a) Residential Area A. (b) Residential Area B.

application of encrypted DLaaS is shown in Fig. 3. The client
provides encrypted information, and the server calculates in
encrypted and returns the result to the client.

B. Lattice-Based FHE of Floating Point Computation

The security of cryptography is mainly based on some chal-
lenging problems in mathematics, such as the problem of prime
factorization. Although short algorithms in quantum can solve
this problem in polynomial time, other more complex mathe-
matical problems need to be researched.

Ajtai gave proof of the lattice-based difficult problem from
the worst case to the general case. Learning with Error (LWE)
and variants [48], [49] are the lattice-based hard problems in the
general case.

Definition 1: Learning with Errors Problem (LWE)

Give uniformly randomly generated matrices A € Zg"",
s € Zg and e € Zfln, obeying distribution x and b; = A;s + e;.
Given multiple sets of (A4;, b;), finding s is difficult.

The RLWE problem is a variant of the LWE problem, which
reduces communication overhead and accelerates the encryption
and decryption process. At the same time, the FHE algorithm in
this article is based on ring learning with error problems. And the
critical function of fully HE [47], [50] is to support the addition
and multiplication operations under ciphertext

c1 + ca = Encyy, (m1 +ma) (1

€1 % co = Encyy (mq %« mq). 2)

The process of HE is as above. The public and private
keys (pk, sk) are generated from the key generation algorithm
Gen(1™), and then plaintexts m;, ma which are from the plain-
text space M are encrypted with the public key pk. And obtain
two ciphertexts ¢; = Encpi(my) and ¢ = Encyi(mg) which
are from ciphertext space C'.

CKKS is an approximate computational fully HE algorithm
proposed by Cheon in 2017, which supports floating-point oper-
ations through rescaling techniques. As shown in Fig. 4, a large
amount of ciphertext space is saved by rescaling technology,
which provides theoretical support for the computation for deep
learning. In this way, the magnification of the ciphertext can
be quickly reduced, thus avoiding the problems caused by the
enlargement. In the previous methods, such as BFV, GSW [51],
or BGV [52], the magnification gradually increases but cannot be
decreased, which leads to the rapid accumulation and expansion
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of magnification beyond the modulus of the plaintext polynomial
coefficient. It also doubles the computational complexity.

The FHE can perform simple algebraic operations on the
cloud directly. Although it is still a long way from cryptographic
deep learning calculation, it is the security guarantee for the
PyHENet platform calculation of this article.

C. Convolutional Neural Network

The convolutional neural network (CNN) is a milestone in the
development of deep learning [53]. It has an excellent perfor-
mance in large-scale image processing and is also the research
hotspot in remote sensing [54], significantly improving image
classification accuracy.

CNN has significant advantages in various applications be-
cause of its shared weight and local perception. As shown in
Fig. 5, it can perform convolution calculations using convolu-
tion kernels. In addition, the sigmoid function is often used as
an activation function for neural networks, and the max pool
function is used to achieve this advantage of local perception.
These basic neural network functions are optimized and realized
in the cryptographic PyHENet platform of this article

a:i =f Z ah % wfj + bé- 3
ieM;
Sigmoid(z) = 1/(1 + =) 4
Too To1 To2
MaxPooling |19 Z11 12
T20 T21 T22

~ [Max(z0, Zo1, 10, T11) Max(xo1, To2, T11,T12)
Max (10, Z11, Z20, T21) Max (211, Z12, T21, T22)

. (5
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Our CNN model in the PyHENet was based on AlexNet [55],
and some modifications and optimizations have been made to
adapt to our cryptography applications. Combining with the
standard PyTorch library, the inference services can be imple-
mented without modifying the external code of the training
model.

III. PROPOSED APPROACH OF THE PYHENET PLATFORM

Although convolution, pooling, and activation functions are
widely used as necessary operations in plaintext. However, for
fully HE, how to guarantee the correctness of the computation,
how to reduce the computation steps, and optimize the com-
putation time are all things we need to consider. In previous
FHE implementations, neural networks tried to avoid these
challenges and used linear functions with similar results instead,
which is detrimental to the application of the framework and
cannot achieve generalized computation for complex application
scenarios.

The importance of data and model security in deep learning
inference services requires no reemphasis, especially for high-
security requirements, such as remote sensing scenarios. The
theory of fully HE and convolutional neural networks are also
briefly introduced. Naturally, we explore combining them, but it
is not as simple as one plus one equals two. This section focuses
on the difficulties that must be solved and optimized to construct
the general inference platform of deep learning, which we named
the PyHENet.

A. Privacy-Preserving Deep Learning Inference Generic
Platform

The privacy-persevering of the PyHENet platform in this
article is realized by the encryption algorithms based on the
provable security of lattice-based FHE. PyHENet completes
more complex convolution calculations under rescaling strategy
and provides security for the raw data and the trained model
without loss of accuracy.

The generality of the PyHENet is reflected in its ability to
combine with the popular PyTorch library. It allows developers
to not need additional learning of fully HE. We modify the
bottom functions of the PyTorch library, including convolution,
sigmoid, and max pooling functions. Support deep learning in-
ference calculation under ciphertext. Combining the advantages
of the cryptography library and artificial intelligence library,
we have integrated a neural network platform called PyHENet,
which represents an FHE-based neural network platform com-
bined with the PyTorch library.

The overall framework of PyHENet is shown in Fig. 6.
Because CNN is prominent in deep learning, especially for
image classification in remote sensing scenes, it is reasonable to
improve the CNN network under ciphertext. The deep learning
inference service can be divided into three parts. The client
provides private data, the server provides the trained model and
the communication layer. Due to the nature of fully HE, the
inference service can compute between the data and the model
and return the encrypted result to the client. Finally, the client
decrypts the result by the private key.
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Fig. 6.  Framework of the PyHENet.

On the other hand, different applications have different se-
curity requirements. Furthermore, the output after multilayer
calculation can be insensitive to a certain extent. PyHENet
can freely choose the depth of encryption calculation, interrupt
password calculation, and balance security and calculation effi-
ciency. The high-speed computing performance of the GPU can
effectively reduce the overall computing time while ensuring
security.

1) Convolution Calculation Under Ciphertext: The convo-
lution calculation is different from the multiplication operation.
It is a matrix operation. Under fully HE, the steps of the matrix
dot operation under ciphertext are shown in Fig. 7

Cy - Cw +cp =Encyp (- w+b). (6)

We use integer p as a base for scaling in computation, and
a modulus ¢q at the beginning. Let ¢; = p'qo for 0 < [ < L.
Ciphertext vector ¢ is defined as (c,l,v, B), where have the
level 0 < [ < L, upper bound of message v € R, upper bound
of noise B € R. Five basic functions are shown as follows:

Enc, : m— (C, L,v, Bclean)
Decgi : (¢,l,v,B) — ((¢- sk) (mod q;) , B)

ReScaling; . : (,l,v, B) —>

(09" 0.0 ™' B + B
ADD : ((Cl>l7 U1, Bl) 3 (627 l,’UQ, BQ))
> (Cadd, 1, 1 + v2, B1 + B2)
Mult : ((c1,1l,v1, B1), (c2,1,v2, Bg)) —
(Cmutt, 1, V101,01 Bo + v2B1 + B1 B + Brut) - (N
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Algorithm 1: Convolution Calculation Based on FHE.

Input: w, z,b
Parameter: Optional list of parameters
Olltpllt: f(I) = Czw+b

1:  ¢; < Encpr(Encode(x to vector))
2: ¢y  Bncyp(Encode(w? to vector))
3: ¢ < Encyi(Encode(b to vector))
4: 2+ 0
5: fori=1to RowNum(z) do
6: for j = 1to ColwNum(x) do
7: for k = 1 to RowNum(w) do
8: for I = 1 to ColwNum(w) do
9: Cew < ReScaling(Mult(c,[i][4], cw[K][1]))
10: end for
11: for m = 1to ColNum(x) do
12: Caad < Mult(Rotate(cy,m), 10..0)
13: Cadd < ReScaling(cuda)
14: Cow < ADD(Cpu, Cadd)
15: end for
16: Crw — ReScaling(Mult(cya, c10..0)
17: Czw < ADD(Cy, Rotate(cpy, —k)
18: end for
19: end for
20:  end for

21: Crw+b — ADD(CruM Cb)
22:  return Cyqytb

The lattice-based FHE is an algebraic operation on the ring,
so Algorithm 1 gives the pseudo-code for floating point convo-
lutional computation based on the above functions. We can pack
vectors into ciphertexts and perform parallel computation on the
server based on the SIMD technique.

2) Proof of Lower Accuracy Loss of Convolutional Calcula-
tion: As shown in Algorithm 1 of the convolution calculation of
ciphertext, it can be decomposed into addition and multiplica-
tion. Therefore, by proving that the addition and multiplication
under ciphertext have lower accuracy loss, respectively, we can
also prove that convolution calculation has lower accuracy loss
correspondingly.

Lemma 1: Additive and Multiplicative Operations under Ci-
phertext are Similar to the Case of Unencrypted Float-Point
Operations.

Define relative errors as = B/v. Let (¢1,1,v1, By) and
(co,1,v9, By) be the encryption of mj,ms € S. Let ¢,
c1 + ca(mod q) and ¢, < ci.ca(mod q;). Then (cq,l,v1 +
V1, Bl -+ BQ) and (Cm, l, V101, ’UlBQ + 'UQBl -+ BlBQ -+ Bm)
are valid encryptions of m; + mgo and mima.

Proof: There is a polynomial eq,es € R such that c; -
sk =mi +ei(mod ¢), co-sk=mo+ex(mod ¢), and
[ler||2" < By, |le2]|2" < Bs. It is obvious that ¢, - sk = ¢; -
sk +co-sk=m1 +ma+ e +ex(mod q), |ler + e <
By + By. We also have ¢, - sk = mims + maey + mies +
erea(mod ¢;) and than after rescaling calculation, 5 = 1 +

Bo + B182 + B +0"" Buewe 1y 4 very close to 1 + o similar

V1V2
to the case of unencrypted float-point multiplication under an
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TABLE I
ADVANTAGE OF SIMD

| Using SIMD | Not Using SIMD
Number of Ciphertext | n | 1

appropriate choice of parameter and level. Since the convolution
operation consists of multiplication and addition under cipher-
text, the lemma also holds. [ |

B. Aided Parallel Computing Based on GPU and SIMD

As shown in Fig. 6, to balance security and computing per-
formance, the PyHENet can freely select the number of network
layers for GPU computing. On the other hand, we also use
SIMD technology to package ciphertext to optimize ciphertext
computation, which makes homomorphic computing faster and
more accessible for the current scene. SIMD is a parallel com-
puting technology that can significantly more quickly execute
instructions. Table I shows the advantage of SIMD. It only needs
one encryption and one homomorphic computation to operate
on the plaintext vector.

C. Optimization of Neural Network Under Ciphertext

1) Linear Convolution Function: In the encryption convolu-
tion calculation, the computational cost should be reduced as
much as possible. Except for SIMD parallel computation under

EEEEE

[0oo211011] «x

Hhmo«o\
wamw
Ew-lk-lkur
HA#A#

[T10020000]

'

(®)

Optimized convolution calculation. (a) Ordinary method. (b) Image-to-column (Im2col) method.

ciphertext, compared with the traditional sliding window matrix
computation, the image-to-column (im2col) [56] optimization
method used in this article can accelerate and support homo-
morphic computation. The optimized schematic is shown in
Fig. 8.

2) Nonlinear Sigmoid Activation Function: Different from
other deep learning methods based on HE, this article uses the
Taylor expansion to approximate sigmoid function, instead of
replacing it with other functions.

The sigmoid function f(z) = 1/(1 4 exp~®)) is the most
basic activation function in neural networks and is widely used.
We cannot give up the original open-source system because of
the difficulty of realizing complete homomorphism

f(z) =1/2+1/4x — 1/482> + 1/4802°
—17/860402" + 31/14515202° + O (') . (®)

As HE does not support the nonlinear operation, we use Taylor
expansion to approximate the Sigmoid function. Fig. 9 shows the
comparison of the Taylor expansion in different orders with the
Sigmoid function, and it can obtain linear approximation results.
Of course, the deeper the order of Taylor expansion, the closer
the effect will be to the actual value. The experiment shows that
the sixth-order expansion can meet our requirements.

3) Max Pooling Function: Unlike other homomorphic algo-
rithms that use average pooling instead of maximum pooling,
the maximum pooling function is better suited for reducing the
trained model. More importantly, for privacy-preserving deep



CHEN et al.: GENERIC CRYPTOGRAPHIC DEEP-LEARNING INFERENCE PLATFORM

T T
104 — Sigmoid ,'
' === Sixth Order Taylor Approximation !
—— Fifth Order Taylor Approximation
0.8
0.6
>
0.4 1
0.2
0.0 A
-4 -2 0 2 4
X
Fig. 9. Taylor expansion of sigmoid functions of different orders.

learning inference services, changing the model structure has
already damaged the private data of the model, even if it does
not damage the parameters. The trained model is precious for
the collection of the training data. The average pool function is
often used in fully HE. It only requires homomorphic addition
to complete the pooling, as shown in the following equation.
However, the maximum pool function measurement needs our
optimization.

Encrypt (Z mi) = Z Encrypt(z;). 9)

i=1 i=1

In the encryption condition, it is harder to complete than
number size, so we modify the conditional operations, shown
in the following:

_Jb+a—-0, ifa>b
ma"(“’b)_{bw, ifa<b

= b+ max(0,a — b)

= b+ ReLU(0,a — b). (10)
Correspondingly, the max pooling function in the ciphertext
can be transformed into the following equation:

Enc(max(a, b)) = Enc(b) — Enc(ReLU(0,a — b))

where Enc(a — b) = Enc(a)—Enc(b). (11)

IV. EXPERIMENTS AND EVALUATION

In this section, we implement the PyHENet platform with
fully HE in the traditional PyTorch library, which is based on the
rerealization of the various functions for deep learning inference
services that need to be completed in the previous section.

The experimental analysis in this chapter is completed in three
dimensions: 1) comparison with state-of-the-art ciphertext-
based deep learning prediction models, 2) comparison with the
corresponding plaintext accuracy, and 3) comparison in more
complex remote sensing scenes.
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Fig. 10. Dateset of MNIST.

A. Dataset and Experimental Settings

We deploy the generic cryptographic deep-learning inference
platform with two NVIDIA A100 GPUs to satisfy the larger
memory requirements for more complex security services. It not
only improves the speed of the training process but also assists
the PyHENet platform more effectively in the inference tasks
mentioned in Section II, balancing security with computational
speed.

Since previous deep learning inference experiments based
on fully HE were done and compared in the MNIST? dataset,
we must experiment on this dataset first. The MNIST is the
classification task for gray images, which is the introduction
dataset for deep learning. As shown in Fig. 10, it contains ten
classes of images from 0-9, and the inference service is to
classify them precisely, with 70 000 images of 28*28 pixels.

In MNIST-based experiments, we focus on the difference
between the PyHENet with other cryptographic frameworks,
the complexity of the model, or the similarity with the plaintext
model rather than the accuracy itself. Since this dataset is pri-
mary, distinguishing the accuracy is meaningless. We try to make
the model’s parameters not optimal to achieve the best accuracy.
The inference process with accuracy change can better show the
rate of change.

After proving the generality of the PyHENet platform, we
apply it to the more complex remote sensing image classification
tasks. The NaSC-TG2? dataset is collected from the Tiangong-2
space lab [57], [58] in China, which has higher image quality
and can enables richer remote sensing scenes compared with
the experiments based on maps. It has ten natural scenes, each
with 2000 color images of 128*128 pixels, as shown in Fig. 11.
The PyHENet achieves the fully homomorphic encrypted deep
learning inference service on remote sensing data first while
gaining better accuracy and providing a general platform for
high-security application services.

B. Experiment and Aanalysis of the PyHENet Platform

The main contribution of this article is to provide a more
practical general security platform in complex scenarios with
multiple data sources or multiple network models. The PyHENet
realized convolutional, activation, and pooling functions, which
are essential in standard neural networks. Of course, to obtain
higher accuracy, the PyHENet requires scenario-oriented per-
sonalization, such as data preprocessing and function parameter
tuning, like standard deep learning libraries, such as Pytorch.
Meanwhile, the PyHENet platform makes secure inference ser-
vice more in line with standard deep learning libraries and

2Dateset of MNIST: http://yann.lecun.com/exdb/mnist/
3Dateset of Natural Scene Classification With Tiangong-2 Remotely

Sensed Imagery (NaSC-TG2): http://www.msadc.cn/main/setsubDetail?id=
1370312964720037889


http://yann.lecun.com/exdb/mnist/
http://www.msadc.cn/main/setsubDetail{?}id$=$1370312964720037889
http://www.msadc.cn/main/setsubDetail{?}id$=$1370312964720037889
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Fig. 11.
Rectangular Farmland. (h) Residential. (i) River. (j) Snowberg.
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®

Ten classes of remote sensing images in NaSC-TG2 dateset. (a) Beach. (b) Circular Farmland. (c) Cloud. (d) Desert. (e) Forest. (f) Mountain. (g)

COMPARE THE PYHENET WITH THE CRYPTONETS IN MNIST

TABLE II

PyHENet 2

PyHENet 1

CryptoNets [26]

Convl: kernel size: 3*3, stride:1, output 6 channels

Sigmoid: highly approximate, outpus 4056 numbers

Max Pooling: generates 1014 output numbers
frome 4056 above
Conv2: kernel size: 3*3, stride:1, output 7
channels, output 847 numbers
FC1: input 847 numbers, output 128 numbers

Sigmoid: highly approximate, output 128 numbers

FC2: input 128 numbers, output 10 numbers
Output: generates 10 output numbers

Convl: kernel size: 3*3, stride:1, output 6 channels
Sigmoid: highly approximate, outpus 4056 numbers

/

Conv2: kernel size: 3*3, stride:1, output 7
channels, output 4032 numbers
FC1: input 4021 numbers, output 128 numbers

Sigmoid: highly approximate, output 128 numbers

FC2: input 128 numbers, output 10 numbers
Output: generates 10 output numbers

Convl: kernel size: 5%5, stride:2, output 5
channels
Square Activation: sequare each of 835
output numbers in Convl
Average Pooling: generates 100 output
numbers frome 835 above

/

/
Square Activation: sequare each of 100
outputs numbers above
/
Output: generates 10 output numbers

LCryptoNets Framework: https://sealcrypto. codeplex.com/

enables no need to modify the external code after model training.
This contribution is original and has a wide range of practical
applications. The experiments were applied in remote sensing
scenarios and obtained better accuracy.

1) Comparison With State-of-the-Art Fully Homomorphic
Encryption Models: This subsection focuses on comparing with
state-of-the-art fully homomorphic neural network models.

The CrypNets [26] is one of the few frameworks that expose
the model parameters and code. At the same time, it has been
widely recognized. Therefore, comparing it with PyHENet is
more convincing.

As PyHENet is a general platform, it can be freely combined
to generate different models. Table II gives two different models
of it. Both the models in the PyHENet platform have more gen-
eral and complex sigmoid and full connectivity functions than
the CryptoNets. This undoubtedly requires more optimization
methods. Moreover, the PyHENet can be used together with the
PyTorch library.

In addition, PyHENet 2 has an increased max pooling func-
tion compared to PyHENet 1, which can reduce the ma-
trix calculation under the ciphertext. Moreover, there is no

doubt about the importance of pooling computation in tra-
ditional convolutional networks. It additionally increases the
accuracy of the results, so implementing maximum pooling
in the ciphertext is more relevant to standard deep-learning
libraries.

We also compare the PyHENet with other state-of-the-art
methods in Table III. Since our platform supports encryption
computation under floating-point data, it allows deeper com-
putation. More importantly, the PyHENet is much closer to the
actual requirements and can be implemented with a general plat-
form like Pytorch. Moreover, the PyHENet has three advantages
in optimizing the neural network: optimized linear convolution
calculation function, nonlinear sigmoid activation function, and
max pool function, which have been described in detail in the
previous section.

Based on the model parameters in Table II, the following
subsection compares the experimental performance of the Py-
HENet.

2) Comparison With Deep Learning Inference Models Under
Plaintext: The experiments in this subsection aim to compare
the performance of PyHENet with the plaintext convolution
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TABLE III
COMPARE WITH THE HOMOMORPHIC ENCRYPTION-BASED NEURAL
NETWORKS IN MNIST

FrameworkHEitﬁrlrglo- Security ~ Accuracy Data Type g;:lfz:?:,
PyHENet CKKS 0 999 Float v
BA[;(‘EIENN BEV Fub 9803 Integer x
]_[317_]‘1 BEV Fﬁgy 98.95 Integer x
G,?Sz;:LLE BEV F:Igy 99.05 Integer x
D[eslg]hi BEV F]‘j[l]}:y / Integer X
H[l‘lsf(l)t]er BEV Fll_llléy 99.37 Integer X
Crép(;TDL HE FI‘_llléy 99.95 Integer X
CrE/2p6t§JN ets YASHE Fll_llléy 99 Integer X
P"[%Cl‘im Paillier PO g Float x
0.99 -

0.98 1

Accuracy
o o
(e} (e}
()} ~
) .

o

O

v
|

—e— Benchmark: Plaintext

0.94 7 — PyHENet 1:Conv1+Sig
—e— PyHENet 1:Conv1+Sig+Conv2
0.93 —A— PyHENet 1:Conv1+Sig+Conv2+FC1l
0 10 20 30 40 50 60
Number of Iterations
Fig. 12.  Compare the accuracy of the PyHENet 1 in different security require-

ments.

neural network model rather than to obtain higher accuracy.
Therefore, this experiment was conducted in different iterations
of the model to get the relative performance of different models
in different accuracy cases.

Figs. 12 and 13 compare the accuracy of the plaintext bench-
mark with PyHENet 1 and PyHENet 2 in different security levels
(number of network layers for encryption computation). We
modify the parameters so that the model cannot quickly obtain
the optimum accuracy in the previous iterations. We found that
PyHENet 1 and 2 have good robustness during 60 iterations. It
can also be seen from the figures that the inference performance
of the encrypted neural network has almost the same relative
performance as that of the benchmark. In addition, different
security-level models can obtain almost the same accuracy.

Figs. 14 and 15, respectively, compare the accuracy of Py-
HENet 1 and PyHENet 2 with that of the plaintext network and
obtain the relative accuracy percentage. As can be seen from the
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0.99 1
0.98 1
0.97 1
' 0.96 -
I
o]
ot
< 0.95 1
0.94
—e— Benchmark: Plaintext
0.931 —¢ PyHENet 2:Conv1+Sig
—e— PyHENet 2:Conv1+Sig+Max Pooling
0.92 4 —&— PyHENet 2:Conv1+Sig+Max Pooling+Conv2
0 10 20 30 40 50 60
Number of Iterations
Fig. 13.  Compare the accuracy of the PyHENet 2 in different security require-
ments.
1.20%
1.00% W PyHENet 1:Conv1+Sig
0.80% M PyHENet 1:Conv1+Sig+Conv2
0.60% = PyHENet 1:Conv1+Sig+Conv2+FC1
0.40%
0.20%
0.00% | N
20 5 50 60
-0.20%
-0.40%
-0.60%
Fig. 14. Relative accuracy percentage of PyHENet 1 that compare with

plaintext network.

above figures, when the number of iterations of the network is
low, the relative accuracy of the network fluctuates greatly. This
phenomenon is consistent with the actual situation. The neural
network needs many iterations to obtain high accuracy. With
the increased iteration times, no matter what kind of ciphertext
network, it has reached the same accuracy as a plaintext network
and tends to be stable.

In this part of the experiment, the relative accuracy under the
impact condition can be obtained by changing the performance
of the network, which can better reflect the robustness of the
PyHENet platform.

3) Comparison in Remote Sensing Scenes: The experiments
in the previous subsections have demonstrated the security,
robustness, and high accuracy of the PyHENet platform. This
has laid a foundation for exploring more complex remote sensing
applications.

We conduct cryptographic deep-learning inference experi-
ments on the NaSC-TC2 dataset provided by the Tiangong-
2 space laboratory. In their latest research, Zhou et al. [57]
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3.00%
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2.50% PyHENet 2:Conv1+Sig
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1.50%
1.00%
0.50%
0.00%
2 20 30 40 50 60
-0.50%
-1.00%
Fig. 15. Relative accuracy percentage of PyHENet 2 that compare with

plaintext network.

TABLE IV
COMPARISON OF THE PYHENET PLATFORM IN NASC-TG2

PyHENet 3

Zhou’s AlexNet [55], [57]

Convl: kernel size: 7*7, stride:2,
output 128 channels

/

Max Pooling: kernel size: 3*3,
stride:2
Conv2: kernel size: 3*3, stride:2,
output 192 channels
/

Max Pooling: kernel size: 3*3,
stride:2
Conv3: kernel size: 3*3, stride: 1,
output 128 channels
Sigmoid
/

/
/

/

FC1: input 2048 numbers, output
1024 numbers
Sigmoid:

FC2: input 1024 numbers, output
512 numbers
/

FC3: input 512 numbers, output
10 numbers
Output: generates 10 output
numbers

Convl: kernel size: 11¥11,
stride:4, output 96 channels /
ReLU
Local Response Norm

Max Pooling: kernel size: 3*3,
stride:2
Conv2: kernel size: 5*5, stride:1,
output 256 channels / ReLLU
Local Response Norm

Max Pooling: kernel size: 3*3,
stride:2
Conv3: kernel size: 3*3, stride: 1,
output 384 channels
ReLU
Conv4: kernel size: 3*3, stride: 1,
output 384 channels / ReLU
Conv5: kernel size: 3%#3, stride: 1,
output 384 channels / ReLLU
Conv6: kernel size: 3*#3, stride: 1,
output 256 channels / ReLU
Max Pooling: kernel size: 3*3,
stride:2
FC1: input 4096 numbers, output
4096 numbers
ReLU
FC2: input 4096 numbers, output
4096 numbers
ReLU
FC3: input 4096 numbers, output
100 numbers
Output: generates 100/10 output
numbers

TABLE V
ABLATION EXPERIMENT OF PYHENET 3 WITH DIFFERENT KINDS OF LAYERS

Model Top-1 Accuracy
PyHENet 3 95.05%
(w/0) Fully homomorphic encryption 95.10%
(w/o) Max Pooling & Con3 82.05%
(w/o) Max Pooling & Con3 & Sigmoid 69.51%
(w/o) Two Max Pooling & Con3 & Sigmoid 54.66%

TABLE VI
COMPARE WITH STATE-OF-THE-ART NEURAL NETWORKS IN NASC-TG2

found that AlexNet could achieve 89.39% accuracy in this high-
resolution remote sensing data classification task. It possesses
higher accuracy than deeper neural networks, such as VGG.
Therefore, we adjust the model structure of PyHENet 3 to let
it be similar to the AlexNet and replicate the experiment using
our inference model based on fully HE. Table V carries out the
ablation experiments of model PyHENet 3, which reflects the
effectiveness of its structure. Table IV shows the comparison
of PyHENet with Zhou’s AlexNet. We upgrade the number of
layers and the difficulty of the model in PyHENet once again.

Accuracy
Model Encryption Number of Layers 20% 0%
Training  Training
PyHENet 4 9 90.43% 95.05%
Zhou’s
AlexNet X 22 89.39% /
[57]
0.9 1
0.8

o
~
1

Accuracy
o
(o)}
1

0.5 1
0.4 1
—— PyHENet 3 with 70% training
0.31 —>¢ PyHENet 3 with 20% training
0 20 40 60 80
Number of Iterations
Fig. 16.  Accuracy of PyHENet 3 in NaSC-TG2.

Through several experimental comparisons, in the task of
NaST-TC2, we found that the traditional AlexNet network,
which is computed with 22 functions, has redundant functions.
So we reduce the neural network to the model with nine layers
of functions. Moreover, the specific parameters of each layer are
given in Table IV.

Since Zhou’s experiments were implemented based on 20%
of the training data, this article does the inference experiments
on 20% and 70% of the trained models, respectively. As shown
in Table VI, we can obtain higher accuracy even though the
PyHENet model has fewer functions and is based on a complex
computation of fully HE. It can be seen that high security does
not trigger a decrease in accuracy. In addition, the generic model
can be appropriately tuned to obtain higher accuracy.

From the graph in Fig. 16, we can see the accuracy trend of
the inference model. The accuracy increases sharply in the 1st
to 20th iterations, and the model accuracy stabilizes through the
20th to 40th iterations. In addition, the accuracy trend is the same
for different amounts of training data.
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With the encrypted scenario, we not only do not have less
inference accuracy but also do not affect the the final results. It
can be seen that the generic platform PyHENet proposed in this
article can indeed provide a secure inference service for remote
sensing scenes. The security of the remote sensing scenario is
ensured and the platform is generic and easy to operate.

V. CONCLUSION

Remote sensing scenes have an increasing demand for secu-
rity, especially inference services in deep learning. Moreover,
privacy-preserving deep learning is a challenging but essential
research topic. How to balance security and performance is
critical. We design a general platform for deep learning inference
called the PyHENet. It can secure both the client’s data and the
trained model based on post-quantum encryption theory. By im-
plementing and optimizing the neural network under ciphertext,
the security is further improved while reducing the development
difficulty. In the future, we can further optimize the platform to
satisfy more deep learning models, such as LSTM or GAN. The
exploration of distributed secure remote sensing applications is
another valuable research direction.

REFERENCES

[11 X.Zhang, G. Zhang, X. Huang, and S. Poslad, “Granular content distribu-
tion for IoT remote sensing data supporting privacy preservation,” Remote
Sens., vol. 14, no. 21, 2022, Art. no. 5574.

[2] L.Jiang, T. Niu, Z. Xu, and Y. Xu, “Integrating encryption and marking for
remote sensing image based on orthogonal decomposition,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 5, pp. 2232-2239,
May 2015.

[3] L. Jiang, H. Zheng, H. Wang, and Z. Quan, “A multipermutation super-
position coding-based fragile watermarking for probabilistic encryption,”
Multimedia Tools Appl., vol. 81, no. 21, pp. 30025-30048, 2022.

[4] V. Gewin, “Mapping opportunities,” Nature, vol. 427, no. 6972,
pp. 376-377, 2004.

[5] Y. Sun et al., “Multisource data reconstruction-based deep unsupervised
hashing for unisource remote sensing image retrieval,” [EEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 5546316.

[6] J. Kang, R. Fernandez-Beltran, Z. Ye, X. Tong, P. Ghamisi, and A. Plaza,
“Deep metric learning based on scalable neighborhood components for
remote sensing scene characterization,” IEEE Trans. Geosci. Remote Sens.,
vol. 58, no. 12, pp. 8905-8918, Dec. 2020.

[7] J. Liang, Y. Deng, and D. Zeng, “A deep neural network combined CNN
and GCN for remote sensing scene classification,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 13, pp. 4325-4338, 2020.

[8] Y. Caoetal., “Forest disaster detection method based on ensemble spatial—
spectral genetic algorithm,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 15, pp. 7375-7390, 2022.

[9] J. Zhang et al., “Monitoring plant diseases and pests through remote

sensing technology: A review,” Comput. Electron. Agriculture, vol. 165,

2019, Art. no. 104943.

Y. Dong et al., “Automatic system for crop pest and disease dynamic

monitoring and early forecasting,” IEEE J. Sel. Topics Appl. Earth Observ.

Remote Sens., vol. 13, pp. 4410-4418, 2020.

Z. Sun, X. Li, W. Yi, G. Cui, and L. Kong, “A coherent detection and

velocity estimation algorithm for the high-speed target based on the

modified location rotation transtorm,” IEEE J. Sel. Topics Appl. Earth

Observ. Remote Sens., vol. 11, no. 7, pp. 2346-2361, Jul. 2018.

Y. Cai, Y. Ding, H. Zhang, J. Xiu, and Z. Liu, “Geo-location algorithm for

building targets in oblique remote sensing images based on deep learning

and height estimation,” Remote Sens., vol. 12, no. 15, 2020, Art. no. 2427.

C. Gao, D. Yang, X. Hong, Y. Xu, B. Wang, and Y. Zhu, “Experimen-

tal results about traffic flow detection by using GPS reflected signals,”

IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 12,

pp. 50765087, Dec. 2018.

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

3319

B. Zhang et al., “Progress and challenges in intelligent remote sensing
satellite systems,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 15, pp. 1814-1822, 2022.

X. Wang, J. Li, and H. Yan, “An improved anti-quantum MST3 public
key encryption scheme for remote sensing images,” Enterprise Inf. Syst.,
vol. 15, no. 4, pp. 530-544, 2021.

Z. Yu and Z. Yang, “Method of remote sensing image detail encryption
based on symmetry algorithm,” J. Ambient Intell. Humanized Comput.,
pp- 1-9, 2021. [Online]. Available: https://link.springer.com/article/10.
1007/s12652-020-02818-x

S. Zope-Chaudhari, P. Venkatachalam, and K. M. Buddhiraju, “Se-
cure dissemination and protection of multispectral images using crypto-
watermarking,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 8, no. 11, pp. 5388-5394, Nov. 2015.

R. Sen, G. R. Heim, and Q. Zhu, “Artificial intelligence and machine
learning in cybersecurity: Applications, challenges, and opportunities
for MIS academics,” Commun. Assoc. Inf. Syst., vol. 51, pp. 179-209,
2022.

J. Wu, Cyberspace Mimic Defense - Generalized Robust Control and En-
dogenous Security (ser. Wireless Networks). Berlin, Germany: Springer,
2020.

F. Arute et al., “Quantum supremacy using a programmable superconduct-
ing processor,” Nature, vol. 574, no. 7779, pp. 1948-1957, 2019.

F. Zhou, S. Qin, R. Hou, and Z. Zhang, “Privacy-preserving image re-
trieval in a distributed environment,” Int. J. Intell. Syst., vol. 37, no. 10,
pp. 7478-7501, 2022.

R. Jones and D. Tahri, “An overview of EU data protection rules on
use of data collected online,” Comput. Law Secur. Rev., vol. 27, no. 6,
pp. 630-636, 2011.

H. C. Tanuwidjaja, R. Choi, S. Baek, and K. Kim, “Privacy-preserving
deep learning on machine learning as a service-A comprehensive survey,”
IEEE Access, vol. 8, pp. 167425-167447, 2020.

C. Wang et al., “SOLAR: Services-oriented deep learning architectures-
deep learning as a service,” IEEE Trans. Serv. Comput., vol. 14, no. 1,
pp- 262-273, Jan./Feb. 2021.

H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y
Arcas, “Communication-efficient learning of deep networks from decen-
tralized data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., 2017, vol. 54,
pp. 1273-1282.

R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J.
Wernsing, “CryptoNets: Applying neural networks to encrypted data with
high throughput and accuracy,” in Proc. 33rd Int. Conf. Mach. Learn.,
2016, vol. 48, pp. 201-210.

A. Brutzkus, R. Gilad-Bachrach, and O. Elisha, “Low latency privacy
preserving inference,” in Proc. 36th Int. Conf. Mach. Learn., 2019, vol. 97,
pp. 812-821.

J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via miniONN transformations,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2017, pp. 619-631.

R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proc.
22nd ACM SIGSAC Conf. Comput. Commun. Secur.,2015, pp. 1310-1321.
E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Deep neural
networks over encrypted data,” 2017, arXiv:1711.05189.

H. Chen, W. Dai, M. Kim, and Y. Song, “Efficient multi-key homomorphic
encryption with packed ciphertexts with application to oblivious neural
network inference,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2019, pp. 395-412.

B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “Deepsecure: Scalable
provably-secure deep learning,” in Proc. 55th Annu. Des. Automat. Conf.,
2018, pp. 1-6.

C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A low
latency framework for secure neural network inference,” in Proc. 27th
USENIX Conf. Secur. Symp., 2018, pp. 1651-1668.

P. Xie, B. Wu, and G. Sun, “BAYHENN: Combining Bayesian deep
learning and homomorphic encryption for secure DNN inference,” in Proc.
28th Int. Joint Conf. Artif. Intell., 2019, pp. 4831-4837.

R. A. Hallman, M. H. Diallo, M. A. August, and C. T. Graves, “Homo-
morphic encryption for secure computation on Big Data,” in Proc. 3rd Int.
Conf. Internet Things, Big Data Secur., 2018, pp. 340-347.

M. S. Riazi and F. Koushanfar, “Privacy-preserving deep learning and
inference,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2018,
pp. 1-4.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp- 84-90, 2017.


https://link.springer.com/article/10.1007/s12652-020-02818-x
https://link.springer.com/article/10.1007/s12652-020-02818-x

3320

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

S. Lobo, “IBM rolls out deep learning as a service (DLaaS) program for
ai developers,” 2018.

L. Cui, Z. Chen, S. Yang, R. Chen, and Z. Ming, “A secure
and decentralized DLaaS platform for edge resource scheduling
against adversarial attacks,” IEEE Trans. Comput., to be published,
doi: 10.1109/TC.2021.3074806.

Z. Liang, X. Chen, L. Zhang, J. Liu, and Y. Zhou, “Correlation classifiers
based on data perturbation: New formulations and algorithms,” Pattern
Recognit., vol. 100, 2020, Art. no. 107106.

H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar, “Random-data pertur-
bation techniques and privacy-preserving data mining,” Knowl. Inf. Syst.,
vol. 7, no. 4, pp. 387414, 2005.

S. Truex, L. Liu, M. E. Gursoy, W. Wei, and L. Yu, “Effects of differential
privacy and data skewness on membership inference vulnerability,” in
Proc. IEEE st Int. Conf. Trust, Privacy Secur. Intell. Syst. Appl., 2019,
pp. 82-91.

V. Karwa and A. Slavkovic, “Inference using noisy degrees: Differen-
tially private b-model and synthetic graphs,” Ann. Statist., vol. 44, no. 1,
pp. 87-112, 2016.

F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“MP2ML: A mixed-protocol machine learning framework for private
inference,” in Proc. 15th Int. Conf. Availability, Rel. Secur., 2020, pp. 1-10.
M. Zanon and S. Gros, “Safe reinforcement learning using robust
MPC,” IEEE Trans. Autom. Control, vol. 66, no. 8, pp.3638-3652,
Aug. 2021.

L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning via additively homomorphic encryption,”
IEEE Trans. Inf. Forensics Secur., vol. 13, no. 5, pp.1333-1345,
May 2018.

D. J. Bernstein and T. Lange, “Post-quantum cryptography,” Nature,
vol. 549, no. 7671, pp. 188-194, 2017.

M. J. Frank, B. S. Woroch, and T. Curran, “Error-related negativity
predicts reinforcement learning and conflict biases,” Neuron, vol. 47, no. 4,
pp. 495-501, 2005.

Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic en-
cryption from (standard) LWE,” in Proc. IEEE 52nd Annu. Symp. Found.
Comput. Sci., 2011, pp. 97-106.

C. Gentry, “Computing arbitrary functions of encrypted data,” Commun.
ACM(Earlier Version STOC 2009), vol. 53, no. 3, pp. 97-105, 2010.

C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-
based,” in Proc. 33rd Annu. Int. Cryptology Conf., 2013, vol. 8042,
pp. 75-92.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homo-
morphic encryption without bootstrapping,” ACM Trans. Computation
Theory, vol. 6, no. 3, pp. 13:1-13:36, 2014.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

Y. Ren, C. Zhu, and S. Xiao, “Small object detection in optical remote
sensing images via modified faster R-CNN,” Appl. Sci., vol. 8, no. 5, 2018,
Art. no. 813.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. 26th Annu. Conf.
Neural Inf. Process. Syst., 2012, pp. 1106-1114.

K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” in Proc. 10th Int. Workshop
Front. Handwriting Recognit. Suvisoft, 2006, pp. 1-6.

Z.Zhou et al., “NaSC-TG2: Natural scene classification with Tiangong-2
remotely sensed imagery,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 14, pp. 3228-3242, 2021.

H. Zhu, “Scientific experiments on Tiangong-2, the predecessor of the
China space station,” Nat. Sci. Rev., vol. 9, no. 12,2022, Art. no. nwac189.
P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa, “Delphi:
A cryptographic inference service for neural networks,” in Proc. 29th
USENIX Secur. Symp. Assoc., 2020, pp. 2505-2522.

Y. Cai, Q. Zhang, R. Ning, C. Xin, and H. Wu, “Hunter: HE-friendly
structured pruning for efficient privacy-preserving deep learning,” in Proc.
ACM Asia Conf. Comput. Commun. Secur., 2022, pp. 931-945.

J. Wang, C. Jin, S. Meftah, and K. M. M. Aung, “Popcorn: Paillier
meets compression for efficient oblivious neural network inference,” 2021,
arXiv:2107.01786.

ing.

»

Dr. Zhang is a Lifetime Member of ACM.

Qian Chen (Student Member, IEEE) received the
master’s degree in computer science, from the Harbin
Institute of Technology, Shenzhen, China, in 2018,
where she is currently working toward the Ph.D.
degree in computer science.

She is an Experimentalist with the Experimental
and Practical Research Center, Harbin Institute of
Technology, from 2018 to 2019, teaching experi-
mental courses on compilation principle, operating
system, and high-level language programming. Her
research interests include homomorphic encryption,
remote sensing, and game theory.

Yulin Wu received the Ph.D. degree in computer
science from the Harbin Institute of Technology,
Shenzhen, China, in 2021.

She is currently an Assistant Professor with the
School of Computer Science and Technology, Harbin
Institute of Technology. Her research interests include
secure multiparty computation, remote sensing, and
cloud security.

Xuan Wang (Member, IEEE) received the Ph.D.
degree from Harbin Institute of Technoloy, Harbin,
China, in 1997.

He is one of the inventors of Microsoft Pinyin,
and once worked with Microsoft headquarter in Seat-
tle due to his contribution to Microsoft Pinyin. He
is currently the deputy Director of the Computing
Department, Harbin Institute of Technology, and
Project Leader with the Artificial Intelligence Re-
search Center, Pengcheng Laboratory, Shenzhen. His
research interests include cybersecurity and artificial
intelligence.

Zoe L. Jiang (Member, IEEE) received the Ph.D.
degree in computer science from The University of
Hong Kong, Hong Kong, in 2010.

She is currently an Associate Professor with the
School of Computer Science and Technology, Harbin
Institute of Technology, Shenzhen, China. Her re-
search interests include secure multiparty computa-
tion, homomorphic encryption, and cloud security.

Weizhe Zhang (Senior Member, IEEE) received the
Ph.D. degree from Harbin Institute of Technology,
Harbin, China, in 2006.

He is currently a Professor with the School of Com-
puter Science and Technology, Harbin Institute of
Technology, Shenzhen, China, and Director of the De-
partment of New Networks, Pengcheng Laboratory,
Shenzhen. He has authored more than 130 academic
papers in journals, books, and conference proceed-
ings. His research interests include cyberspace secu-
rity, cloud computing, and high-performance comput-


https://dx.doi.org/10.1109/TC.2021.3074806

CHEN et al.: GENERIC CRYPTOGRAPHIC DEEP-LEARNING INFERENCE PLATFORM

Piix

lems, and in particular, the privacy issues related to mobile and IoT devices.

Yang Liu received the B.Eng. degree in computer
science from the Ocean University of China, Qing-
dao, China, in 2010, the M.Sc. degree in software
engineering from Peking University, Beijing, China,
in 2013, and the D.Phil. (Ph.D.) degree in computer
science from the University of Oxford, Oxford, U.K.,
in 2018, advised by Prof. Andrew Simpson.

He is currently an Assistant Professor with the
School of Computer Science and Technology, Harbin
Institute of Technology, Shenzhen, China. His re-
search interests include security and privacy prob-

3321

Mamoun Alazab (Fellow, IEEE) received the Ph.D.
degree in computer science from the School of Sci-
ence, Information Technology and Engineering, Fed-
eration University of Australia, Mount Helen, VIC,
Australia, in 2012.

He is currently an Associate Professor with the
College of Engineering, IT and Environment, Charles
Darwin University, Casuarina, NT, Australia. He
is also a Cyber Security Researcher and a Practi-
tioner with industry and academic experience. He
works closely with government and industry on many
projects, including the Northern Territory (NT) Department of Information and
Corporate Services, IBM, Trend Micro, the Australian Federal Police (AFP),
etc. His research interests is multidisciplinary that include cyber security and
digital forensics of computer systems with a focus on cybercrime detection and
prevention, including cyber terrorism and cyber warfare.

Dr. Alazab is the Founder and the Chair of the IEEE Northern Territory
Subsection Detection and Prevention.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


